STATIN PRE-TREATMENT AND MICRO-EMBOLIC SIGNALS IN LARGE ARTERY ATHEROSCLEROSIS: A SYSTEMATIC REVIEW AND META-ANALYSIS

Apostolos Safouris, MD^{1,2} Aristeidis H. Katsanos, MD^{1,3} Antonios Kerasnoudis, MD⁴ Christos Krogias MD⁴ Justin A. Kinsella PhD, FRCPI⁵ Roman Sztajzel MD⁶ Vaia Lambadiari MD⁷ Spyridon Deftereos, MD⁸ Odysseas Kargiotis, MD² Vijay K. Sharma, MD⁹ Andrew M. Demchuk, MD, FRCPC¹⁰ Maher Saqqur MD¹¹, Dominick J.H. McCabe PhD, FRCPI, FESO^{12,13,14,15} Georgios Tsivgoulis MD^{1,16}

¹Second Department of Neurology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; ²Stroke Unit, Metropolitan Hospital, Piraeus, Greece; ³Department of Neurology, University Hospital of Ioannina, School of Medicine, University of Ioannina, Ioannina, Greece; ⁴Department of Neurology, St. Josef-Hospital, Ruhr University, Bochum, Germany; ⁵Department of Neurology, St Vincent's University Hospital, University College Dublin, Dublin, Ireland; ⁶Department of Neurology, University Hospital Geneva and Medical School, Geneva, Switzerland; ⁷Second Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece; ⁸Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece; ⁹Yong Loo Lin School of Medicine, National University of Singapore, Division of Neurology, National University Hospital, Singapore; ¹⁰Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; ¹¹Department of Neurology, University of Alberta, Edmonton, Alberta, Canada; ¹²Vascular Neurology Research Foundation, Department of Neurology and Stroke Service, The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital, Dublin, Ireland; ¹³Irish Centre for Vascular Biology, Ireland; ¹⁴Department of Clinical Neurosciences, Royal Free Campus, UCL Institute of Neurology, London, U.K; ¹⁵Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland; ¹⁶Department of Neurology, University of Tennessee Health Sciences Center, Memphis, TN, USA

Introduction

Scarce data indicate that **statin pretreatment** (SP) in patients with acute cerebral ischemia (ACI) due to large artery atherosclerosis (LAA) may be related to lower risk of recurrent stroke due to a decreased incidence of micro-embolic signals (MES) during transcranial Doppler (TCD) monitoring.

Methods

A systematic review and meta-analysis of available observational studies reporting <u>MES</u> presence/absence and/or <u>MES</u> burden, categorized according to <u>SP</u> status, in patients with ACI due to symptomatic (\geq 50%) LAA.

In studies with partially published data, authors were contacted for previously unpublished information.

Sensitivity analysis of studies with data on MES burden categorized according to SP status, and an additional subgroup analysis in patients receiving higher-dose SP (atorvastatin 80mg or rosuvastatin 40mg daily). Seven eligible study protocols were identified (568 patients, 55% with SP).

SP was associated with a reduced risk of MES detection during TCD-monitoring (RR=0.60, 95%CI: 0.38-0.95), with substantial heterogeneity between studies (I²=57%). *Figure 2A*

In studies reporting MES burden (n=4), a significantly lower number of MES were identified in patients with compared with those without SP (mean difference = -0.97, 95%CI: -1.70 to -0.24), with no evidence of heterogeneity across studies (I²=47%). *Figure 2B*

Subgroup analysis revealed that **higher-dose SP reduced the risk of detecting MES** (RR=0.23, 95%CI: 0.06-0.88), with no evidence of heterogeneity across studies (I²=0%). *Figure 2C*

Table. Overview of included studies

Study name	Country	N	TCD monitoring (duration)	Timing of TCD from index event
Choi et al, 2010	Canada	64	Bilateral (60 min)	≤48 hours
Kerasnoudis et al, 2013	Germany	26	Bilateral (30 min)	≤2 weeks
Kinsella et al, 2015	Ireland	58	Bilateral (60 min)	≤4 weeks (early) ≥3 months (late)
Liberman et al, 2017	USA	47	Unilateral (60 min)	≤7 days
Muller et al, 2014	Switzerland	103	Bilateral (60 min)	≤30 days
Saedon et al, 2017	UK	206	Unilateral (60 min)	≤2 weeks
Safouris et al, 2017	Multicenter	106	Unilateral (60 min)	≤24 hours

