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1. Introduction     

Discriminative subspace analysis has been a popular approach to face recognition. Most of 
the previous work such as Eigen-faces (Turk & Pentlend, 1991), LDA (Belhumeur et al., 
1997), Laplacian faces (He et al., 2005a), as well as a variety of tensor based subspace 
analysis methods (He et al., 2005b; Chen et al., 2005; Xu et al., 2006; Hua et al., 2007), can all 
be unified in the graph embedding framework (Yan et al., 2007). In this Chapter, we 
investigate the effects of two types of regularizations on discriminative subspace based face 
recognition techniques: a new 2D tensor representation for face image, and an orthogonal 
constraint on the discriminative tensor projections. 
Given a face image, the new tensor representation firstly divides it into non-overlapping 
blocks. Then following the raster-scan order, the raster-scanned pixel vectors of each of the 
image blocks are put into the columns of a new 2D tensor. It is easy to figure out that the 
row vectors of the new 2D tensor are in essence different down-sampled images of the 
original face images. Pursuing discriminative 2D tensor projections with the new tensor 
representation is of special interest, because the left projection indeed functions as local 
filters in the original face image and the right projection reveals to us that which local block 
is more important for recognition.  
This new representation puts concrete physical meanings to the left and right projections of 
the discriminative tensor projections. While the 2D tensor representation using the original 
images does not present any meaningful physical explanations on column and row pixel 
vectors. We call this new tensor representation Global-Local representation (Chen et al., 
2005; Hua et al., 2007). 
On the other hand, we reveal a very important property regarding the orthogonality 
between two tensor projections, and thus present a novel discriminative orthogonal tensor 
decomposition method for face recognition. To the best of our knowledge, this method, 
firstly introduced in (Hua et at., 2007), is the first discriminative orthogonal tensor 
decomposition method ever proposed in the literature. 
Both of the two regularization techniques put additional constraints on the capacity (a.k.a., 
the VC-dimension) of the discriminative projections and thereby improve the generalization 
ability of the learned projections. We perform empirical analysis and comparative study on 
widely adopted face recognition bench-mark such as Yale, ORL, YaleB and PIE databased to O
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better understand the behaviours of the two. Note most of our results are adopted from 
(Hua et al., 2007) but we provide more analysis and discussions in this Chapter. 
The rest of the Chapter is organized as follows: Section 2 defines some terminologies and 
mathematic notations on tensor analysis, as well as a very important property of orthogonal 
tensor projections, which will be used across the Chapter. Section 3 reviews the Global-Local 
tensor representation with its benefits discussed. Then, in Section 4, we present the new 
method for discriminative orthogonal rank-one tensor decomposition. Section 5 will discuss 
the experimental results on bench-mark face databases. Section 6 highlights some general 
remarks regarding the orthogonal rank-one tensor decomposition method for the task of 
face recognition. We conclude this Chapter in Section 7. 

2. Introduction to tensor analysis 

In multi-dimensional linear algebra, a tensor of order ݊ or a ݊ܦ tensor is a multiple 
dimensional array ܆ א ௡బ×௡భ×…×௡೙܀ . We denote the element at position ሺ݅ଵ, ݅ଶ, … , ݅௡ሻ to be ݔ௜భ௜మ…௜೙. For example, a matrix is a tensor of order ʹ or 2D tensor, and ݔ௜௝ denotes its element 

at the ݅௧௛ row and ݆௧௛ column. In the following we introduce several definitions in tensor 
analysis, which is essential to present the discriminative orthogonal tensor decomposition 
method. Similar definitions are also adopted in (Hua et al., 2007).  
The first definition we introduce here is the concept of k-mode product for a tensor and a 
matrix (a.k.a, an order 2 tensor). Following the tensor algebra literature (Kolda, 2001), we 
have: 
Definition 1: The k-mode product of a tensor ܆ א ௡భ×௡మ×…×௡ೖ×…×௡೙܀  and a matrix ۰ ܆ ௡ೖ×௠ೖ is a܀א א ௡భ×௡మ×…×௡ೖ×…×௡೙܀ ՜ ܇ א ௡భ×௡మ×…×௠ೖ×…×௡೙܀  mapping, such that   

௜భ௜మ…௜ೖషభ௜ೖᇲݕ  ௜ೖశభ…௜೙ ൌ ∑ ௜భ௜మ…௜ೖషభ ௝௜ೖశభ…௜೙௡ೖ௝ୀଵݔ ௝ܾ௜ೖᇲ  .  (1) 

