# P-BR-132

**BASIC RESEARCH** 

# Effect of vitamin D on osteogenic differentiation of hPDLSCs under inflammatory conditions

Blufstein A.<sup>1</sup>, Behm C.<sup>1</sup>, Rausch-Fan X.<sup>1</sup>, Andrukhov O.<sup>1</sup>

<sup>1</sup> Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Austria

### Abstract

#### **Results**

 $1\alpha$ ,25-dihydroxyvitamin D<sub>3</sub> (1,25(OH)<sub>2</sub>D<sub>3</sub>) enhances the osteogenic differentiation ability of human periodontal ligament stem cells (hPDLSCs).<sup>1</sup> The aim of this study was to investigate this effect under inflammatory conditions.

HPDLSCs were treated with different concentrations of  $1,25(OH)_2D_3$  in the presence and absence of *Porphyromonas gingivalis* (*P.g.*) lipopolysaccharide (LPS) or Pam3CSK4. Gene expression levels of osteocalcin (OC) and osteopontin (OPN) were analyzed by qPCR.

1,25(OH)<sub>2</sub>D<sub>3</sub> induced significant expression of OC and OPN in hPDLSCs in a concentration dependent manner. In the presence of Pam3CSK4, the 1,25(OH)<sub>2</sub>D<sub>3</sub> induced OC expression was significantly lower. Similarly, the enhancement of OPN gene expression by highest tested 1,25(OH)<sub>2</sub>D<sub>3</sub> was lower in the presence of Pam3CSK4, but this effect was not significant. The impact of 1,25(OH)<sub>2</sub>D<sub>3</sub> on expression of OC and OPN was not altered in the presence of *P.g.* LPS. According to our data, the effect of vitamin D on the expression of osteogenic markers is altered under inflammatory conditions, suggesting a compromised effectiveness of vitamin D on local bone metabolism during inflammatory diseases. 1,25(OH)<sub>2</sub>D<sub>3</sub> induced significant expression of OC and OPN in hPDLSCs in a concentration dependent manner. In concentrations of 1nM and 10nM, 1,25(OH)<sub>2</sub>D<sub>3</sub> led to an increase of OC expression by about 6 and 14 times, respectively. In the presence of Pam3CSK4, same concentrations of vitamin D induced OC expression significantly lower by only about 1.5- and 2-fold, respectively. Similarly, the induction of OPN expression by 1,25(OH)<sub>2</sub>D<sub>3</sub> in concentrations of 1 and 10nM was significantly lower in the presence of Pam3CSK4, namely ~1.5 times vs. ~0.8 times and ~3 times vs. ~0.9 times. Treatment with *P.g.* LPS led to a significant decrease of vitamin D-induced OPN expression at concentration of 10nM (~3-fold vs. ~1,8-fold).



Figure 1. Gene expression levels of OC and OPN were measured by qPCR upon stimulation with 1,25(OH)<sub>2</sub>D<sub>3</sub> in different concentrations (0.1-10nM) and *P.g.* LPS (1µg/ml) or Pam3CSK4 (1µg/ml). Y-axes represented as mean ± standard error of the mean of 6 independent experiments on 6 different donors. 1,25(OH)<sub>2</sub>D<sub>3</sub> significantly induced OC and OPN expression in a concentration dependent manner. The induction of OC and OPN expression by 1,25(OH)<sub>2</sub>D<sub>3</sub> in concentrations of 1 and 10nM was significantly lower in the presence of Pam3CSK4. Similarly, treatment with *P.g.* LPS led to significantly lower vitamin D-induced OPN expression at a concentration of 10nM.

- means significantly different between physiological and inflammatory conditions, p < 0.05.

## Conclusion

Our data show that the ability of vitamin D to stimulate osteogenic differentiation in hPDLSCs is strongly inhibited under inflammatory conditions. The effectiveness of vitamin D on local bone metabolism might be diminished in individuals with inflammatory disease.

# Background and Aim

HPDLSCs are similar to bone marrow mesenchymal stem cells and differentiate *in vitro* into osteoblasts, chondrocytes and adipocytes.  $1,25(OH)_2D_3$  is known to promote osteogenic differentiation of hPDLSCs under physiological conditions.

The aim of this study was to investigate these effects under inflammatory conditions.

#### **Methods and Materials**

HPDLSCs of six donors were treated with different concentrations of  $1,25(OH)_2D_3$  (0.1-10nM) in the presence and absence of *P.g.* LPS (1µg/ml) or TLR2 agonist Pam3CSK4 (1µg/ml) for 48 hours. Treatment of hPDLSCs with *P.g.* LPS or Pam3CSK4 alone was performed as control. Gene expression of OC and OPN was measured by qPCR.

Presented at

#### References

 $^1$  Nebel D, Svensson D, Arosenius K, Larsson E, Jönsson D, Nilsson BO. 1a,25-dihydroxyvitamin D3 promotes osteogenic activity and downregulates proinflammatory cytokine expression in human periodontal ligament cells. J Periodont Res. (2015) 50:666–73. 10.1111/jre.12249





