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Abstract

Chemokines or chemotactic cytokines are chemical signaling molecules that have 
a regulatory effect on the orientation of endothelial and epithelial cells, especially 
leukocytes, immune and inflammatory response, and cell regeneration. They are 
important in the management of endothelial damage, physical harm, atherosclerosis, 
vascular injury, bleeding, coagulation, interneuron transmission, and platelet func-
tions. Chemokines are divided into four main subfamilies: CXC, CC, CX3C, and C. All 
of these proteins exert their biological effects by interacting with G-protein-coupled 
transmembrane receptors called chemokine receptors, which are selectively present 
on the surfaces of their target cells. Platelet chemokines increase the recruitment 
of various hematopoietic cells to the vascular wall by nurturing processes, such as 
neointima formation, atherosclerosis, and thrombosis, while also promoting vessel 
repair and regeneration after vascular injury. Regarding platelets, CXCL4 (platelet 
factor 4 and PF4) and the chemokine CXCL7, which is processed from platelet basic 
protein to connective tissue activating peptide-III and β-thrombomodulin, to its 
active form neutrophil-activating peptide-2, which are the most abundant. In this 
chapter, chemokines that are more effective on platelets will be discussed.
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1. Introduction

Chemokines or chemotactic cytokines are chemical signaling molecules that have 
a regulatory effect on the orientation of endothelial and epithelial cells, especially 
leukocytes, immune and inflammatory response, and cell regeneration. They are 
important in the management of endothelial damage, physical damage, atheroscle-
rosis, vascular injury, bleeding, coagulation, interneuron transmission, and platelet 
functions. Chemokines are divided into four main subfamilies: CXC, CC, CX3C, and 
C. All of these proteins exert their biological effects by interacting with G-protein-
coupled transmembrane receptors called chemokine receptors, which are selectively 
present on the surfaces of their target cells. Platelet chemokines increase the recruit-
ment of various hematopoietic cells to the vascular wall by nurturing processes, such 
as neointima formation, atherosclerosis, and thrombosis, while also promoting vessel 
repair and regeneration after vascular injury. Regarding platelets, CXCL4 (platelet 
factor 4 and PF4) and the chemokine CXCL7, which is processed from platelet basic 
protein to connective tissue activating peptide-III and β-thrombomodulin to its active 
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form neutrophil-activating peptide-2, which are the most abundant [1–5]. In this 
chapter, chemokines that are more effective on platelets will be discussed.

2. Chemokines

The word “chemokine” comes from the ancient Greek word “alchemy” and 
“kinesis.” Cytokines are a family of small cytokines or signaling proteins that are 
secreted by different cells, especially immune system cells, and induce the movement, 
communication, and secretory functions of other cell types, including leukocytes as 
well as endothelial and epithelial cells [1, 2]. In addition to playing an important role 
in the activation of host immune responses, chemokines are important in biological 
processes, such as morphogenesis, hemostasis, wound healing, and also in the patho-
genesis of diseases, such as cancer [1–3]. Chemokines are classified according to their 
behavioral and structural properties. All chemokines are small molecules, about 8–10 
kDa by mass. The amino acid number and sequence of different chemokine molecules 
are 20–50% the same. It has four cysteine   residues that are the basis for creating the 
Greek-key-like 3D shapes in basal positions. The first two cysteines in a chemokine 
are located near the N-terminal end of the protein, the third cysteine  s in the center 
of the molecule, and the fourth is near the C-terminal region. This is followed by a 
single-turn helix called a 310-helix, three β-strands, and a C-terminal α-helix. These 
helices and strands are connected by turns called the 30s, 40s, and 50s loops; the third 
and fourth cysteines are located in the 30s and 50s loops [4]. Chemokines are found 
in all vertebrates, some viruses, and some bacteria, but none have been found in other 
invertebrates [5].

Members of the chemokine family are divided into four groups based on the 
framework formed by the first two cysteine residues:

1. C chemokines

2. CXC chemokines

3. CC chemokines

4. CX3C chemokines [4]

C chemokines (or γ-chemokines) differ from all other chemokines in that it con-
tains only two cysteines; an N-terminal cysteine and a second cysteine downstream. 
Two chemokines have been identified for this subgroup and are designated XCL1 
(lymphotactin-α) and XCL2 (lymphotactin-β). Thus, the terminology of chemokines 
is, for example, CCL1 for ligand 1 of the CC-family of chemokines and CCR1 for its 
corresponding receptor [4].

