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Abstract

Vector-borne diseases are those caused by the bite of an infected arthropod,
such as the Aedes aegypti mosquito, which can infect humans with dengue or Zika.
Spatial statistics is an interesting tool that is currently implemented to predict and
analyze the behavior of biological systems or natural phenomena. In this chapter,
fundamental characteristics of spatial statistics are presented and its application in
epidemiology is exemplified by presenting a study on the prediction of the
dispersion of dengue disease in Chiapas, Mexico. A total of 573 confirmed dengue
cases (CDCs) were studied over the period of January–August 2019. As part of the
spatial modeling, the existence of spatial correlation in CDCs was verified with the
Moran index (MI) and subsequently the spatial correlation structure was identified
with the mean squarer normalized error (MSNE) criterion. A Generalized Linear
Spatial Model (GLSM) was used to model the CDCs. CDCs were found to be spatially
correlated, and this can be explained by a Matérn covariance function. Finally, the
explanatory variables were maximum environmental temperature, altitude, average
monthly rainfall, and patient age. The prediction model shows the importance of
considering these variables for the prevention of future CDCs in vulnerable areas of
Chiapas.

Keywords: vector-borne diseases, Gaussian process, generalized spatial linear models,
georeferenced data, spatial correlation

1. Introduction

Vector-borne diseases are infections caused by viruses, bacteria, or parasites that
are transmitted to humans by the bite of infected arthropod species, these can be
diseases transmitted by mosquitoes (dengue fever, West Nile fever, chikungunya,
malaria, Zika, etc.), by sandflies (leishmaniasis), by ticks (encephalitis, Lyme
Borreliosis, Crimean-Congo hemorrhagic fever, Human Granulocytic Anaplasmosis)
by triatomines (Chagas disease), among others. These diseases account for more than
17% of all infectious diseases and cause more than 700, 000 deaths per year [1, 2].
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Vectors are living organisms that can transmit infectious pathogens between
humans or from animals to humans. Many of these vectors are insects that ingest
disease-causing microorganisms during a blood meal from an infected host and then
transmit it to a new host after the pathogen has replicated. Another characteristic of
arthropod vectors is that they are cold-blooded (ectothermic) and therefore very
sensitive to climatic factors, although the climate is only one of many factors that
influence vector distribution, as there are also geographic and sociodemographic
factors [1].

In order to interpret the behavior of vector-borne diseases in the most accurate and
simplified way possible, statistical models are used. A statistical model is a simplified
representation of a phenomenon of interest [3, 4]. With their help, it is possible to
model, predict and make inferences about natural phenomenons, biological systems,
epidemiological studies, and others [5]. One of the most widely used statistical models
is linear regression models, which predict a continuous target based on linear rela-
tionships between the target and one or more predictors. But there is another type of
model that extends the general linear model, so that the dependent variable is linearly
related to the factors and covariates by means of a certain link function, which is
known as a generalized linear model [6].

Generalized Linear Models (GLMs) provide a collection of linear regression
models including the exponential family, such as the Binomial and Poisson, which are
distributions for counting data. The GLMs were introduced by Nelder in 1972 [7], in
1989 they were studied in greater depth by McCullagh [8] and over time more authors
were integrated [9–13].

There are three components in GLMs: A response variable distribution, a linear
predictor, and a link function. A response variable Y is assumed Y1,Y2, … ,Ynð Þ,
where Y1,Y2, … ,Yn are independent of each other; its expected value is related
to a linear predictor E Y½ � ¼ g�1 d0

β
� �

, where β∈ℜ
p is a vector of regression parame-

ters, d are known explanatory variables and g is a known function called a link
function, which allows to define the relationship between the systematic and random
components [14].

GLMs can help in numerous areas such as epidemiology, mining engineering,
Earth and environmental sciences, ecology, biology, geography, economics, agron-
omy, forestry, image processing, and more [15, 16]. For epidemiology in particular, as
it is about understanding diseases that affect a population, the most usual thing is to
find a binary variable that represents the presence or absence of a disease or to count
the events of a disease for certain areas.

