Distinct Genomic Associations to Predict Acute Myeloid Leukemia (AML) Cleveland Clinic Progression from Myelodysplastic Syndromes (MDS)

Yazan F. Madanat¹, Mikkael A. Sekeres¹, Sudipto Mukherjee¹, Karam Al-Issa¹, Cassandra M. Hirsch², Aaron T. Gerds¹, Babal K. Jha², Vera Adema², Anjali Advani¹, Yasunobu Nagata², Teodora Kuzmanovic², Hetty E. Carraway¹, Bartlomiej Przychodzen², Jaroslaw P. Maciejewski², Aziz Nazha¹

> ¹Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic ²Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH

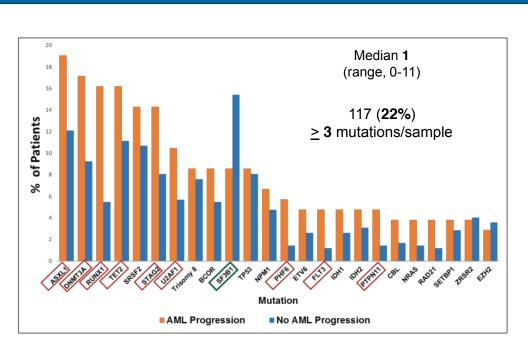
BACKGROUND

- 25% of MDS patients (pts) progress to AML; 15% of those with lower-risk, and ~40-50% of those with higher-risk
- Predicting those who are likely to progress to AML early in their disease course could directly impact treatment decisions

METHODS

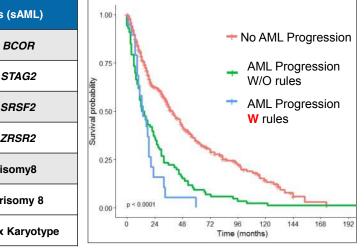
Statistical Analyses

- We developed a genomic model that evaluates mutational patterns and their association with AML progression. Development of this model mimics Netflix or Amazon's recommender system in which customers who bought products A and B, are likely to buy C: pts who have a mutation in genes A and B, are then likely to progress to AML
- Association rules using Apriori algorithm was used to study the relationship between multiple genes/cytogenetic abnormalities and AML progression in an unbiased approach
- Univariate and multivariate analyses were used to evaluate the impact of mutations on AML progression


Patient Population

MDS pts diagnosed between 1/1996 and 9/2016 were analyzed. A panel of 60 gene mutations obtained by next generation targeted sequencing was included.

Patient Characteristics	Number / Median (n = 527)	(%) / [range]
Age at diagnosis, years	67	[19-99]
Patients progressing to AML	105	[20]
Time to AML progression (TTP), mo	13	[6.3-29.8]
Gender		
Male	329	(62.0)
Female	198	(38.0)
Clinical Characteristics		
WBC, 10 ⁹ /L	3	[0.67 – 37]
ANC, 10 ⁹ /L	2	[0-24.6]
Hemoglobin, g/dL	10.0	[3.9 – 15.9]
Platelets, 109/L	88	[4 – 975]
Median BM Blasts %	2	[0 – 19]
Risk Groups per IPSS		
Low	148	(28.0)
Intermediate –I	235	(45.0)
Intermediate – II	106	(20.0)
High	38	(7.0)
Risk Groups per IPSS-R		
Very Low	78	(14.8)
Low	200	(38.0)
Intermediate	95	(18.0)
High	98	(18.6)
Very high	56	(10.6)
Cytogenetic Risk per IPSS-R		
Very good	15	(2.8)
Good	331	(62.8)
Intermediate	87	(16.5)
Poor	37	(7.0)
Very poor	57	(10.8)


Multivariate Cox Regression Analysis to predict Secondary AML Progression		
Genomic Abnormality	Hazard Ratio (95% Cl)	P Value
RUNX1	2.8 (1.6-5)	.001
≥ 3 Abnormalities	1.65 (1.1-2.5)	.021
FLT3	3.1 (1.2 – 8.2)	.019
SF3B1	.417 (.205851)	.016

RESULTS

Association Rules
ASXL1, RUNX1,
ASXL1, RUNX1,
ASXL1, STAG2, S
ASXL1, STAG2, 2
ASXL1, TET2, Tri
<i>RUNX1, STAG2,</i> Tr
<i>TP53, TET2,</i> Complex

CONCLUSIONS

- MDS pts with > 3 genomic abnormalities, *FLT3* or *RUNX1* have a higher chance of AML progression
- SF3B1 is associated with lower AML transformation
- Certain gene combinations are associated with higher likelihood of AML transformation
- Machine learning algorithms ("recommender algorithm") may aid in translating genomic data into clinical tools

CONTACT INFO

Yazan F. Madanat, MD Hematology and Oncology Fellow Cleveland Clinic, Taussig Cancer Institute 10201 Carnegie Ave, CA-60. Cleveland, OH 44195 madanav@ccf.org

There are no relevant conflicts of interest to disclose