CXC chemokines the two N-terminal cysteines (or α-chemokines) are separated 
by an amino acid represented by an “X.” There are 17 different CXC chemokines 
identified in mammals, with a specific amino acid sequence glutamic acid-leucine-
arginine (ELR domain) just before the first cysteine   of CXC. Chemokines with an 
ELR extension are called ELR-positive and those without an ELR extension are called 
ELR-negative. ELR-positive chemokines, specifically induce the migration of neutro-
phils. An example of an ELR-positive CXC chemokine is interleukin-8 (IL-8), which 
induces neutrophils to leave the bloodstream and enter surrounding tissue. Another 
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example is CXCL13, which is ELR negative and tends to be chemotactic for lympho-
cytes. Seven of the CXC chemokines have been discovered to date, and these ligands 
interact with their receptors, CXCRs. Receptors called CXCR1-7 belong to this group 
of chemokines [6].

CC chemokines (or β-chemokine) proteins have two adjacent cysteines (amino 
acids), near their amino terminus. There have been at least 27 distinct members of 
this subgroup reported for mammals, called CC chemokine ligands (CCL)-1 to −28; 
CCL10 is the same as CCL9. Chemokines of this subfamily usually contain four cyste-
ines (C4-CC chemokines), but a small number of CC chemokines possess six cyste-
ines (C6-CC chemokines). C6-CC chemokines include CCL1, CCL15, CCL21, CCL23, 
and CCL28 [4–7]. CC chemokines induce the migration of monocytes and other 
cell types, such as NK cells and dendritic cells. Examples of CC chemokine include 
monocyte chemoattractant protein-1 (MCP-1 or CCL2), which induces monocytes 
to leave the bloodstream and enter the surrounding tissue to become tissue macro-
phages. CCL5 (or RANTES) attracts cells, such as T cells, eosinophils, and basophils, 
that express the receptor CCR5. Increased CCL11 levels in blood plasma are associated 
with aging (and reduced neurogenesis) in mice and humans [7].

As a result, cell movement is achieved [1]. Chemokines, according to their amino 
acid composition, especially are grouped according to the first two cysteine residues 
of a conserved tetra-cysteine motif: the CC and CXC form of chemokines are the 
two largest groups. For example, CX3CL1, XCL1, and XCL2 are named. There are 
47 known chemokines, and 19 chemokine receptors [8]. Chemokines that increase 
leukocyte migration include CCL14, CCL19, CCL20, CCL21, CCL25, CCL27, CXCL12, 
and CXCL13. Inflammatory provocateurs (such as IL-1 and TNF-alpha) include 
CXCL-8, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL10 [6]. This classification is 
not rigid; for example, CCL20 may also act as a proinflammatory chemokine [5].

3. Receptors

For the cell to respond to a chemokine, it must have a specific chemokine receptor 
“R.” Following binding to the chemokine receptor, it associates with G proteins to 
transmit cell signals. Activation of G proteins by chemokine receptors then causes 
activation of an enzyme known as phospholipase C (PLC). PLC cleaves a molecule 
called phosphatidyl inositol (4,5)-biphosphate (PIP2) into two-second messenger 
molecules known as inositol triphosphate (IP3) and diacylglycerol (DAG), which 
trigger intracellular signaling; DAG activates another enzyme called protein kinase 
C (PKC) and IP3 initiates calcium release from intracellular stores. These reactions 
trigger multiple signaling cascades (such as the MAP kinase pathway) that produce 
responses, such as chemotaxis, degranulation, their lease of superoxide anions, and 
changes in the affinity of cell adhesion molecules called integrins, within the cell that 
host the chemokine receptor. Chemokine receptors usually belong to the broad group 
of receptors attached to G-protein (GPCRs). Related to chemokine a calcium signal-
ing cascade is created by binding to its receptor and then causes the activation of 
small GTPases. This then has downstream activation of integrins (adhesion molecules 
in the cell) affects and promotes actin polymerization. A pseudopod (cellular projec-
tion) appears with polarized cell morphology [5–7].

