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Abstract

For decades, the Na/K-ATPase has been proposed and recognized as one of 
the targets for the regulation of renal salt handling. While direct inhibition of the 
Na/K-ATPase ion transport activity and sodium reabsorption was the focus, the 
underlying mechanism is not well understood since decreases in basolateral Na/K-
ATPase activity alone do not appear sufficient to decrease net sodium reabsorption 
across the renal tubular epithelium. The newly appreciated signaling function of 
Na/K-ATPase, which can be regulated by Na/K-ATPase ligands (cardiotonic steroids 
(CTS)) and reactive oxygen species (ROS), has been widely confirmed and pro-
vides a mechanistic framework for natriuresis regulation in renal proximal tubule 
(RPT). The focus of this review aims to understand, in renal proximal tubule, how 
the activation of Na/K-ATPase signaling function, either by CTS or ROS, stimu-
lates a coordinated reduction of cell surface Na/K-ATPase and sodium/hydrogen 
exchanger isoform 3 (NHE3) that leads to ultimately decreases in net transcellular 
sodium transport/reabsorption.

Keywords: cardiotonic steroids, natriuresis, renal proximal tubule, Na/K-ATPase, 
NHE3, signaling, ROS

1. Introduction

Since J.C. Skou’s discovery in 1957 [1], the energy-transducing Na/K-ATPase has 
been extensively studied for its ion-pumping function and, later on, its signaling 
function. While the signaling function was first demonstrated in cardiac myocyte 
primary culture, the phenomenon has been confirmed in different cell types and 
animal models. The roles of Na/K-ATPase signaling in renal proximal tubule (RPT) 
sodium handling and oxidative modification of the Na/K-ATPase α1 subunit in 
Na/K-ATPase signaling were explored both in vitro and in vivo. The findings may 
explain certain mechanism(s) related to the Na/K-ATPase signaling-ROS amplifica-
tion loop and subsequent regulation of salt sensitivity.

The RPT mediates over 60% of the filtered Na+ reabsorption [2, 3]. There are 
two Na+ reabsorption pathways in RPTs. One is through the transcellular pathway, 
mainly through the apical Na+ entry mainly via NHE3 (and other apical Na+-
coupled transporters like Na+-glucose cotransporters 1 and 2, to a lesser extent) 
and basolateral Na+ extrusion through the Na/K-ATPase [2, 3]. A coordinated and 
coupled regulation of sodium/hydrogen exchanger isoform 3 (NHE3, SLC9A3) and 
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the Na/K-ATPase is critical in maintaining intracellular Na+ homeostasis and extra-
cellular fluid volume. The other one is the paracellular Na+ reabsorption pathway 
through a tight junction (TJ), which depends on the transepithelial electrochemical 
force and tight junction permeability. Claudin-2 forms paracellular channels with 
other protein that are selective for small cations like Na+ and K+, small anion like 
Cl−, as well as water [4–6]. Interestingly, the Na/K-ATPase signaling function is able 
to regulate the apical/basolateral polarity of the Na/K-ATPase as well as the tight 
junctions’ components like claudins in distal tubule MDCK cells [7, 8].

The Na/K-ATPase belongs to the P-type ATPase family and consists of two 
non-covalently linked α- and β-subunits. Several α- and β-isoforms, expressed in a 
tissue-specific manner, have been identified and functionally characterized [9–12]. 
In RPTs, the γ-subunit (γa and γb, also known as FXYD2, one of the small type I 
single-span membrane FXYD protein families) also interacts with the α1 subunit 
to regulate the Na/K-ATPase activity [13–15]. There is also a fifth member of the 
β-subunit family, named βm coded by an ATP1B4 gene, that is predominantly 
expressed in skeletal muscle. Interestingly, the βm is not associated with the α1 sub-
unit like other β-subunits, but accumulated in the nuclear membrane and associated 
with transcriptional coregulator Ski-interacting protein, which led to the regulation 
of TGF-β-responsive reporter Smad7 [16]. The α1 subunit contains multiple struc-
tural motifs that interact with soluble, membrane, and structural proteins. Binding 
to these proteins not only regulates the ion-pumping function of the enzyme, but 
it also conveys signal-transducing functions to the Na/K-ATPase [17–32]. NHE3 
belongs to a family of electroneutral mammalian Na+/H+ exchangers [33–35]. In 
RPT, NHE3 resides in the apical membrane of S1 and S2 segments, mediating 
transcellular reabsorption of Na+ and HCO3

− and fluid reabsorption [36, 37]. In 
the kidney, more than 85% of the filtered NaHCO3 is reabsorbed in the RPTs, and 
NHE3 contributes up to ∼60% of the total reabsorption of this segment [38]. RPT 
NHE3 secrets the largest portion of net H+ to the lumen and interacts with HCO3

− to 
form H2O and CO2 which can freely translocate into RPT cytosol. In cytosol, H2O 
and CO2 form H+ and HCO3

− through carbonic anhydrase catalyzation. Finally, the 
newly formed cytosolic H+ will be secreted to the lumen, and HCO3

− will be moved 
to the blood through the basolateral-resided Na+/HCO3

− cotransporter (NBCe1-A, 
SLC4A4). This cycling carbonic anhydrase-controlled CO2-HCO3

− system links 
the NHE3-mediated H+ secretion to HCO3

− reabsorption, to achieve an acid-base 
equilibrium [39, 40]. Moreover, vesicular NHE3 activity also regulates endosomal 
pH and consequently affects receptor-mediated endocytosis as well as endocytic 
vesicle fusion [41, 42]. Under normal conditions, the Na/K-ATPase resides at the 
basolateral surface, providing the driving force for the vectorial transport of Na+ 
from the tubular lumen to the vascular compartment, while the NHE3 resides at the 
apical surface providing a rate-limiting Na+ entry into cells.

2.  The concept of endogenous cardiotonic steroids (CTS) as natriuretic 
hormones

CTS (also known as endogenous digitalis-like substances) are specific ligands 
and inhibitors of the Na/K-ATPase, which include plant-derived glycosides such 
as digoxin and ouabain and vertebrate-derived aglycones such as bufalin and 
marinobufagenin (MBG). Although the production and secretion of endogenous 
CTS are not completely understood, both ouabain and MBG have been identified 
as endogenous steroid hormones whose production and secretion can be regulated 
by multiple stimuli including angiotensin II and adrenocorticotropic hormone 
(ACTH) [30, 43–48]. Endogenous CTS are present in measurable amounts under 



3

The Na/K-ATPase Signaling Regulates Natriuresis in Renal Proximal Tubule
DOI: http://dx.doi.org/10.5772/intechopen.92968

normal physiological conditions and are markedly increased under a number of 
pathological conditions such as sodium imbalance, chronic renal failure, hyperaldo-
steronism, hypertension, congestive heart failure, acute plasma volume expansion, 
and preeclampsia [46, 49–59].