Such is the case of a study conducted by Hashizume et al. [17] in Bangladesh, 2012.
They used a Generalized Linear Poisson Regression Model to examine weekly dengue
hospitalizations in relation to river levels, during the years 2005 to 2009, and the
climatic variables daily precipitation and average temperature. The models were
adjusted according to seasonal variation and temperature. They found evidence of a
6:9% increase in dengue with high river levels, but a 29:6% increase in disease when
rivers were very low.

An important extension of the GLMs is the Generalized Linear Mixed Models
(GLMMs) [18]. GLMMs provide a range of analyses for those data that are correlated
in space and belong to the exponential family (Gamma, Poisson, Binomial, among
others) [19]. Generalized Linear Spatial Models (GLSMs) are basically GLMMs, since
latent variables are derived from a spatial process. In recent years, there has been a
growing interest in the analysis of spatial data in epidemiology, in order to predict the
incidence of vector-borne diseases.
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Using techniques available to epidemiologists and other health professionals, the
potential of remote sensing, Geographic Information Systems (GIS), and spatial
analysis of epidemiological data has been demonstrated by some authors such as those
mentioned below; however, there are still few studies that adequately prove the
potential of these tools, since they are still being exploited in the fight against
diseases [20].

For instance, a Colombian paper published in 2012, Sanchez et al. [21] estimated
Generalized Linear Spatial Regression Models with a Poisson response to explain the
behavior of malaria and dengue in different years. Health determinants were
identified in the occurrence of these diseases and risk maps were obtained. Finally, it
demonstrated the need to link spatial effects in the models and the explanatory
variables considered, to explain the number of reported cases of the disease in the
years analyzed.

Another example is the work of Estallo et al. [22] in 2021, which evaluated the
species responsible for the transmission of Leishmaniasis (phlebotom-Phlebotominae)
during the period 2012� 2014 in northern Argentina. Through Generalized Linear
Mixed Models, the implications of vectors in disease transmission were evaluated,
using meteorological and teledetection environmental factors. It was observed that the
species Lutzomyia longipalpis was the most abundant in urban areas. The findings
allowed detecting of high-risk areas and the developing of predictive models to
optimize resources and prevent leishmaniasis transmission in the area.

As can be seen, spatial analysis is a powerful tool for the analysis of georeferenced
data, as it can give health research a broader perspective of the occurrence of health
events and diseases. Spatial statistical models are useful because they estimate the
spatial variance inherent in the data, and can also be used to perform statistical
inference throughout the study area. Spatial prediction can be made based entirely on
a stochastic model or in combination with a deterministic trend [20, 23].

The aim of this chapter is to show an example of the application of spatial statistics,
implementing a Generalized Linear Spatial Model for the prediction of dengue disease
in the state of Chiapas. For this, there are considered patient age and the next infor-
mation of each municipality: garbage disposal service, maximum environmental tem-
perature, average monthly rainfall, and altitude as covariates. For the study of the
disease in the 118 municipalities of Chiapas, the cases observed in 36 municipalities in
the state of Chiapas and the information in the aforementioned explanatory variables
were considered.

2. Spatial statistical models

Space models have a simple structure, flexible enough to handle a variety of prob-
lems. The data may be continuous or discrete, present spatial aggregations, or be point
observations in space. As for the spatial locations can be regular or irregular. A spatial
model is usually used to predict sites where the study phenom was not observed.

Let x∈A⊂ℝ
d and S xð Þ the data observed at the x location, this results in a

stochastic process

S xð Þ : x∈A (1)

Structure 1, allows to differentiate and talk about problems with continuous spatial
indexes, lattice, and point patterns giving rise to three types of data: geospatial, lattice

3

Spatial Statistics in Vector-Borne Diseases
DOI: http://dx.doi.org/10.5772/intechopen.104953



data, and point patterns. In geospatial data, A is a fixed set in ℝ
d containing a d-

dimensional rectangular with positive volume; S xð Þ is a random vector in the location
x∈A. These data arise in areas such as atmospheric sciences, mining, and public
health. In point patterns A is a point process in ℝ

d or a subset of ℝd; S xð Þ is a random
vector in the location x∈A. In its most general form, it results in a spatial point
process marked when S xð Þ ¼ 1, for all x∈A. Point patterns arise when the variable to
be analyzed is a location of “events”.