Homeostatic chemokines are produced continuously in the thymus and lymphoid 
tissues. It is the chemokines CCL19 and CCL21 (expressed in lymph nodes and on 
lymphatic endothelial cells) that undertake homeostatic functions in homing, and 
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both have the same receptor CCR7. As a result of binding with these ligands, it is 
possible to direct antigen-presenting cells (APC) to lymph nodes during the adaptive 
immune response. Other homeostatic chemokine receptors include CCR9, CCR10, 
and CXCR5. CCR9 promotes the migration of leukocytes to the gut, CCR10 to the 
skin, and CXCR5 provokes the migration of B cells to the follicles of the lymph nodes. 
In addition, CXCL12 (SDF-1: stromal cell-derived factor 1), which is produced 
structurally in the bone marrow, supports the proliferation of progenitor B cells in 
the bone marrow microenvironment [7, 8]. The protein encoded by this gene is a 
member of the CXC chemokine family and is a majör mediator of the inflammatory 
response. The encoded protein is commonly referred to as interleukin-8 (C-X-C motif 
chemokine ligand 8). IL-8 is secreted by mononuclear macrophages, neutrophils, 
eosinophils, T lymphocytes, epithelial cells, and fibroblasts. Bacterial and viral prod-
ucts induce IL-8 expression. IL-8 also participates with other cytokines in the pro-
inflammatory signaling cascade and plays a role in systemic inflammatory response 
syndrome (SIRS). This gene is believed to play a role in the pathogenesis of the lower 
respiratory tract infection bronchiolitis, a common respiratory tract disease caused 
by their respiratory syncytial virus (RSV) [8–10]. The overproduction of this pro-
inflammatory protein is thought to cause lung inflammation associated with cystic 
fibrosis. This pro-inflammatory protein is also suspected of playing a role in coronary 
artery disease and endothelial dysfunction. This protein is also secreted by tumor cells 
and promotes tumor migration, invasion, angiogenesis, and metastasis. This chemo-
kine is also a potent angiogenic factor [8–10]. The binding of IL-8 to one of its recep-
tors (IL-8RB/CXCR2) increases the permeability of blood vessels and increasing levels 
of IL-8 are positively correlated with increase severity of multiple disease outcomes 
(e.g., sepsis). This gene and other members of the CXC chemokine gene family form a 
gene cluster in a region of chromosome 4q [7–11]. Chemokines, according to the types 
of cells affect monocytes/macrophages. Chemokines that mobilize these cells toward 
the site of inflammation include CCL2, CCL3, CCL5, CCL7, CCL8, CCL13, CCL17, and 
CCL22 [9, 12].

3.1 T-lymphocytes

Chemokines that attract T lymphocytes to the site of inflammation are: CCL2, 
CCL1, CCL22, and CCL17. In addition, CXCR3 expression is mediated by activated 
T cells. IFN-y-inducible chemokines are CXCL9, CXCL10, and CXCL11 [9, 12].

3.2 Mast cells

Express receptors for chemokines on their surface are: CCR1, CCR2, CCR3, CCR4, 
CCR5, CXCR2, and CXCR4. The ligands of these receptors CCL2 and CCL5 play 
an important role in mast cell recruitment and activation in the lung. There is also 
evidence that CXCL8 can inhibit mast cells [9–12].

3.3 Eosinophils

The migration of eosinophils various tissues is provoked by several chemokines of 
the CC family, which are as follows: CCL11, CCL24, CCL26, CCL5, CCL7, CCL13, and 
CCL3. The chemokines CCL11 (eotaxin) and CCL5 (RANTES) act via a specific CCR3 
receptor on the surface of eosinophils, and eotaxin plays an important role in the 
initial recruitment of eosinophils to the lesion [9–12].
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3.4 Neutrophils

Regulated primarily by CXC chemokines. CXCL8 (IL-8) is particularly chemotactic 
for neutrophils and activates their metabolism and degranulation [10–12].

Platelets are nuclear cell fragments derived from megakaryocytes that contain 
both pro-inflammatory and (anti-inflammatory) fragments in abundance. In particu-
lar, they play important roles in hemostasis. Angiogenic mediators physiological and 
pathological conditions in the vascular system, and immune cells are important in 
regulating platelet functions. Platelets as the main players in thrombosis and hemo-
stasis. It is becoming a more interesting topic with increasing discoveries in the com-
position of inflammatory and immune-modulating molecules [10–12]. An important 
phenomenon also emerges in the atherosclerosis of platelets. It found an association 
between increased platelet concentration, aggregation, and the long-term incidence 
of fatal coronary heart disease in a population of apparently healthy middle-aged men 
[12]. Many platelet-derived substances and chemokines family of interesting proteins 
stored in it forms α-granules and exhibits numerous biological activities. In addition, 
chemokines are reexpressed by platelets [12, 13].