Even though digitalis-like drugs have been used to treat heart failure patients 
for over 200 years, studies have also revealed many extra-cardiac actions of these 
compounds, such as in response to salt loading in both animal models and human 
hypertensive patients [29, 57, 60–62]. In addition, low doses of CTS not only 
induced hypertension in rats but also caused a significant cardiovascular remodel-
ing independent of their effect on blood pressure (BP) [63–66].

Bricker was the first to propose the existence of “the third factor” (named after 
the glomerular filtration rate as the first factor and the aldosterone as the second 
factor), and Dahl proposed the existence of a hormonal natriuretic factor that 
might cause a sustained increase in BP in salt-sensitive hypertensive rats [67, 68]. 
Subsequently, Bricker, de Wardener, and others proposed that this hormonal natri-
uretic factor inhibits the Na/K-ATPase, and Blaustein described how an increase 
in endogenous Na/K-ATPase inhibitors might cause a vascular contractility change 
and then a rise in BP [67, 69–72]. In 1980, de Wardener and MacGregor summarized 
the state of research at the time and proposed an insightful scheme explaining how 
the Na/K-ATPase inhibitor works as a natriuretic hormone [73]. In essence, it was 
contended that the Na/K-ATPase inhibitor (endogenous CTS) will rise in response 
to either a defect in renal Na+ excretion or high salt intake. This increase, while 
returning Na+ balance toward normal by increasing renal Na+ excretion, also causes 
hypertension through acting on the vascular Na/K-ATPase. With the advances in the 
field over the decades, much has been learned. The first unequivocal demonstration 
of ouabain-like substance in the human plasma was reported decades ago [46]. 
Blaustein and Hamlyn’s laboratory has demonstrated how increases in endogenous 
CTS change vascular contractility and its effect on BP [74]. However, the patho-
physiological significance of endogenous CTS (e.g., as a natriuretic hormone) 
has been a subject of debate since it was first proposed until Lingrel’s laboratory 
reported their gene replacement in vivo studies, which unequivocally demonstrated 
that endogenous CTS play an important role in the regulation of renal Na+ excretion 
and BP through the Na/K-ATPase [75–77]. Specifically, Lingrel’s group generated 
several lines of mice in which the mouse endogenous ouabain-insensitive α1 subunit 
is replaced by a mutant that alters the ouabain sensitivity of the Na/K-ATPase. For 
example, they generated a line of “humanized” α1S/S mice where the endogenous 
ouabain-insensitive α1 is replaced by an ouabain-sensitive (human like) α1-mutant 
and used these mice to explore the role of endogenous CTS in the regulation of 
renal function and BP. Should endogenous CTS be important for these regulations, 
an increased CTS sensitivity in α1S/S mice would make these mice more sensitive 
to conditions that raise circulating CTS. Indeed, when ACTH was administered 
to raise endogenous CTS, it caused much severe hypertension in α1S/S mice than 
their control littermates. Moreover, expression of the ouabain-sensitive α1-mutant 
significantly increased renal Na+ excretion, confirming the natriuretic function 
of endogenous CTS as proposed by the pioneers of the field [67, 68, 70–73]. More 
evidences indicate that increases in endogenous CTS regulate both renal Na+ excre-
tion and BP through the Na/K-ATPase [74–76, 78, 79].

3. The Na/K-ATPase signaling by specific ligands and ROS in RPTs

Ouabain-stimulated protein-protein interaction and subsequent Na/K-ATPase 
signaling function were first demonstrated in rat neonatal myocytes, which were 
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further confirmed and developed in porcine LLC-PK1 cells (an immobilized RPT 
cell line) and other cell types. CTS-stimulated Na/K-ATPase signaling has been 
reviewed everywhere [22, 31, 32, 47, 80–83].

In LLC-PK1 cells, ouabain-stimulated Na/K-ATPase signaling increases ROS 
generation. Other than ouabain, exogenous H2O2 and glucose oxidase-induced H2O2 
also activate Na/K-ATPase signaling pathways including phosphorylation of c-Src 
and ERK1/2, as well as protein carbonylation modification of Na/K-ATPase (direct 
carbonylation of two amino acid residues, Pro222 and Thr224, in the actuator domain 
of the α1 subunit) [84–87]. Pretreatment with antioxidant N-acetyl-l-cysteine 
(NAC) or disruption of the Na/K-ATPase/c-Src signaling complex attenuated 
ouabain- and glucose oxidase-stimulated Na/K-ATPase/c-Src signaling, protein 
carbonylation, redistribution of Na/K-ATPase, and inhibition of active transepithe-
lial 22Na+ transport. A basal level of ROS is critical in initiating ouabain-stimulated 
Na/K-ATPase/c-Src signaling, and carbonylation modification of the α1 subunit 
is involved in a feed-forward mechanism of the regulation of ouabain-mediated 
Na/K-ATPase signal function and subsequent Na+ transport. Furthermore, a stable 
overexpression of rat α1-mutant Pro224/Ala (Pro224 of rat α1 is the same as the Pro222 
of pig α1) prevented ouabain-stimulated signal function of Na/K-ATPase, protein 
carbonylation, Na/K-ATPase endocytosis, and ouabain-induced inhibition of active 
transepithelial 22Na+ transport [79, 86, 87]. Taken together, in LLC-PK1 cells, there 
is a positive-feedback amplification loop of Na/K-ATPase signaling and ROS genera-
tion, in which carbonylation of the Pro222 of the α1 subunit is critical. In this work-
ing model, both Na/K-ATPase-specific ligands (such as ouabain) and ROS increases 
(induced by other stimuli like exogenous added glucose oxidase) could activate 
the Na/K-ATPase signaling, and the Na/K-ATPase/c-Src complex can function as a 
“receptor” of ROS signaling. This Na/K-ATPase signaling-ROS axis may explain the 
role of Na/K-ATPase signaling in the development of different pathophysiological 
conditions, including RPT sodium handling.

4. Endocytosis of Na/K-ATPase

Endocytosis is involved in many important cellular functions. Ouabain-
induced endocytosis of the Na/K-ATPase was first observed by the laboratories 
of Cook and Lamb, which demonstrated that [3H]-ouabain (bound to the Na/K-
ATPase) was translocated from the plasmalemmal membrane surface to intracellu-
lar compartments (lysosomes) in HeLa cells, chick embryo heart cells, and Girardi 
heart cells [88–92].