A

	Statin pretreatment (+)		Statin pretreatme	ent (-)		Risk Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% C	1		IV, Rande	om, 95%	CI	
Choi et al	9	25	13	39	15.4%	1.08 [0.54, 2.14]				•		
Kerasnoudis et al	3	13	13	13	11.2%	0.26 [0.10, 0.65]	1					
Kinsella et al	11	48	4	10	11.1%	0.57 [0.23, 1.44]		-		<u> </u>		
Liberman et al	10	26	8	21	14.4%	1.01 [0.49, 2.10]			_	-		
Muller et al	5	42	14	61	10.8%	0.52 [0.20, 1.33]		-		-		
Saedon et al	55	134	31	72	24.3%	0.95 [0.68, 1.33]			-	-		
Safouris et al	6	43	23	63	12.9%	0.38 [0.17, 0.86]						
Total (95% CI)		331		279	100.0%	0.67 [0.45, 0.98]			•			
Total events	99		106									
Heterogeneity: Tau ² =	0.13; Chi ² = 12.43	, df = 6 (P	= 0.05); l ² = 52%				+	-			1	t
Test for overall effect:	Z = 2.05 (P = 0.04)	40400 8 7403 - 6066659				0.1	0.2 Fav	0.5 ours SP (+)	Favours	5 SP (-)	10

В

Study or Subgroup Choi et al	Statin pretreatment (+)			Statin pretreatment (-)				Mean Difference	Mean Difference	
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl -0.13 [-3.48, 3.22]	IV, Random, 95% CI	
	3	5.43	25	3.13	8.23	39	4.4%		*	
Kerasnoudis et al	0.31	0.63	13	1 77	0.72	13	47 2%	-1 46 [-1 98 -0 94]		

Results

Our literature search identified **7 eligible studies** (Figure 1& Table).

Figure 1. Flow chart presenting the selection of eligible studies

С

	Statin pretreatm	ent (+)	Statin pretreatm	nent (-)		Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Rando	IV, Random, 95% CI		
Kerasnoudis et al	0	2	13	13	28.4%	0.17 [0.01, 2.17]	-	-		
Kinsella et al	1	7	4	10	47.0%	0.36 [0.05, 2.55]				
Safouris et al	0	9	23	63	24.6%	0.14 [0.01, 2.07]		-		
fotal (95% CI)		18		86	100.0%	0.23 [0.06, 0.88]	-			
Total events	1		40							
Heterogeneity: Tau ² =	0.00; Chi ² = 0.38, c	f = 2 (P =	= 0.83); l ² = 0%			-		1	100	
Test for overall effect:	Z = 2.14 (P = 0.03)	10					Favours SP (+)	Favours SP (-)	100	

Figure 2. Forest plots on the (A) overall analysis on the presence of MES, (B) burden of MES according to the history of SP and (C) subgroup analysis on the presence of MES in patients with history of higher dose SP compared to patients without history of SP

Conclusions

SP appears to be associated with a lower MES incidence and burden in patients with ACI due to LAA

There is possibly a more pronounced benefit from higherdose statins.

References

- 1. King A, et al. Stroke. 2009;40:3711–3717.
- 2. Tsivgoulis G, et al. Neurology. 2016;86:1103–1111.
- 3. Safouris A, et al. Arterioscler Thromb Vasc Biol. 2017;37:1415-1422.
- 4. Choi Y, et al. Stroke. 2010;41:700-706.
- 5. Kerasnoudis A, et al. J Neuroimaging. 2013;23:484-488.
- 6. Kinsella JA, et al. J Neurol Neurosurg Psychiatry. 2015;86:460-467.
- 7. Liberman AL, et al. Stroke. 2017;48:394-399.
- 8. Müller HF, et al. Stroke. 2014;45:3561-3566.
- 9. Saedon M, et al. Stroke Vasc Neurol. 2017;2:41-46.