4. Platelet chemokines

The first recognized platelet chemokine PF-4 is now known as CXCL4. TGF beta-1 
is also considered a chemokine. The NAP-2 fragment, now called CXCL7, is also a 
platelet chemokine. CCL3 (MIP-1), CCL5 (RANTES), CCL7 (MCP-3), and CXCL1 are 
also platelet-related chemokines. CCL17 (TARC) has recently been reported in plate-
lets. CCL17 is an autocrine factor that increases platelet activation and its receptor 
CCR4 is also found in platelets. When platelets in plasma are activated in vitro, serum 
concentrations of these chemokines reach the range of 1–5 mol/L [13–17] Table 1.

CXCL4 was the first chemokine, whose effects on platelets were reported in 1985. 
Platelet factor 4 (PF4) is a minor cytokine belonging to the CXC family of chemo-
kines, also known as chemokine ligand 4 (CXCL4). This chemokine is released from 

Chemokine Alternative name Receptor

CXCL1 GRO-α CXCR2 > CXCR1

CXCL4 PF4 CXCL3B, GAG

CXCL4L1 PF4alt Unknown

CXCL5 ENA-78 CXCR2

CXCL7 PBP, βTG, CTAPIII, NAP-2 CXCR > CXCRI

CXCL8 IL-8 CXCRI, CXCR2

CXCL12 SDF-I α CXCR4

CCL2 MCP-I CCR2

CCL3 MIP-I α CCRI, CCR2, CCR3

CCL5 RANTES CCRI, CCR3, CCR4, CCR5

CCL17 TARC CCR4, CCR8

Table 1. 
The alternative names and receptors of chemokines.
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the alpha granules of activated platelets during platelet aggregation and provokes 
blood coagulation by regulating the effects of heparin-like molecules. Due to these 
roles, it is predicted that they will also play a role in wound healing and vascular 
repair [5]. It is usually found in a complex with proteoglycan [18].

The human PF4 gene is located in human chromosome 4. Platelet factor 4 is a 70 
amino acid-containing protein that is released from the alpha granules of activated 
platelet sand and binds to heparin with high affinity. Its main physiological role is 
thought to be the neutralization of heparin-like molecules on the endothelial surface 
of blood vessels, thereby inhibiting local antithrombin activity and provoking coagu-
lation. As a potent chemotactic factor for neutrophil sand fibroblasts, PF4 probably 
has a role in inflammation and wound healing [19, 20]. PF4 is also a chemotactic 
factor for neutrophils, fibroblasts, and monocytes, and interacts with an additional 
counterpart of the chemokine receptor CXCR3, known as CXCR3-B [20].

PF4 complex is the antigen in heparin-induced thrombocytopenia (HIT), which 
is an autoimmune reaction specific to anticoagulant heparin administration [21]. 
PF4 autoantibodies have also been found in patients with thrombosis and similar to 
HIT, but who have not been given heparin before [22]. Antibodies against PF4 have 
been blamed in cases of thrombosis and thrombocytopenia after vaccination with 
the Oxford-Astra Zeneca or Janssen COVID-19 vaccine [23, 24]. This phenomenon 
was named vaccine-induced immune thrombotic thrombocytopenia (VITT) [25]. 
A relationship was also found in PF4 expression with long-term COVID symptoms 
[26]. It increases in patients with systemic sclerosis, who also have interstitial lung 
disease [27].

Human platelet factor 4 also specifically decomposes the digestive vacuole of the 
malaria parasite and neutralizes the malaria parasites in erythrocytes [28].

Transforming growth factor-beta 1 (TGF-beta1) is a polypeptide member of the 
transforming growth factor beta superfamily of cytokines. It is a secreted protein 
that performs many cellular functions, including the control of cell growth, prolif-
eration, differentiation, and apoptosis. In humans, TGF-β1 is encoded on the TGFB1 
gene [28, 29].