4.1 Dopamine and PTH

One of the best-studied paradigms of hormonal natriuresis is the renal 
dopamine system [93–96]. Renal dopamine release increases in response to high 
salt intake or volume expansion. The activation of D1-like dopamine receptors 
stimulates PLC-γ and cAMP-PKA pathways and increases intracellular Ca2+. These 
pathways work in concert and produce the coordinated downregulation of NHE3 
and the Na/K-ATPase and consequently natriuresis [93–95, 97, 98]. While Aperia’s 
laboratory first revealed the pathways involved in dopamine-induced regulation of 
Na/K-ATPase activity [99–101] that is related to endocytosis of the Na/K-ATPase 
[102], Moe and others have mapped the pathways of NHE3 phosphorylation and 
trafficking [103–105]. In RPT, dopamine alters sodium handling by inducing 
Na/K-ATPase and NHE3 endocytosis. In RPT primary culture of Sprague-Dawley 
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rats, dopamine-induced clathrin-dependent endocytosis of the rat Na/K-ATPase 
α1 subunit is triggered by activation of PI3K and subsequently phosphorylation of 
Ser-18 of rat α1 subunit [24, 106–109]. The activation of PI3K also stimulated phos-
phorylation of the Tyr537 of the α1 subunit that facilitates its binding with adaptor 
protein-2 (AP-2), providing the inclusion of the Na/K-ATPase into clathrin-coated 
pits (CCP) [24, 108]. However, Ser-18 is found only in rat α1 subunit and is not 
present in pig and dog α1 subunits [110]. Depending on the type of renal tubular 
epithelium, dopamine-induced endocytosis of the Na/K-ATPase may be mediated 
through PKC- or PKA-dependent mechanisms [108, 111–113]. Parathyroid hormone 
(PTH)-induced inhibition and endocytosis of the Na/K-ATPase were also dem-
onstrated in opossum kidney (OK) cells, which is clathrin-mediated and requires 
ERK-dependent phosphorylation of Ser-11 of the α1 subunit [114].

4.2  Ouabain-induced endocytosis of Na/K-ATPase through Na/K-ATPase 
signaling

In LLC-PK1 cells, at the doses used, ouabain has no discernable effects on 
cell morphology, viability, transepithelial electrical resistance, tight junction 
integrity, and intracellular [Na+] [115]. However, ouabain causes decreases in 
membrane-bound Na/K-ATPase without significantly affecting intracellular [Na+] 
[116, 117]. As a specific ligand, nontoxic ouabain (~1/10th–1/20th of acute IC50) 
caused a dose- and time-dependent decrease in Na/K-ATPase ion-pumping activ-
ity (ouabain-sensitive 86Rb uptake), which is attributed to ouabain-stimulated 
clathrin-dependent endocytosis of the α1/β1-subunits, demonstrated by a decrease 
in cell surface biotinylated α1 subunit and a concomitant accumulation of α1/
β1-subunit and c-Src in early endosome (EE)/late endosome (LE) fractions. This 
leads to a net decrease in abundance of Na/K-ATPase in the plasma membrane and 
total ion-pumping activity of Na/K-ATPase and transcellular 22Na+ transport. This 
phenomenon was only observed when ouabain was applied to the basolateral, but 
not apical, aspect of Costar Transwell with membrane support for 12 hours, which 
indicates that this ouabain-induced endocytosis of the Na/K-ATPase is initiated by 
activating the receptor Na/K-ATPase/Src complex involving phosphorylation of 
c-Src and PI3K. The endocytosed [3H]-ouabain/Na/K-ATPase/c-Src/EGFR complex 
can be detected in both EE and LE fractions.

To understand the molecular mechanism(s) involved in this process, studies 
were performed with LLC-PK1 as well as SYF and SYF + c-Src cells. SYF cells are 
triple Src kinase (c-Src, Yes, Fyn)-null mouse fibroblast cells, and SYF + c-Src are 
c-Src-rescued SYF cells. This pair of cells was used to determine the role of c-Src 
activation in ouabain-induced Na/K-ATPase signaling and endocytosis. While 
ouabain accumulates Na/K-ATPase α1 subunit content in clathrin-coated pits and 
EE/LE fractions, it also causes a translocation of the α1 subunit to nuclear fraction. 
Interestingly, the effects of ouabain are fully reversible in terms of ion-pumping 
activity, transepithelial 22Na+ flux, and cell surface Na/K-ATPase within 24 hours 
following the removal of ouabain with a fresh culture medium, suggesting a 
reversible process. Immunofluorescence showed that the Na/K-ATPase α1 subunit 
co-localized with clathrin both before and after ouabain treatment, and immuno-
precipitation experiments indicated that ouabain stimulated interactions among 
the α1 subunit, AP-2, and clathrin heavy chain (CHC). Disruption and/or arresting 
of clathrin-coated pit formation (by potassium depletion with hypotonic shock 
[118] and chlorpromazine treatment [119]) significantly attenuated this ouabain-
induced endocytosis, suggesting the involvement of a clathrin-coated pit. Inhibition 
of the ouabain-activated signaling with PP2 (a specific c-Src kinase inhibitor) 
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or wortmannin (a specific PI3K inhibitor) also significantly attenuated ouabain-
induced endocytosis. Experiments performed in SYF cells and SYF + c-Src dem-
onstrated that ouabain induces the endocytosis of the Na/K-ATPase in SYF + c-Src 
cells, but not in the SYF, indicating that ouabain-induced endocytosis of the 
Na/K-ATPase is c-Src-dependent.

Ouabain-stimulated Na/K-ATPase signaling also requires caveolin-1 (Cav-1) 
(a structural protein of caveolae, a subset of membrane lipid rafts) that functions 
as an anchoring protein for attracting the Na/K-ATPase α1 subunit into caveolae 
[120]. Accordingly, depletion of cholesterol (by methyl-β-cyclodextrin (Mβ-CD)) 
or caveolin-1 (by siRNA) blocked ouabain-induced endocytosis of the Na/K-
ATPase, compartmentalization of signaling molecules in clathrin-coated pits, and 
early endosome. In addition, depletion of caveolin-1 also significantly reduced the 
protein-protein interactions among α1 subunit, AP-2, PI3K, and clathrin heavy 
chain, suggesting that caveolin-1 is involved in both ouabain-induced endocytosis 
of Na/K-ATPase and signal transduction [117].

