

Department of Anaesthesiology and Intensive Care Medicine | Head: Univ.-Prof. Dr. Bernd W. Böttiger

Hemodynamics of corpuls cpr in a Porcine Model of Cardiac Arrest

Tobias Neumann, Simon-Richard Finke, Pia Rademann*, Sebastian Lemke, Ben Höpfner, Maja Henninger, Daniel C. Schroeder, Thorsten Annecke

* Center for Experimental Medicine, University Hospital of Cologne

Purpose of the study

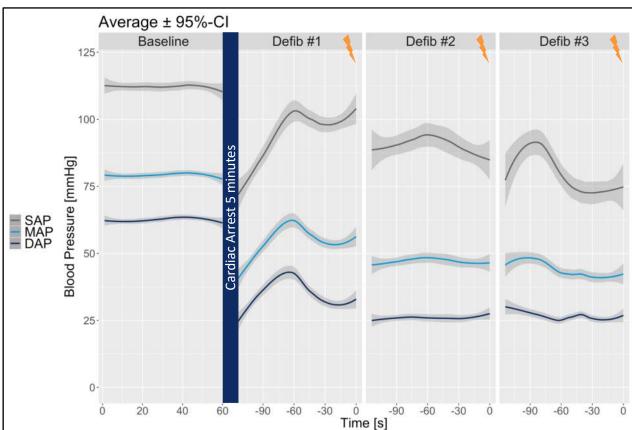
Whether mechanical chest compression devices can be used for Blood Pressure cardiopulmonary resuscitation (CPR) is still a subject of debate.

Since data on chest compression quality unbiased by pharmacotherapy is rare we present current hemodynamic data on the fairly new *corpuls cpr* (GS Elektromedizinische Geraete G. Stemple GmbH) from our animal model.

Materials and methods

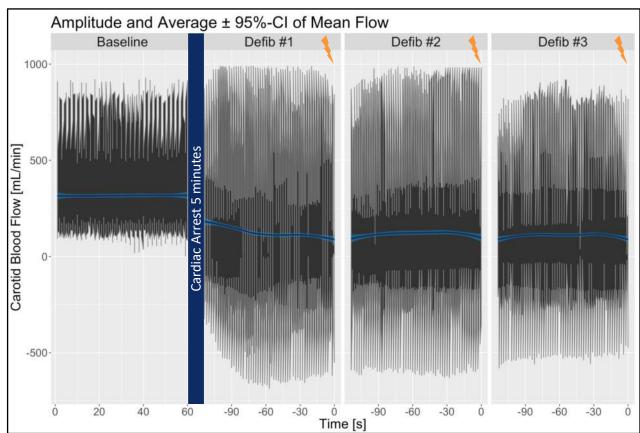
Approved by the animal welfare authorities (LANUV NRW, reference 84-02.04.2017.A176), 10 domestic swine were sedated, ventilated and equipped with pressure transducers and a flow probe around the left carotid artery.

Following baseline (BL) measurement, ventricular fibrillation was induced by alternating current and ventilation was discontinued. After 5 minutes of untreated cardiac arrest, mechanical CPR was initiated (depth 6.0cm, continuous, 100 compressions per minute) and ventilation was resumed. Defibrillations were performed after 2, 4 and 6 minutes. No cardiovascular pharmacotherapy was applied.


Arterial blood pressure (SAP, DAP, MAP), endtidal carbon dioxide (etCO₂) and mean carotid blood flow (CFmean) were averaged each $\overline{2}$ minute intervals (mean \pm SD).

Results

ROSC was achieved in 3 out of 10 animals. Hemodynamic data are presented in figures and tables.


Conclusions

Our data support another group's findings that corpuls cpr generates near to normal blood pressure and one third of baseline CFmean. [1] Therefore, we strongly encourage further clinical examination on corpuls cpr in comparison to manual CPR or other chest compression devices.

	BL	CPR 0 - 2 min	CPR 2 - 4 min	CPR 4 - 6 min
SAP [mmHg]	112 ± 10	93 ± 28	94 ± 40	78 ± 27
MAP [mmHg]	79 ± 7	53 ± 17	52 ± 37	43 ± 12
DAP [mmHg]	63 ± 6	33 ± 15	26 ± 9	26 ± 8
etCO ₂ [mmHg]	41 ± 3	27 ± 5	34 ± 9	41 ± 9

Carotid Blood Flow

	BL	CPR 0 - 2 min	CPR 2 - 4 min	CPR 4 - 6 min
CFmean [mL/min]	317 ± 41	128 ± 68	118 ± 60	110 ± 43
CFmean [% BL]	100	42 ± 23	39 ± 21	37 ± 17

Presenting and corresponding author

Dr. med. Tobias Neumann, MD tobias.neumann@uk-koeln.de

Reference

1) Eichhorn S, Mendoza A, Prinzing A, Stroh A, Xinghai L, Polski M, Heller M, Lahm H, Wolf E, Lange R, Krane M: Corpuls CPR Generates Higher Mean Arterial Pressure Than LUCAS II in a Pig Model of Cardiac Arrest. BioMed Research International 2017:5470406. https://doi.org/10.1155/2017/5470406.