5. CXCL7

TGF-β Transforming growth factor-beta 1 (TGF-beta1) is a polypeptide member 
of the transforming growth factor beta superfamily of cytokines. It is a secreted 
protein that performs many cellular functions, including the control of cell growth, 
proliferation, differentiation, and apoptosis. In humans, TGF-β1 is encoded on the 
TGFB1 gene [28, 29].

A thrombomodulin (C-X-C motif) ligand 7, β-thrombomodulin (β-TG) or beta-
thromboglobulin, is a chemokine protein secreted and stored by platelets [29–31]. 
Along with platelet factor 4 (PF4), β-TG is one of the themes specific platelet-specific 
proteins β-TG and PF4 are stored in platelet alpha granules and released during plate-
let activation [29, 32, 33]. In conclusion, it is a useful marker of platelet activation [29, 
32]. β-TG also plays an important role in the maturation of megakaryocytes [34].

Among the chemokines stored and secreted by platelets, CXCL7 is the largest 
representative. β-TG levels are used as an index of platelet activation. It is measured 
in blood plasma or urine by the ELISA method and usually together with PF4. When 
platelets are active, CXCL4 is 0.4–1.9 μΜ in serum, while CXCL7 is 1.6–4.8 μΜ [35]. It 
is used as a measure for platelet activation [36].
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It consists of proteolytic derivatives of 128 aa-precursor molecules called pre-
PBP, the primary CXCL7 translation product. The primary sequence, pre-PBP is a 34 
amino acid residue leader sequence [37]. β-TG is a molecule and N-terminal variant 
of pro CXCL7 containing 81 residue amino acids. Platelet basic protein (PBP; 94 aa), 
connective tissue activating peptide III (CTAP-III; 85aa), and neutrophil-activating 
neutrophil-activating (NAP-2, 70 aa), are CXCL7 N-terminal variants that diverge 
[38]. β-TG levels increase with age and in diabetes mellitus [39, 40]. β -TG levels were 
found to increase during treatment with synthetic ethinyl estradiol, but not signifi-
cantly in that treated with the natural estradiol valerate [41–44]. β-TG levels were also 
found to be slightly increased or unchanged in an uncomplicated pregnancy [45].

Besides both CTAP-III and NAP-2o, the medium-size shortened CXCL7 variants, 
all its capacity to support various aspects of fibroblast metabolism has been demon-
strated. For example, the synthesis of matrix components, such as hyaluronic acid 
and glycosaminoglycans (GAGs) [46]. Increased GLUT-1 glucose transporter expres-
sion and concomitant cellular glucose uptake are enhanced [47]. As a platelet-derived 
mediator, CXCL7 may also participate in reparative functions following vascular 
tissue injury. But the CXCL7, its role as a growth factor, is controversial. Thus, it is 
more likely that fibroblast mitogenic activity may be the task of full-length-PBP 
[48]. Like CXCL7, platelet factor 4 (PF4, CXCL4) and its closely related chemokine, 
platelet basic protein (PBP), are important in platelets. The role of PF4 in hemo-
stasis/thrombosis in vivo has been demonstrated, PF4 plays a role in pathological 
thrombotic conditions, such as heparin-induced thrombocytopenia (HIT) and septic 
shock [48, 49].

The abundance of CXCL7 variants follows a specific sequence of proteolytic vents 
during platelet production and activation. Thus, the main player on megakaryocytes 
is PBP. A small amount of CTAP-III also provides stimulation. The proportion of the 
shorter variant CTAP-III as platelets mature increases, and the proportion of PBP 
drops to about 25% [49].

Removal of the inhibitory N-terminus to activate CXCL7 as a neutrophil-directed 
chemokine underlies its potential role for intravascular and extravascular. As we 
have shown, the translation of CXCL7 to NAP-2 is mainly catalyzed by NAP-2 target 
neutrophils. Neutrophil activation occurs via the serine protease cathepsin G-linked 
plasma inhibitors, which are not effective [50].

6. CXCL1

CXCL1 is a small peptide belonging to the CXC chemokine family that acts as a 
chemoattractant for several immune cells, especially neutrophils [51] or other non-
hematopoietic cells, to the site of injury or infection and plays an important role in the 
regulation of immune and inflammatory responses. It was previously called the GRO1 
oncogene, GROα, neutrophil-activating protein 3 (NAP-3), melanoma growth stimu-
lating activity, alpha (MGSA-α). It is also known as keratinocytes-derived chemokine 
(KC) in mice or cytokine-induced neutrophil chemoattractant type-1 (CINC-1) in 
rats. In humans, this protein is encoded by the gene Cxcl1 [5] and is located on human 
chromosome 4 among genes for other CXC chemokines [52].