These data demonstrate that ouabain stimulates a clathrin- and caveolin-
1-dependent endocytosis of the Na/K-ATPase, a phenomenon requiring ouabain-
induced Na/K-ATPase signaling function. Taken together, it is most likely that 
clathrin- and/or caveola-/lipid raft-mediated endocytosis of the Na/K-ATPase is 
a common phenomenon, but the mechanism and the relationship between the 
endocytosis of the Na/K-ATPase and signal transduction are still not fully under-
stood. This is the first time to demonstrate that ligand-modulated endocytosis of the 
Na/K-ATPase is a mechanism by which RPT sodium transport is altered in a physi-
ologically meaningful manner (Figure 1).

Figure 1. 
Illustration of activation of the Na/K-ATPase signaling-mediated endocytosis of the Na/K-ATPase. Both CTS 
and ROS can activate Na/K-ATPase signaling, which leads to translocation of cell surface Na/K-ATPase 
(α1- and β1-subunits), along with EGFR, c-Src, and ERK1/2, into clathrin-coated pits and early and late 
endosomes. This process is independent of change in intracellular Na+ and Ca2+, but is dependent on activation 
of c-Src and PI3K, and the presence of caveolin-1. The activation of the Na/K-ATPase signaling also stimulates 
ROS generation which further activates the signaling. In LLC-PK1 cells, ouabain has no significant effect on 
recycling of endocytosed α1 subunit. AP-2, adaptor protein-2; Cav-1, caveolin-1; CCP, clathrin-coated pits; 
CHC, clathrin heavy chain; CTS, cardiotonic steroids; EE, early endosome; LE, late endosome; Na+/X, Na+-
dependent antitransporter; Na+/Y, Na+-dependent cotransporter; NKA, Na/K-ATPase; TJ, tight junction.
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5. The Na/K-ATPase signaling regulates NHE3 trafficking and activity

5.1 NHE3 regulation

In RPT, NHE3 resides in the apical membrane of S1 and S2 segments, mediat-
ing transcellular reabsorption of Na+ and HCO3

− and fluid reabsorption [36, 37]. 
Moreover, vesicular NHE3 activity regulates endosomal pH and consequently 
affects receptor-mediated endocytosis as well as endocytic vesicle fusion [41, 42]. 
Consistent with its cellular function, upregulation of NHE3 activity and expres-
sion is associated with the development of hypertension [121–124]. Conversely, 
the reduction of NHE3 surface expression or NHE3 activity occurs during pressure 
natriuresis in rats [125–128]. As expected, NHE3-deficient mice are hypotensive 
[129–131] because of reduced Na+ reabsorption and increased Na+ excretion. 
Interestingly, NHE3-deficient mice also develop acidosis since the blunted H+ secre-
tion through NHE3, which links to greatly reduced RPT HCO3

− reabsorption (please 
see Introduction for the linkage of NHE3 H+ secretion and HCO3

− reabsorption), 
could not be compensated by H+-ATPase and AE1 (anion exchanger-1, SLC4A1) 
Cl−/HCO3

− exchanger, compared with wild-type mice [131, 132]. These observa-
tions put renal Na+ reabsorption through NHE3 in a central position in the develop-
ment and control of salt loading- and volume expansion-mediated hypertension. 
Structurally, NHE3 has a predicted N-terminal hydrophobic ion-translocating 
domain and a variable C-terminal hydrophilic domain which contains regulatory 
sequences [133].

The NHE3 activity is regulated at various levels through different mechanisms, 
mainly via phosphorylation, trafficking, and transcriptional regulation [34, 35, 103]. 
The surface expression of NHE3 is mainly regulated by changes in endocytosis/exo-
cytosis and is the primary regulatory mechanism of NHE3 activity. NHE3 has been 
found to traffic between the plasma membrane and EE/LE fractions via a clathrin- 
and PI3K-dependent pathway [41, 134–141]. The NHE3 activity can be stimulated by 
exocytosis [141–143] or inhibited by endocytosis [105, 125, 144]. The activation of 
c-Src, PKA, and PKC and increase in intracellular Ca2+ are involved in the regulation 
of NHE3 trafficking.

NHE3 has been shown to be redistributed under a hypertensive state, accom-
panying reversible downregulation of the Na/K-ATPase activity in the renal 
cortex [125, 127, 145]. This raised the possibility that the basolateral-localized 
Na/K-ATPase and apically localized NHE3 work in concert to regulate renal sodium 
handling in response to the Na/K-ATPase signaling. The coordinated regulation of 
NHE3 and the Na/K-ATPase is critical in maintaining intracellular Na+ homeostasis 
and extracellular fluid volume. It is believed that the apical Na+ entry through NHE3 
is the rate-limiting step because the functional reserve of the Na/K-ATPase in the 
nephron is more than sufficient even under some pathological conditions.

5.2 Chronic NHE3 regulation by Na/K-ATPase signaling

In LLC-PK1 cells, chronic, low-concentration ouabain (50 and 100 nM, 
24 hours) treatment in the basolateral aspect, but not in apical aspect, did not 
change intracellular [Na+] but decreased apical NHE3-mediated Na+ absorption, 
NHE3 promoter activity, and NHE3 protein and mRNA abundance. Pretreatment 
with specific inhibitors against c-Src and PI3K attenuates ouabain-induced down-
regulation of NHE3 activity and NHE3 mRNA [146]. In caveolin-1 knockdown 
LLC-PK1 cells, ouabain failed to reduce NHE3 mRNA and NHE3 promoter activ-
ity, in which ouabain-induced Na/K-ATPase signaling reduced Sp1 and TR DNA 
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Figure 2. 
Illustration of activation of the Na/K-ATPase signaling-mediated endocytosis of NHE3. Activation of the 
Na/K-ATPase signaling leads to intracellular Na+-independent NHE3 endocytosis. However, like Na/K-
ATPase signaling-mediated Na/K-ATPase endocytosis, the NHE3 endocytosis is dependent on intracellular 
Ca2+, activation of c-Src and PI3K, and caveolin-1. In LLC-PK1 cells, ouabain inhibits the endocytic recycling 
of endocytosed NHE3. Since the Na/K-ATPase and NHE3 reside on basolateral and apical membrane in 
monolayer, respectively, it is still unclear how the basolateral Na/K-ATPase signaling is transmitted to NHE3 
regulation. There are several possible pathways as illustrated, as proposed in the text (please see Figure 1 for 
abbreviations).

binding activity and consequently decreased NHE3 expression and activity [146]. 
These effects are abolished by inhibition of either c-Src or PI3K. Promoter mapping 
identified that ouabain-response elements reside in a region between −450 and 
−1194 nt and that ouabain reduces the binding of transcriptional factor Sp1 to its 
cognate cis-element.