Finally, the entangled data or also known as area data, A is a regular or irregular
fixed set (with additional information from the surrounding neighborhood) of ℝd;
S xð Þ is a random vector in location x∈A. When locations are in regular meshes it is
the closest analogy to time series observed at equally spaced time points. In the
entangled data, based on the general spatial process 1, it is assumed that A is an
accounting collection of space sites, in which the data are observed. The most com-
mon entangled data models are the Conditional Autoregressive Model (CAR) and the
Simultaneous Autoregressive Model (SAR). CAR models form the basis of Markovian
Gaussian random fields and Integrated Nested Laplace Approximation (INLA)
methods. SAR models are popular in geographic information systems. Other models
are the spatial autoregressive moving average (ARMA) [24, 25].

2.1 Gaussian spatial processes

Knowing the type of variables with which they are working and taking into
account their spatial dependence, helps to determine the regression technique that
best fits the characteristics of the data [21]. For the study of spatial data Gaussian
processes can be used, which are stochastic processes, a collection of variables. This
allows any subset of finite random variables to have a multivariate Gaussian distribu-
tion. Gaussian processes can thus be thought of as distributions of random vectors or
random functions [26]. Gaussian processes began to be studied in the 1940s, but until
the 1970s they were used in geostatistics and meteorology; In the 1990s Cressie [24]
began to implement them in spatial statistics. In fact, the term “model-based
geostatistics” was first used to describe an approach to geostatistical problems based
on formal statistical models and inference procedures [27].

Gaussian stochastic processes are widely used as models for geostatic data. If a
transformation of the original response variable is used, the scope of the Gaussian
models can be amplified, and so with this extra flexibility the model provides a good
empirical fit to the data.

A Gaussian process, {S xð Þ : x∈ℝ
2}, is a stochastic process with the property that

for any collection of locations x1, … , xn, xi ∈ℝ
2, the joint distribution of S ¼

S x1ð Þ, … , S xnð Þf g is multivariate Gaussian.
Any such process is fully specified by the average function μ xð Þ ¼ E S xð Þ½ � and the

covariance function Cov S xð Þ, S x0ð Þf g. As given x1, … , xn an arbitrary set of locations
with μ ¼ μ x1ð Þ, … , μ xnð Þð Þ and G an n� n matrix with elements Gij ¼

Cov S xið Þ, S x j

� �� �

; then S has a multivariate normal distribution (MN).

S � MN μ,Gð Þ (2)

A spatial Gaussian process is stationary if μ xð Þ is constant, μ xð Þ ¼ μ, for all x and
Cov S xð Þ, S x0ð Þð Þ ¼ Cov uð Þ; where u ¼ ∥x� x0∥ is the Euclidean distance. A stationary
process is isotropic if the covariance between the values of S xð Þ at any two locations
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depends only on the distance between them. The term stationary is often used as the
equivalence of stationary and isotropic. A process for which S xð Þ � μ xð Þ is stationary is
called covariance stationary. Processes of this type are widely used in practice as
models for geostatistical data [28].

Among the parametric functions for the covariance function [29] are the following:
Exponential:

Cov uð Þ ¼ σ2 exp
�u

ϕ

� �� �

(3)

Gaussian:

Cov uð Þ ¼ σ2 exp �
u

ϕ

� �2
" #

(4)

Matérn:

Cov uð Þ ¼ σ2
2

2κ�1
Γ κð Þ

u

ϕ

� �κ

Kκ

u

ϕ

� �� �

(5)

In these covariance functions (Eqs. (3)–(5)) u>0, ϕ>0, y κ>0; function Kκ

denotes the modified Bessel function of order κ and Γ �ð Þ denotes the gamma function.