Under normal conditions, CXCL1 is not constitutively expressed. It is produced by 
activated macrophages, neutrophils, and epithelial cells, or by different immune cells, 
such as Th17. Moreover, its expression is indirectly provoked by IL-1, TNF-α, or IL-17 
released by Th17 cells [11]. It plays a major role in inflammation [53, 54].
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CXCL1 has a potentially similar effect as interleukin-8 (IL-8/CXCL8). Binds to the 
CXCR2, receptor CXCL1 triggers phosphatidyl inositol-4,5-biphosphate 3-kinase-y 
(PI3Kγ)/Akt, MAP kinases, such as ERK1/ERK2 or phospholipase-β (PLCβ) signaling 
pathways. CXCL1 increases the expression of inflammatory responses, and thus, con-
tributes to the inflammation process [12]. CXCL1 is also involved in wound healing 
and oncogenesis processes [55–57].

CXCL1 has been shown to have roles in the development of breast cancer, gastric 
and colorectal carcinoma, or lung cancer tumors [58, 59]. In addition, it has been 
reported that CXCL1 is secreted by human melanoma cells and plays a role in mito-
genic activity [60–62].

CXCL1 is expressed by neurons and oligodendrocytes in the brain and spinal cord 
and by microglia during pathologies, such as Alzheimer’s disease, multiple sclerosis, 
and brain damage. A study in mice shows evidence that CXCL1 reduces the severity 
of multiple sclerosis [23]. In addition, CXCL1 contributes to CXCL1, playing a role in 
spinal cord development by acting on oligodendrocytes [7]. CXCR2 receptors for s 
to the release of prostaglandins, thereby resulting in increased sensitivity to pain. It 
initiates nonspecific sensitivity through the recruitment of neutrophils into the tissue. 
It increases the transcription of genes that induce chronic pain, such as cyclooxygen-
ase-2 (COX-2) [12].

7. CCL 3

Chemokine (C-C motif) ligand 3 (CCL3) also known as macrophage inflammatory 
protein 1-alpha (MIP-1-alpha), is located on the CCL3 gene in humans[3]. By bind-
ing to all of the CCL3, CCR1, CCR4, and CCR5 receptors, it may play a role in the the 
recruitment and activation of polymorphonuclear leukocytes [63] in acute inflam-
matory conditions. Sherry et al. showed two protein subcomponents of MIP-1 called 
alpha (CCL3) and beta (CCL4) [64, 65]. CCL3 can produce rapid-onset symptoms of 
monophasic fever that are greater than or equal to fevers produced by recombinant 
human tumor necrosis factor or recombinant human interleukin-1. Moreover, unlike 
these two endogenous pyrogens, MIP-1-induced fever is capable of producing cyclo-
oxygenase-induced fever. It is not inhibited by ibuprofen. CCL3 may participate in a 
type of febrile response that is not produced by prostaglandin and cannot be clinically 
inhibited by cyclooxygenase. CCL3 has been shown to interact with CCL4 to activate 
macrophages, monocytes, and neutrophils [66].

CCL4 also known as macrophage inflammatory protein-1β (MIP-1β), is a CC 
chemokine that specifically binds to CCR5 receptors. It is chemotactic for natural 
killer cells, monocytes, and various other immune cells [67] CCL4 is an important 
HIV suppressive factor released by CD8+ T cells [68]. Performance low-memory 
CD8+ T cells that normally express MIP-1-beta. The concentration of this chemokine 
is inversely proportional to micro RNA-125b. The concentration of CCL4 in the body 
increases with age, which can lead to chronic inflammation and liver damage and may 
be a marker [69].