5.3 Acute NHE3 regulation by Na/K-ATPase signaling

Acute application of ouabain (1 hour) in the basolateral, but not apical, aspect 
significantly reduced NHE3 activity (22Na+ uptake) and active transepithelial 22Na+ 
transport. This is accompanied by a reduced NHE3 content on cell surface and an 
increased NHE3 content in EE/LE fractions, as seen in the case of the Na/K-ATPase 
α1 subunit. These changes are independent of change in the integrity of tight 
junctions and the intracellular Na+ concentration [115]. Ouabain-induced NHE3 
trafficking was abolished by either PI3K or c-Src inhibition. Disruption of caveolae/
lipid rafts by cholesterol depletion prevented ouabain-induced accumulation of 
NHE3 and Na/K-ATPase α1 in early endosomes, and cholesterol repletion restored 
the ouabain-induced endosomal accumulation of NHE3 and Na/K-ATPase α1. 
Moreover, pretreatment of cells with the intracellular Ca2+ chelator BAPTA-AM 
attenuated ouabain-induced NHE3 trafficking, suggesting Ca2+ might link the 
Na/K-ATPase signaling to NHE3 regulation which is in agreement with observa-
tions that intracellular Ca2+ can regulate NHE3 activity and trafficking [147, 148]. 
These changes indicate that ouabain acutely stimulates NHE3 trafficking, like 
Na/K-ATPase, by activating the basolateral Na/K-ATPase signaling complex [115]. 
In RPT cell lines (human HK-2, porcine LLC-PK1, and AAC-19 originated from 
LLC-PK1 in which the pig α1 was replaced by ouabain-resistant rat α1), results 
further indicate that ouabain-induced inhibition of transcellular 22Na+ transport 
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as well as trafficking of the α1 subunit and NHE3 is not a species-specific phenom-
enon. Furthermore, in LLC-PK1 cells, ouabain inhibited the endocytic recycling 
of internalized NHE3, but has no significant effect on recycling of endocytosed α1 
subunit [149].

Taken together, by activating the basolateral receptor Na/K-ATPase/c-Src 
complex, ouabain can simultaneously and coordinately regulate trafficking of 
basolateral Na/K-ATPase and apical NHE3, leading to inhibition of transepithelial 
Na+ transport. This mechanism may be important to RPT Na+ handling during 
conditions associated with increases in circulating endogenous CTS. However, it 
remains to be established whether ouabain-induced regulation of NHE3 traffick-
ing comes from the endocytosed Na/K-ATPase/c-Src complex or directly from 
the plasma membrane, since ouabain still binds to endocytosed Na/K-ATPase 
(Figure 2).

6.  Ouabain-induced regulation of Na/K-ATPase α1 subunit and NHE3 is 
independent of intracellular [Na+]

High concentrations of ouabain are known to increase intracellular [Na+], 
depolarize the proximal tubule, and affect the tight junction of epithelial cells. In 
LLC-PK1 cells, ouabain (up to 100 nM) has no acute effect on intracellular [Na+], 
transepithelial electrical resistance, and tight junction integrity, suggesting that 
in the concentration, ouabain is not likely to increase passive Na+ transport by 
depolarizing LLC-PK1 monolayers [115]. To further define whether the effects of 
ouabain on the Na/K-ATPase and NHE3 are independent of intracellular [Na+], the 
change in intracellular transporters after the equilibrium of intracellular [Na+] with 
extracellular [Na+] was achieved by using conventional “Na+-clamping” methods 
[150]. LLC-PK1 cells (both control and ouabain-treated) are pretreated either with 
20 μM monensin or with 10 μM monensin plus 5 μM gramicidin for 30 min. Both 
“clamping” methods raise basal levels of α1 and NHE3 in EE/LE fractions (monen-
sin is known to accumulate proteins in intracellular compartments). However, 
ouabain is still able to further accumulate more α1 and NHE3 in EE/LE. These 
observations indicate that ouabain-induced trafficking of α1 and NHE3 can be 
independent of intracellular [Na+] change [115].

7.  Coordinated and coupled regulation of Na/K-ATPase and NHE3 by 
Na/K-ATPase signaling

Although the mechanisms are still being elucidated, accumulating evidence 
supports the notion that the expression and activity of the basolateral Na/K-ATPase 
and apical NHE3 are coordinated and coupled under certain circumstances. For 
example, McDonough’s laboratory has shown that, during pressure natriuresis and 
salt loading, the surface expression and activity of both NHE3 and the Na/K-ATPase 
are simultaneously downregulated to remove Na+ from the body [125, 127, 145, 151]. 
During the development of hypertension in spontaneous hypertensive rat (SHR), 
the expression and activity of both the Na/K-ATPase and NHE3 are elevated in 
comparison with the normotensive control rats [121, 152–155].

Activation of Na/K-ATPase signaling, by either ouabain or a high-salt diet, is 
also capable of stimulating a coordinated and coupled downregulation of apical 
NHE3 and basolateral Na/K-ATPase to inhibit active transepithelial Na+ transport 
in cultured or isolated RPTs [79, 115–117, 149]. This coordinated regulation depends 
on activation of the Na/K-ATPase signaling function, but not on acute inhibition 
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of the Na/K-ATPase activity since it requires the activation of Src and PI3K and 
increase in intracellular Ca2+. Moreover, MBG infusion also induced endocytosis 
of RPT Na/K-ATPase in rats, which could be prevented by an antibody-mediated 
neutralization of infused MBG [156].

A high salt intake or volume expansion increases both dopamine and CTS. It has 
been shown that dopamine-induced regulation of RPT Na/K-ATPase of Dahl S rats 
was defective because of an apparent decoupling between the binding of dopamine 
to its D1 receptor and activation of GPCRs [157–161]. In response to salt loading, 
Dahl S rats have a similar diuretic, but much less CTS-related natriuretic response 
than that seen in Dahl R rats [162]. Both dopamine and CTS can regulate the activ-
ity and trafficking of RPT Na/K-ATPase and NHE3. Even though the initiating steps 
and signaling pathways might be different, they share some signaling steps such as 
the activation of PLC/PKC and calcium signaling. It will be of interest to further assess 
whether there is a crosstalk between CTS- and dopamine-activated signaling pathways 
in the regulation of renal Na+ handling.