2.2 Criteria for evaluating the covariance structure of the Gaussian process

There are several criteria in the literature to validate the covariance structure of a
Gaussian process Eq. (2). Among the most used are: Mean Error (ME), Mean Square
Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
Mean Square Normalized Error (MSNE) (Table 1). ME and MSE should tend to zero
when the covariance structure of the Gaussian process was correctly estimated. The
MAE and RMSE criteria are considered as the most efficient criteria to validate the
covariance structure of the Gaussian process. The RMSE is expected to be small like
MAE, while the MSNE is expected to be close to 1 [29, 30].

Measurement Definition

Mean error ME=1
n

Pn
i¼1 Y sið Þ � Ŷ sið Þ

� �

Mean square error MSE=1
n

Pn
i¼1 Y sið Þ � Ŷ sið Þ

� �2

Mean absolute error MAE=1
n

Pn
i¼1 jY sið Þ � Ŷ sið Þj

� �

Root mean square error
RMSE= 1

n

Pn
i¼1 Y sið Þ � Ŷ sið Þ

� �2
h i1

2

Mean square normalized error
MSNE =1

n

Pn
i¼1

Y sið Þ�Ŷ sið Þð Þ
2

σ̂2ok sið Þ

σ̂2ok is a variance estimated by the ordinary kriging interpolation method [29].

Table 1.
Criteria for evaluating the covariance structure of the Gaussian process.
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2.3 Generalized linear spatial models

Spatial Generalized Linear Models were introduced by Diggle et al. in 1998 [31]; if
the variable response Y has Poisson distribution, then

Y i∣S �ð Þ � Poisson μið Þ (6)

Where

S � MN Dβ,Gð Þ

It is assumed that Y i : i ¼ 1, … , nf g conditioned in S are independent, E Y ijS �ð Þ½ � ¼

μi, gs a known link function such that g μið Þ ¼ ηi then μi ¼ g�1 ηið Þ, i ¼ 1, … , n. D ¼

1,d1, … ,dp

� �

is a design matrix of n� pþ 1ð Þ of full range, 1 a vector n� 1 of ones

and d j ¼ d j x1ð Þ, … , d j xnð Þ
� �0, where d j xið Þ is the value of the covariate j-th of the i-th

location; β ¼ β0, β1, … , βp
� 	

the regression parameters.

2.4 Moran’s index for spatial autocorrelation

To prove the existence of spatial dependence on a variable Y, the Moran index
[32, 33], given by

IM ¼
n
Pn

i

Pn
i wij Y i � Y

� �

Y i � Y
� �

Pn
i 6¼jwij

Pn
i Y i � Y
� �2 (7)

Where W is the weights matrix that defines the relationships between the regions
of the study. In this case wij ¼ 1 denotes areas with a common border and wij ¼ 0 in
another case. Y i and Y j would be the values observed in regions i and j respectively,
while Y is the average incidence of the districts studied, n is the total number of
localities.

2.5 Statistical software packages R for spatial data

Several packages are available in statistical software R [34] to perform spatial
modeling.

The geoR package is used for performing geostatistical data analysis and spatial
prediction, which expands the set of methods and tools presently available for spatial
data analysis in R. The package executes methods for Gaussian and Gaussian models
transformed, incorporates functions and methods for reading and preparing the data,
exploratory analysis, inference on model parameters and spatial interpolation, and it
also contains functions for parameter estimation under Bayesian methods [35].

The geoRglm package is used to implement Generalized Linear Spatial Model. The
subsequent and predictive inference is based on Markov Chains Monte Carlo
(MCMC) methods. This package, which is an extension of the geoR package, help with
GLSM conditional simulation and prediction, and with Bayesian inference for the
models Poisson (pois.krige) and Binomial (binom.krige) [35, 36]. A Langevin-Hastings
algorithm is used to obtain MCMC simulations. In the pois.krige and binom.krige
functions, the user can provide a value for the variation of the proposal S.scale, a value
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initial, S.start, the thinning, thin, the length of the burn, burn.in, and the number of
iterations, n.iter [35].