8. CCL5

Chemokine C-C ligand 5 (CCL5) is a protein encoded on the CCL5 gene in humans 
[70]. The gene was discovered in situ hybridization in 1990 [71]. Also known as 
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RANTES (regulated by activation, normal T-cell expressed and secreted). CCL5 
belongs to the CC subfamily of chemokines, due to its adjacent cysteines near the 
N terminus. It is an 8 kDa protein acting as a classical chemotactic cytokine or che-
mokine. It consists of 68 amino acids. CCL5 is a pro-inflammatory chemokine, that 
recruit’s leukocytes to the site of inflammation. It is chemotactic for T cells, eosino-
phils, and basophils, but also monocytes, natural killer (NK) cells, dendritic cells, 
and mastocytes [72]. With the help of particular cytokines (i.e., IL-2 and IFN-γ) that 
are released by T cells, CCL5 also induces the proliferation and activation of certain 
NK cells to form CHAK (CC-chemokine-activated killer) cells. It is also an HIV-
suppressive factor released from CD8+ T cells [72, 73].

The chemokine CCL5 is mainly expressed by T cells and monocytes, and it is 
not expressed by B cells. Moreover, it is abundantly expressed by epithelial cells, 
fibroblasts, and thrombocytes. Although it can bind to receptors CCR1, CCR3, CCR4, 
and CCR5 belonging to seven transmembrane G-protein-coupled receptor (GPCRs) 
family [8], it has the highest affinity to the CCR5. CCR5 is presented on the surface 
of T cells, smooth muscle endothelial cells, epithelial cells, parenchymal cells, and 
other cell types. After the binding of CCL5 to CCR5, phosphoinositide 3-kinase 
(PI3K) is phosphorylated and subsequently, the phosphorylated PI3K phosphorylates 
protein kinase B (PKB; also known as Akt) on the serine 473. Then, the Akt/PKB 
complex phosphorylates and inactivates a serine/threonine protein kinase GSK-3. 
After the CCL5/CCR5 binding, some other proteins are regulated as well. Bcl2 is more 
expressed and it induces apoptosis [74, 75].

RANTES acts as a typical chemokine causing chemotaxis of mononuclear cells at 
nanomolar concentrations. Transendothelial migration of monocytes and lympho-
cytes is integrin-dependent and requires adhesion molecules from molecules, such as 
ICAM-1 and ICAM-1 [76, 77].

Due to resting integrins, tissue needs activation signals confirmation and only has 
a low affinity for its ligands. Chemokines are important stimuli for integrin activation 
as they are released during inflammation and induce adhesion in all types of leuko-
cyte subsets. It is phosphorylated shortly after exposure to RANTES [78].

Until now, the mechanism of integrin-dependent adhesion of RANTES has not 
been fully elucidated. In addition to initiating cell migration at high concentrations, 
RANTES also acts independently of its G-protein-coupled receptors. It induces the 
release of T cells and pro-inflammatory mediators [79, 80]. Its unique capacity to form 
homotypic clusters and its high affinity for GAGs on the surface of endothelial cells, 
basement membrane and extracellular matrix RANTES will be immobilized [79–82].

AGs heparin-binding site associated with residues located at the C-terminus of 
PF4 tetramer displays a band of positively charged residues [83]. In the RANTES mol-
ecule, two basic amino acid clusters present heparin-binding motifs in the 40s loop 
between this cond and the third β-strand only in the C-terminal α-helix. The essential 
remains in the 40s loop are specific and it shows the high affinity of RANTES to dif-
ferent GAG species. Effective leukocyte arrest in the endothelium, especially unlike 
chemotaxis appears to depend on the formation of RANTES oligomers to bridge the 
surface-bound RANTES and CCR1 [84]. Selective binding of chemokines to sub-
groups of glycosaminoglycans cell surface induces polymerization facilitating their 
attachment it binds to receptor and enhances their effects on high-affinity receptors 
in the local microenvironment [85, 86]. In addition, structural motifs required for 
oligomerization RANTES are important for heterophilic interaction. RANTES with 
PF4 increases surface immobility and enhances monocyte adhesion to endothelial 
cells under flow conditions [86, 87].
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9. Chemokines and vascular biology

Data from animal experiments suggest that activated platelets are involved in the 
pathogenesis of atherosclerosis, which indicates that it is important in acute throm-
boembolism [88, 89]. Monocyte recruitment into the subendothelial artery space is 
an early step in pathogenesis. Platelets with an affinity for GAGs accumulate in the 
luminal endothelium, where chemokines, such as RANTES activate monocytes [83, 
90]. The role of RANTES in humans is reported to be less. In one study group, serum 
levels of RANTES were found to be lower in atherosclerosis compared to healthy 
controls 92. PF4 and NAP-2 as well been shown to play a role in atherosclerosis. PF4, 
which can reflect platelet activity. Studies have been conducted on its importance in 
atherosclerosis [91–94]. PF4 and, to a lesser extent, NAP-2 are associated with human 
atherosclerotic plaques [94]. Besides, PF4 is involved in the metabolism of athero-
genic lipids, for example, oxidized low-density lipoprotein (LDL). It is stated that 
LDL (oxLDL) plays a role in the atheroma plaque [94].