In vivo studies suggest the essential role of CTS in modulating renal sodium 
excretion and BP with different approaches. First, the administration of some 
(e.g., ouabain) but not all CTS induces natriuresis [163, 164]. Second, in trans-
genic mice expressing ouabain-sensitive Na/K-ATPase α1 subunit, both acute 
salt load and ouabain infusion augment natriuretic responses, which were pre-
vented by administration of an anti-digoxin antibody fragment [75, 76]. Third, 
immune neutralization of endogenous CTS prevents CTS-mediated natriuretic 
and vasoconstrictor effects [55, 59, 78, 80]. Fourth, the administration of the 
ouabain antagonist, rostafuroxin (also known as PST 2238), prevents not only 
ouabain-induced Na/K-ATPase signaling but also ouabain-induced increase in 
BP [64]. Finally, in humans, a high salt intake increases circulating endogenous 
CTS [57, 80, 165]. An increased CTS excretion is directly linked to an enhanced 
RPT-mediated fractional Na+ excretion, but inversely related to age and to age-
dependent increase in salt sensitivity [165].

Although the historical focus has largely been on the direct inhibition of CTS on 
the Na/K-ATPase ion-pumping activity and sodium reabsorption in RPT as well as 
vascular tone/contractility, decreases in basolateral Na/K-ATPase activity alone do 
not appear to be sufficient to reduce net RPT sodium reabsorption since the apical 
NHE3, but not the Na/K-ATPase, is the rate-limiting step.

In contrast, the newly appreciated signaling function of Na/K-ATPase has been 
widely confirmed and provides a realistic, mechanistic framework that the renal 
Na/K-ATPase and its signaling play a key role in regulating renal sodium handling. 
In porcine RPT LLC-PK1 cells, ouabain activates the Na/K-ATPase signaling 
pathways and consequently redistributes the basolateral Na/K-ATPase and the 
apical NHE3 in a coordinated manner; this leads to a symmetrical reduction of cell 
surface Na/K-ATPase and NHE3 content and ultimately decreased net transcellular 
sodium transport [86, 87, 115–117]. No significant acute change in intracellular 
Na+ concentration was observed [115], further suggesting the coordination of the 
downregulation of both apical and basolateral sodium transporters. This Na/K-
ATPase signaling-mediated regulation of renal tubular epithelial ion transporters 
was further confirmed in in vivo studies [79, 156]. It has been shown that endocy-
tosis of signaling molecules could be a way to terminate or propagate the signaling 
and could further regulate endocytosis itself [166–171]. In this regard, it is possible 
that ouabain- and ROS-induced endocytosis could be an effective way to terminate 
Na/K-ATPase signaling-mediated oxidant amplification loop by the degradation of 
carbonylated Na/K-ATPase, to maintain a certain basal level of ROS and carbonyl-
ated protein [172].
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8. Endocytosis and signaling transduction

The clathrin-dependent endocytosis is the main endocytosis pathway for many 
membrane proteins in mammalian cells [166, 167, 173–175]. Apart from its endo-
cytic function, the clathrin-coated pits also represent a specialized microdomain, 
where proteins are assembled into active signaling complexes before internalization 
of some or all of their components [176]. Some molecules involved in transmem-
brane signaling, such as β-arrestin, RGS-GAIP (a GTPase-activating protein for Gαi 
heterotrimeric G proteins) [177], GIPC (a PDZ domain-containing protein) [178], 
and Src family kinases [179], have been localized to clathrin-coated pits, suggesting 
that the interaction with the components of the pit machinery may facilitate some 
signaling functions of transmembrane receptors.

Caveolae/lipid rafts play a central role in transcytosis and endocytosis [180–184]. 
Many signaling molecules and membrane receptors are dynamically associated 
with caveolae, such as the Src family kinases, Ras, PKC, ERK, insulin receptor, 
platelet-derived growth factor receptor (PDGFR), EGFR, and some entire signaling 
modules like PDGFR-Ras-ERK, mainly through their interactions with caveolins 
[182, 185, 186]. Caveolins stabilize caveolae and modulate signal transduction by 
attracting signaling molecules to caveolae and regulating their activities [186]. 
There is also evidence that caveolins modulate endocytosis through their interac-
tions with clathrin [187–190]. Interestingly, both caveolin and clathrin heavy chain 
are substrates of Src kinase [169, 184].

The Na/K-ATPase α-subunit, c-Src, and caveolin are present in caveolae isolated 
by a detergent-free method, in adult rat cardiac myocytes, human embryonic 
kidney (HEK)-293 cells, and LLC-PK1 cells. In adult rat cardiac myocytes, ouabain 
not only recruits α-subunit and c-Src to caveolae but also activates caveolar ERK1/2 
[191]. Furthermore, some signaling molecules, such as EGFR and c-Src, are also 
concentrated in clathrin-coated pits and endosomes in response to ouabain [116], 
suggesting that both clathrin-coated pits and caveolae are involved in ouabain-
mediated Na/K-ATPase signal transduction and endocytosis.

The receptor-mediated endocytosis has been shown not only to attenuate 
ligand-activated signaling but also to continue the signaling on the endocytic 
pathway, especially from endosomes [166, 167, 192–194]. While endocytosis is 
important in the activation and propagation of signaling pathways [168, 195, 196], 
signal transduction can also regulate endocytosis [169, 197]. Endocytic receptor 
tyrosine kinase (RTK) receptors could control the magnitude of the original signal-
ing responses (generated at the cell surface) or initiate distinct signaling cascades 
(qualitatively different from that generated at the cell surface) [170]. In polarized 
epithelial cells, the distribution of RTK substrates could affect cellular responses 
[118]. The endosomal signaling appears to be dependent on both the receptor and 
cell type.

In LLC-PK1 cells, ouabain not only induced compartmentalization of Na/K-
ATPase, c-Src, EGF receptor, and ERK in early endosomes but also bound to Na/K-
ATPase along the endocytic route [116]. Interestingly, caveolin-1 is also present in 
early or late endosomes. These facts make it possible that endosomal ouabain-Na/K-
ATPase/c-Src might be able to propagate its original signaling or to initiate distinct 
signaling cascades. This is supported by the findings that ouabain-induced NHE3 
regulation is mediated by the activation of the receptor function of Na/K-ATPase. 
Furthermore, endocytosis is required for ouabain to remove basolateral Na/K-
ATPase, which induces a significant inhibition of the pumping activity. Moreover, 
blockade of Na/K-ATPase signaling/endocytosis appears to be sufficient to abolish 
ouabain-induced trafficking and transcriptional regulation of NHE3.
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Although the mechanisms that involved ouabain-initiated endocytosis of the 
Na/K-ATPase and NHE3 (and expression) are not fully understood, endocytosis 
of the Na/K-ATPase may play an important role in renal sodium handling. This is 
because if ouabain induces a significant depletion of plasmalemmal Na/K-ATPase 
in proximal tubule type cells (rat proximal tubule primary culture, LLC-PK1) but 
not in distal tubule type cells (rat distal tubule primary culture, MDCK), it will 
make physiological “sense” in terms of allowing bulk sodium transport (primarily 
in the proximal tubule) to be altered and leaving fine-tuning (distal tubule) sodium 
handling intact.