2.5.1 Inference for the generalized linear spatial model

The geostatistical model assumes the response variable to be Gaussian, which may
be an unrealistic assumption for some data sets. The GLSM provides a framework for
analyzing Binomial and Poisson distributed data. The likelihood for such a model, in
general, cannot be represented in closed form, since it is a high-dimensional integral

L β, σ2,ϕ
� �

¼

ð

Y

n

i¼1

f yi; g
�1 sið Þ

� �

p s; β, σ2,ϕ
� �

ds (8)

where f y; μð Þ denotes the density of the distribution with mean μ, p s; β, σ2,ϕð Þ is
the multivariate Gaussian density for the vector s of random effects at the data
locations and g �ð Þ is the link function. In practice, the high dimensionality of this
integral precludes direct computation, so the inference is based on MCMC.

3. Description of data

This section shows the application of a spatial model taking into account the social,
climatic, and geographical characteristics of the municipalities of the state of Chiapas
in relation to dengue virus infections registered from January to August of the year
2019.

3.1 Study area

Dengue disease is endemic to the state of Chiapas with scattered case reports, this
is due to the different geographic characteristics of the state, such as the altitude of its
municipalities and its border condition with the country of Guatemala. It is known
that at different altitudes, in the regions, the climatic conditions tend to vary and this
can favor the reproduction of the vector. The state of Chiapas is divided into 118
municipalities, each with different sociodemographic and climatic conditions. The
population density, according to the INEGI, is around 5, 544million inhabitants; being
the state capital, Tuxtla Gutiérrez, the municipality with the highest population den-
sity; for the year 2019, 604, 147 inhabitants were registered [37].

3.2 Data collection

The data, which were collected at the municipal level, being 36 the municipalities
that registered positive cases of dengue and were considered for the analysis, were
obtained from different sources that are mentioned below.

3.2.1 Dengue cases

The database with dengue cases registered in the state of Chiapas, during the
period January–August 2019, was obtained from the Secretary of Health of the state of
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Chiapas, in collaboration with the area of vector-borne diseases. This database is
updated week by week, fulfilling 52 Epidemiological Weeks (EW) reports per year.

3.2.2 Climatic data

The climatic data were obtained from the World Meteorological Organization
(WMO) [38], for each municipality of residence where the dengue cases were regis-
tered, working with the daily reports of average environmental temperature, maxi-
mum and minimum environmental temperature and average monthly rainfall. The
climatic data were taken into account for the analysis, 6 days before the onset of
symptoms for each case, this was done considering the intrinsic incubation period in
order to obtain an approximate date of infection and capture the daily climatic data
for each municipality [39]. With respect to the rainfall variable, it was decided to
work with the monthly average, since there were days in which there were no records.

3.2.3 Non-climatic data

Other factors related to infection were also considered in the analysis. Data on the
population density and altitude of each municipality of residence per observed case
were obtained from the INEGI, the other variables such as garbage disposal, contact
with the mosquito, drinking water service, patient age, and sex were obtained
from the original database of registered dengue cases provided by the secretary of
health [37].

3.3 Georeferencing

For the georeferencing of dengue cases registered in the period January–August
2019, the postal code and the world geographic coordinate system, WGS84, were
used. With the pois.krige function from the geoRglm package, in R software version
4:0:3 [34] and the projection of the cases was carried out on a map of Chiapas.

4. Results

The database that is made up of 573 dengue cases, reported in the state of Chiapas,
Mexico, during the period January–August of the year 2019; being the state capital,
(Tuxtla Gutiérrez) the municipality with the highest number of CDCs, with 49:04%,
the rest of the cases were scattered in other 35 municipalities of the State. The average
age of the cases was 14 years, with the female sex being the most affected with 53%, in
the same way, 15% indicated not having the drinking water service.