Patients with stable and especially unstable angina exhibit markedly elevated plasma 
NAP-2 levels. PF4 may also play an important role in the acute coronary syndrome that 
causes plaque formation. But “how does PF4 affect thrombosis?” has not been finally 
clarified [95]. Angiogenesis, which may be beneficial in wound healing, also it is effec-
tive in pathological conditions, such as cancer and atherosclerosis. Capillary sprouting 
and endothelial cell proliferation VEGF (vascular endothelial growth factor), bFGF 
(essential fibroblast growth factor) by in vitro platelet releases, and PDGF (platelet-
derived growth factor) can be induced by isolated platelets [96, 97]. NAP-2 accelerates 
endothelial cell healing with CXCR2-dependent fibronectin, fibrinogen, and platelet-
coated endothelial matrix of endothelial progenitor cells [98]. On the other hand, 
platelet products PF4 and PF4alt are potent inhibitors of angiogenesis. PF4 can exert its 
angiostatic activity via CXCR3B [99] (Figure 1).

The mechanism mediated by CXCR2 constitutes a very important area of research. 
CXCR2 binds to a G-protein. Multiple ligands are available. CXCR2 results in activa-
tion by binding of chemokines. NFκB, MAPK, PI3K, and Rac 1 are among other 

Figure 1. 
Fibrinolysis with plasminogen activators.



11

Chemokines Effective on Platelet Functions
DOI: http://dx.doi.org/10.5772/intechopen.107183

signaling cascades. Activation by CXCR2 increases NAPDH oxidases, causing an 
explosion of reactive oxygen species (ROS). This ROS explosion plays a role in clear-
ing pathogen infections by macrophages. It mediates the induction of apoptosis in 
cancer cells [100–102].

Congenital deficiency of PAI-1; since fibrinolysis is not sufficiently suppressed, 
it causes hemorrhagic diathesis. PAI-1 is found at increased levels in various disease 
states (such as several cancer types), as well as obesity and metabolic syndrome. It has 
been associated with increased thrombosis formation in patients with these condi-
tions. PAI-1 can induce cellular senescence. PAI-1 appears to play an important role 
in the progression of fibrosis in inflammatory conditions, where fibrin accumulates 
in tissues. Possibly, lower PAI levels will lead to less suppression of fibrinolysis and 
conversely faster degradation of fibrin. Angiotensin II increases the synthesis of 
plasminogen activator inhibitor-1, thereby accelerating the development of athero-
sclerosis [103, 104].

Thrombotic complications are common in COVID-19 and contribute significantly 
to mortality and morbidity. Immune-mediated thrombotic mechanisms, complement 
activation, macrophage activation syndrome, antiphospholipid antibody syndrome, 
hyperferritinemia, and renin-angiotensin system dysregulation may be potential 
prognostic biomarkers in COVID-19. Recent studies are currently discussing the 
hypothetical benefits and anticipated challenges of therapeutic anticoagulation and 
fibrinolytic therapy in COVID-19 [105].

Abbreviations

CHAK  Chemokine-activated killer 
COVID-19 Sars-Cov2 Virus 19
IP3  Inositol triphosphate3  
LDL  Low-density lipoprotein
MCP- β  Monocyte chemoattractant protein-1 beta
MGSA  Melanoma growth stimulatingactivity alpha
MIP-1 β  Macrophage inflammatory protein 1beta
NAP3  Neutrophil activating protein-3
NK  Naturel killer
PAI1  Plasminogen activator inhibitor1
PIP2  Phosphatidyl inositol2
PF4  Platelet Factor4
PLC  Phospholipase C
RANTES Regulated by activation normal Tcell expressed and secreted
ROS  Reactive oxygen species
RSV  Respiratory syncytial virus
SDF1  Stromal cell-derived factor1
SIRS  Systemic inflammatory response syndrome
TNFα  Tumor necrosis factor-alpha
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