9.  ROS and the Na/K-ATPase signaling: the possible link from  
CTS-stimulated signaling to NHE3 regulation

It is well established that both oxidative stress and high BP are a cause and 
consequence of each other. The increase in oxidative stress occurs in many forms of 
experimental models of hypertension, including Dahl salt-sensitive hypertension 
[198–204]. Increases in ROS can regulate physiological processes including renal 
tubular ion transport, fluid reabsorption, and sodium excretion [79, 205–210]. In 
particular, increases in ROS regulate the activity and cellular distribution of the 
basolateral Na/K-ATPase as well as the apical NHE3 and sodium/glucose cotrans-
porter, at least under normal circumstances [79, 151, 208, 211–216]. Oxidative 
modification can affect the Na/K-ATPase activity through different mechanisms. 
For example, S-glutathionylation cysteine residue(s) of the Na/K-ATPase α-subunit 
can block the intracellular ATP-binding site [217], and S-glutathionylation of 
cysteine of the Na/K-ATPase β1-subunit can affect the Na/K-ATPase conformational 
poise [218, 219]. Oxidant and oxidative modification of the Na/K-ATPase can lead 
to degradation, functional changes, and formation of Na/K-ATPase oligomeric 
structure [74, 84–87, 217, 219–230]. In LLC-PK1 cells, increase in ROS generation, 
induced by either ouabain or glucose oxidase, is critical in the activation of Na/K-
ATPase signaling which mediates trafficking of the Na/K-ATPase and NHE3 and 
transcellular Na+ transport [86, 87]. Pretreatment with higher doses, but not a low 
dose, of NAC attenuated the effect of ouabain on c-Src activation and transcellular 
22Na+ flux, suggesting a role of basal physiological redox status in the initiation of 
ouabain-induced Na/K-ATPase signaling. While CTS stimulates ROS generation and 
Na/K-ATPase signaling in different in vitro and in vivo models [63, 85, 231–233], an 
increase in ROS alone (without the presence of ouabain) by extracellularly added 
glucose oxidase is also able to activate Na/K-ATPase signaling, indicating that 
activation of Na/K-ATPase signaling can be achieved by general stimuli like ROS, 
other than its specific ligands. Glucose oxidase-induced H2O2 alone also stimulates 
Na/K-ATPase endocytosis and inhibits active transcellular 22Na+ transport [85, 86]. 
The phenomenon of redox sensitivity of the Na/K-ATPase has been demonstrated 
in different cell types, tissues, and animal species.

In LLC-PK1 cells, both ouabain and glucose oxidase-induced H2O2 stimulate 
Na/K-ATPase signaling as well as direct protein carbonylation of Pro222 and Thr224 
residues of the Na/K-ATPase α1 subunit (α1-carbonylation) [86]. The Pro222 and 
Thr224 are located in peptide 211VDNSSLTGESEPQTR225 [UniProtKB/Swiss-Prot No 
P05024 (AT1A1_PIG)]. While the α1 subunit is highly conserved among humans, 
pigs, rats, and mice (the homology is over 98.5%), the identified peptide is 100% 
identical among these four species. This peptide is located in the actuator (A) 
domain of α1 subunit, and Pro222/Thr224 are highly exposed and facing the nucleo-
tide binding (N) domain of the α1 subunit. Upon ouabain binding, Na/K-ATPase 
undergoes conformational changes, in which the A domain is rotated to the N 
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domain favoring an E2-P conformation. The structure-function analysis indicates 
that these conformational changes may affect binding of the α1 subunit to signaling 
molecules such as c-Src and PI3K [234]. In addition, the peptide also contains the 
TGES motif that is the anchor of A domain rotation [234].

Biologically, ROS can oxidize various types of biological molecules including 
proteins, leading to their functional changes. Through Fenton’s reaction, H2O2 is 
reduced to HO• by coupling oxidation of reduced ferrous ion (Fe2+) to ferric ion 
(Fe3+). This metal-catalyzed oxidation (MCO) process oxidizes proteins by intro-
ducing carbonyl groups (such as aldehydes, ketones, or lactams) into the side chains 
of certain amino acids (such as proline, arginine, lysine, and threonine) that named 
direct (primary) carbonylation that have been implied in various conditions like 
chronic renal failure [235–240]. Since Fenton’s reaction involves the conversion of 
H2O2 to HO•, any specie of ROS with H2O2 as an intermediate and/or end product 
may stimulate the reaction.

Protein carbonylation is reversible (decarbonylation) and may function as a 
regulatory mechanism of cell signaling [241–244]. We also observed an undefined 
decarbonylation mechanism, which apparently reverses the carbonylation of the 
Na/K-ATPase α1 subunit induced by ouabain [86]. The removal of ouabain from the 
culture medium reverses ouabain-mediated carbonylation, as seen in the reversed 
Na/K-ATPase ion-pumping activity [116]. Moreover, inhibition of de novo protein 
synthesis as well as degradation pathway through lysosome and proteasome does 
not affect this decarbonylation, which is still poorly understood. It is possible that 
carbonylation modification might stabilize the Na/K-ATPase in a certain con-
formational status favoring ouabain binding to the Na/K-ATPase α1 subunit and 
ouabain-Na/K-ATPase signaling. Nevertheless, the underlying mechanism might be 
physiologically significant since the carbonylation/decarbonylation process could 
be an important regulator of the RPT Na/K-ATPase signaling and sodium handling.