4.1 Spacial location

The spatial distribution of the 573 dengue cases is heterogeneous in 36 municipal-
ities in the state of Chiapas (blue points in Figure 1).

4.2 Moran’s index

The Moran’s Index obtained, with the number of CDCs in the 36 municipalities of
Chiapas, was 0:115, which indicates that there is a spatial relationship in the number
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of cases observed in the municipalities (p� value ¼ 0:001). Therefore, it is conve-
nient to study the CDCs with a spatial model, since it is a counting variable, a
Generalized Linear Spatial Model was used.

4.3 Evaluation of the covariance structure of georeferenced data

After selecting the spatial model and the variables, we proceeded to estimate the
covariance structure of the Gaussian process. For this, the Exponential, Gaussian, and
Matérn covariance functions were tested, taking CDCs as the response variable, and
measures of central tendency of the explanatory variables maximum environmental
temperature, altitude, patient age, and average monthly rainfall were taken. Of the
three functions, the Matérn covariance function generated the best value for ME ¼
�1:185 and MSNE ¼ 0:885, that is, ME tends to 0 and MSNE tends to 1, therefore a
covariance function Matérn can be assumed for the fitted spatial model.

4.4 Parameter estimation

For the simulation and conditional prediction of the process Eq. (6) MCMC was
used, since this provides a solution to the impediment of direct calculation of the

Figure 1.
Georeferencing of cases 573 DCs registered in Chiapas.

9

Spatial Statistics in Vector-Borne Diseases
DOI: http://dx.doi.org/10.5772/intechopen.104953



predictive distribution due to the high dimensionality of the integral Eq. (8) [36]. For
this, 505000 simulations were performed, with a burn-in period of 5000 data and a
thinning of chains of 100 data. Ordinary kriging was used for data interpolation.
The initial values for the GLSM parameters were σ2 ¼ 3, ϕ ¼ 0:5 and β ¼
0:1, 0:1, 0:1, 0:1ð Þ. The estimation of β was carried out under the classical approach.
Confidence intervals at 95% were obtained using 1000 Monte Carlo simulated
samples [40].

For modeling the number of registered dengue cases in the 36 municipalities of
Chiapas, Y i, i ¼ 1, … , 36. As for the 13 covariates considered, only the variables
maximum environmental temperature, altitude above sea level in the municipality,
average monthly rainfall, and patient age showed a relationship with the number of
confirmed dengue cases. It was verified that the problem of multicollinearity did
not exist in those included in the model: altitude and maximum environmental
temperature (r ¼ �0:2231, p� value ¼ 0:191), average monthly rainfall and
maximum temperature (r ¼ 0:243, p� value ¼ 0:1534), average monthly rainfall
and altitude (r ¼ 0:1724, p� value ¼ 0:3147).

In Table 2, it is observed that the variables that have an effect on the cases of
dengue observed are maximum environmental temperature, altitude of the munici-
palities, average monthly rainfall, and patient age. High temperatures and altitudes
favor the presence of the disease, while young people will be preferred factors by
the vector, as well as low rainfall because in seasons where there is no continuous
flow of water in the rivers, stagnation causes an increase in the proliferation of Aedes
mosquitoes.

4.5 Prediction of the model to the Chiapas map

The projection of the model was carried out on a map of the state of Chiapas which
was made based on the municipalities where the cases were registered, as can be seen
in Figure 2, the prediction is divided by zones in shades of green to yellow with a
contour delimited by contour lines that show the area in which the model predicts the
number of cases for that area. As we can see, most of the predicted cases occur within
the metropolitan area where the state capital Tuxtla Gutiérrez and the municipalities
of Chiapa de Corzo, Berriozábal and Suchiapa are located, this corresponds to the
observed data, since most of the cases occurred in the same area. On the other hand, it
is observed that the prediction power is diminished in areas where no dengue cases
were registered.