It is reasonable to propose that carbonylation modification of RPT Na/K-ATPase 
α1 subunit has biphasic effects. On one hand, physiological and controllable 
α1-carbonylation stimulates Na/K-ATPase signaling and sodium excretion, rendering 
salt resistance, whereas on the other hand, prolonged exposure to oxidant stress leads 
to overstimulated α1-carbonylation and desensitized Na/K-ATPase signaling, increas-
ing salt sensitivity. First, Dahl S rats show considerably higher basal levels of oxidative 
stress than R rats, and high-salt diets increase renal oxidative stresses that contribute 
to salt-sensitive hypertension [202–204]. Second, while high-salt diets increase 
circulating CTS, a high-salt diet (HS, 2% NaCl for 7 days) stimulates the Na/K-ATPase 
signaling in isolated RPT from Dahl salt-resistant (R) but not salt-sensitive (S) rats 
(i.e., impaired Na/K-ATPase signaling in S rats) [79]. Third, CTS- and H2O2-mediated 
redox-sensitive Na/K-ATPase signaling and α1-carbonylation are involved in this 
signaling process, in a feed-forward mechanism [86]. Fourth, high but not low 
concentration of NAC is able to prevent α1-carbonylation and Na/K-ATPase signaling 
[86]. Even though it is still not clear of the carbonylation/decarbonylation process, 
this could be another new regulatory mechanism of Na/K-ATPase signaling. It is 
reasonable to postulate that prolonged excessive α1-carbonylation (by CTS and/or 
other factors) might overcome the decarbonylation capacity, leading to the desensi-
tization or termination of the Na/K-ATPase signaling function. This is reminiscent 
of the observations in clinical trials using antioxidant supplements. The beneficial 
effect of antioxidant supplements is controversial and not seen in most clinical trials 
with administration of antioxidant supplements [200, 245]. Low doses of antioxidant 
supplementation may be ineffective, but high doses may be even dangerous since 
excess antioxidants might become prooxidants if they cannot promptly be reduced in 
the antioxidant chain [246]. It appears that the balance of the redox status, within a 
physiological range, may be critical in order to maintain beneficial ROS signaling.
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10. Endocytosis of Na/K-ATPase and NHE3 in salt sensitivity

In male Sprague-Dawley rats, compared to a normal salt (0.4% NaCl, 7 days) 
diet, a high-salt (4% NaCl, 7 days) diet increased urinary sodium and MBG excre-
tion. In isolated proximal tubules, a high-salt diet inhibits the Na/K-ATPase ion-
exchange activity and enzymatic activity, which is accompanied by a decreased 
Na/K-ATPase α1 content in heavy membrane fraction and an increased Na/K-
ATPase α1 content in both early and late endosomes. These high-salt diet-mediated 
changes were ameliorated by administration of an antibody against MBG [156]. 
Results indicate that a high-salt diet increased MBG production, activated RPT 
Na/K-ATPase signaling, and induced endocytosis of Na/K-ATPase.

The Dahl R and S rat strains were developed from Sprague-Dawley rats by selec-
tive breeding, depending on the resistance or susceptibility to the hypertensive 
effects of high dietary sodium [247]. In these two strains, the RPT sodium handling 
is an essential determinant of their different BP responses [248–251]. At the cost 
of elevated systolic BP, Dahl S rats get rid of excess sodium primarily via pressure 
natriuresis. In contrast, Dahl R rats get rid of excess sodium primarily via a significant 
reduction of renal sodium reabsorption without increasing the BP. In vivo study 
indicates that impaired RPT Na/K-ATPase signaling appears to be causative of experi-
mental Dahl salt sensitivity [79]. In vivo studies with Dahl R and S rats (Jr strains) 
demonstrated that impairment of RPT Na/K-ATPase signaling is a causative factor 
of experimental Dahl salt sensitivity [79]. In Dahl R but not S rats, a high-salt  
(2% NaCl, 1 week) diet activated RPT Na/K-ATPase signaling and stimulated 
coordinated redistribution of the Na/K-ATPase and NHE3, leading to increased total 
and fractional urinary sodium excretion as well as normal BP. However, there are 
still questions about the underlying mechanism(s) that need to be further inves-
tigated, such as the difference of Na/K-ATPase signaling function between Dahl R 
and S rats, as well as the translation of Na/K-ATPase signaling to NHE3 regulation. 
Furthermore, low concentration of ouabain causes hypertrophic response both in 
the heart and kidney, by concentrating the Na/K-ATPase, Src, EGFR, and MAPKs 
within rat caveolae, and activates the Na/K-ATPase/Src/MAPK signaling pathway 
[64]. However, there is no simple explanation for this occurrence. First, the α1 sub-
unit is essentially the only α isoform expressed in RPT, and genes coding α1 subunit 
and NHE3 (in rat chromosomes 1 and 2, respectively) are not located in identified 
and/or proposed BP quantitative trait loci [252]. Second, there is no difference 
in α1 gene (Atp1a1) coding [251], α1 ouabain sensitivity [253], and α1 expression 
[79] between these two strains. Third, acute salt loading increases circulating CTS 
(ouabain and MBG) in both S and R rats [162]. These observations suggest that 
there must be resistance to CTS signaling in the Dahl S rat, a phenomenon that we 
only partially understand. As discussed above, the carbonylation/decarbonylation 
process could be another new regulatory mechanism of Na/K-ATPase signaling. It 
is reasonable to postulate that prolonged excessive α1-carbonylation in Dahl salt-
sensitive rats might overcome the decarbonylation capacity, leading to desensitiza-
tion or termination of the Na/K-ATPase signaling function.

11. Perspective

As pointed out by Guyton many years ago [254], the kidney is the most impor-
tant organ in the regulation of Na+ handling and BP. Dietary salt intake vs. renal 
sodium handling is a key determinant of long-term BP regulation and plays an 
important role in the pathogenesis of hypertension, with more pronounced effects 
seen in salt-sensitive patients. Consequently, modest restriction of dietary salt and 
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diuretic therapy are often recommended for the treatment of resistant hyperten-
sion, particularly with the salt-sensitive subgroup [254–258].

Although the relationships among CTS, renal Na+ handling, and hypertension 
were proposed many years ago, there has been an explosion of reports supporting 
this idea. As discussed, reports from Lingrel’s laboratory clearly demonstrated a 
specific role of the isoforms of the Na/K-ATPase and its interaction with endoge-
nous CTS in the regulation of Na+ excretion and BP in intact animals [75–77]. From 
the ligand perspective, studies have demonstrated that CTS are present in measur-
able amounts under normal physiological conditions and that several disease states 
are associated with elevations in the circulating levels of CTS. The new concept that 
the Na/K-ATPase has an ion-pumping-independent receptor function (induced by 
both CTS and ROS) that can confer the agonist-like effects of CTS on intracellular 
signal transduction is a new mechanism for RPT sodium handling. Moreover, this 
newly discovered signaling mechanism operates in intact animals in response to 
CTS stimulation. The Na/K-ATPase has recently emerged as a therapeutic target 
[259, 260]. A clearer understanding of the mechanisms, in which a CTS-ROS-
Na/K-ATPase signaling axis counterbalancing salt retention, would not only have 
major pathophysiological and therapeutic implications, but also further explain the 
progressive impairment of renal sodium handling under excessive oxidative stresses 
such as hypertension, aging, obesity, and diabetes.
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