Parameter Estimation coeff. 95% Confidence intervals

Intercept (β0) 1:88952 1:88178, 1:96555ð Þ

Maximum temp. (β1) 0:00740 0:00523, 0:00763ð Þ

Altitude (β2) 0:00028 0:00026, 0:00028ð Þ

Rainfall (β3) �0:02549 �0:02607,�0:02423ð Þ

Age (β4) �0:05356 �0:05444,�0:05275ð Þ

Table 2.
Estimation of parameters and their confidence intervals of the selected model.
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5. Discussion

The purpose of this chapter is to present and expand the use of spatial statistics to
contribute to public health and the epidemiology of vector-borne diseases, and for this
reason, the example of the use of a GLSM was proposed to model the distribution of
dengue in Chiapas, since this is one of the endemic diseases that cause numerous
infections per year. Climatological, geographic, and sociodemographic variables were
used for the modeling, where it was found that the maximum environmental temper-
ature, altitude, patient age, and average monthly rainfall are the variables that best
predict the spread of dengue.

Maximum environmental temperature is shown to have a significant effect on
dengue cases, as it is an environmental risk factor for dengue transmission, higher
temperatures increase viral replication in the vector in a shorter time and thus
increase the potential for transmission of dengue viruses. This is described by a study
on the extrinsic incubation period. Liu et al. [41] found that the virus remained in the
midgut of the vector at 18∘C, but could spread and invade the salivary glands at
temperatures between 23∘C and 32∘C, thus demonstrating that higher temperatures
create a shorter extrinsic incubation period and greater transmission potential.

The altitude above sea level of each municipality was also an important variable in
the study, which is consistent with the findings of the systematic review by Aswi [42],
where this variable was used in different statistical models in order to describe the
behavior of the disease, since the spread of the Aedes aegypti mosquitoes is limited by

Figure 2.
Prediction of confirmed dengue cases.
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climatic conditions and this will be governed by the location of the geographical area
and its altitude. The study of Reinhold et al. [43] alludes that Aedes Aegytpi cannot
regulate its body temperature because it is an endothermic arthropod, and that is why
its temperature is defined by the climatic conditions of its environment. Thus, geo-
graphic location and altitude are important variables for dengue disease.

On the other hand, we have average monthly rainfall, where we see a negative
association, since the less rainfall, the more cases of dengue. This coincides with the
results of the work of Hashizume et al. [17], where they indicate that dengue cases
increase by 29:6% in the months when the rivers have low flow, and this is under-
standable, since, in those seasons of the year when rainfall is scarce, the rivers do not
have a continuous flow of water, which produces stagnation and these, in turn,
become ideal breeding grounds for mosquitoes, causing an increase in the prolifera-
tion of Aedes.

Finally, we have the variable patient age, as can be seen in the results, the correla-
tion was negative too, due to the young population being preferred by the vector,
since there is a greater number of cases at an average age of 14 years. As demonstrated
by Phanitchat et al. [44] in their work, where it was reported that the age range of
dengue cases was between 5 and 14 years in northeastern Thailand.

6. Conclusions

Vector-borne diseases (VBD) are an important public health issue worldwide. The
distribution of these diseases as well as their transmission and seasonality are known
to be largely determined by environmental, geographic, and socio-demographic fac-
tors. GLSMs allow robust analysis of the complex and diverse factors that influence
the occurrence of VBD, incorporating spatial dimensions. They can also be a valuable
tool for targeting interventions in surveillance and control programs for VBD at the
global or regional level. These analytical approaches have recently been used in the
field of public health, but in Mexico there are still very few studies that contribute to
this knowledge. For this reason, this chapter presents an example of the application of
GLSM with a study of dengue, one of the most common VBD in Mexico, finding that
the maximum temperature, altitude, and average monthly rainfall of each municipal-
ity, as well as patient age, are the factors that best predicted the presence of dengue
cases in the state of Chiapas in the period from January to August 2019.
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CDCs Confirmed Dengue Cases
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GLM Generalized Linear Model

12

Biostatistics



GLMM Generalized Linear Mixed Model
GLSM Generalized Linear Spatial Model
INEGI National Institute of Statistic and Geography
INLA Integrated Nested Laplace Approximation
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