The k-mode product is generally denoted as ܇ ൌ ܆ ×୩ ۰. 
The second definition we introduce here is the rank-one tensor. In general, a tensor is said to 
be of rank one, if it can be decomposed as the tensor product of a set of vectors. 
Definition 2: A tensor ܆ א ௡భ×௡మ×…×௡೙܀  of order ݊ is said to be with rank one, if and only if 

there exists a vector set  ෠ܺ ൌ ሼܠොଵ, ,ොଶܠ … … ,  ො୧ is a vector of dimension ݊௜, andܠ  ො୬ሽ where eachܠ

its  ݆௧௛ element is denoted as ݔො௜௝, such that  

௜భ௜మ…௜೙ݔ  ൌ ∏ ො௝௜ೕ௡௝ୀଵݔ .  (2) 

The tensor ܆ is called the reconstruction rank one tensor of ෠ܺ, and ෠ܺ is said to be the 
reconstruction vector set. 
Based on the definitions above, we introduce the definition of rank one tensor projection: 
Definition 3: Given an order ݊ tensor ܆, a rank one projection is an ܆ א ௡భ×௡మ×…×௡೙܀ ՜ ݕ א   ܀

mapping, which is defined by a projection vector set ෠ܲ ൌ ሼܘଵ, , ଶܘ … … ,  ୧ is aܘ ୬ሽ where eachܘ

column vector of dimension ݊௜. Let ݌௜௝ be the ݆௧௛ element of the vector ܘ௜, we have 

ݕ  ൌ ∑ ௜భ௜మ…௜೙ݔ × ଵ௜భ݌ × ଶ௜మ݌ × … × ௡௜೙௜భ,௜మ….௜೙݌  (3) 

Let ۾ א ௡భ×௡మ×…×௡೙܀  be the reconstruction rank one tensor of ෠ܲ , we have 

ݕ  ൌ ∑ ௜భ௜మ…௜೙ݔ × ௜భ௜మ…௜೙௜భ,௜మ….௜೙݌ .   (4) 
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For ease of presentation, we denote the rank one projection using ٘, i.e., ݕ ൌ ෠ܲ ٘ ݕ or ܆ ൌ ۾ ٘ ୧ as a ݊௜ܘ Obviously, using the k-mode product notation, if we treat each . ܆ × ͳ 
matrix, we also have   

ݕ   ൌ ଵ× ܆ ଵܘ ×ଶ ଶܘ ×ଷ … ×୬  ୬. (5)ܘ

Indeed, a rank one tensor projection can be deemed as a constrained linear projection. To 
understand it, we introduce the definition of unfolding vector. 

Definition 4: The unfolding vector of an order ݊ tensor ܆ א ௡భ×௡మ×…×௡೙܀  is a vector ܠ෤ א  ,୩܀

where ݇ ൌ ݊ଵ݊ଶ … ݊௡, such that ݔ෤௜ ൌ ௜భ௜మ…௜೙, where ௝݅ݔ ൌ ඌ௜ି∑ ሾ௜ೖ ∏ ௡೗೙೗సೖశభ ሿೕషభೖసభ∏ ௡೗೙೗సೕశభ ඐ can be obtained 

recursively for ݆ ൌ ͳ … ݊. Note that here ۂܽہ means the largest integer that is not larger than ܽ. 

Given the vector set representation ෠ܲ ൌ ሼܘଵ, , ଶܘ … … , ۾ ୬ሽ of a rank-one tensor projectionܘ א ௡భ×௡మ×…×௡೙܀  , it is easy to figure out that the unfolding vector ܘ෥ can be obtained by 

෥ܘ  ൌ ௡ܘ ٔ ௡ିଵܘ ٔ … ٔ  ଵ, (6)ܘ

where ٔ is the matrix Kronecker product. It is straightforward to figure out the following 
properties for rank one tensor projection, i.e., 

 ෠ܲ ٘ ܆ ൌ  ෤ .  (7)ܠ෥்ܘ

It is because of this equivalence that a rank-one tensor projection can be regarded as a 
parameter constrained vector space linear projection. With the concept of unfolding vector, 
we finally define orthogonal rank-one tensor projections. 

Definition 5: Two rank-one tensor projections ෠ܲ and ෠ܳ  are said to be orthogonal if and only 
if their corresponding unfolding vectors  ܘ෥ and ܙ෥ are orthogonal to each other. 
Mathematically, we have 

 ෠ܲ ٣ ෠ܳ ֞ ෥ܘ  ٣  ෥  (8)ܙ

This definition essentially relates orthogonal rank-one tensor projections with orthogonal 
vector projections. Note Definition 5 of orthogonal rank-one tensor projection is equivalent 
to the definition of orthogonal rank-one tensors in (Kolda, 2001).  
We end the section by presenting a sufficient and necessary condition for orthogonal rank-
one tensor projections, along with its proof (Hua et al., 2007). 

Theorem 1: Given two rank-one tensor projections ෠ܲ ൌ ሼܘଵ, , ଶܘ … … , ୬ሽ and ෠ܳܘ ൌሼܙଵ, , ଶܙ … … ,  ௜ have the same dimensionality n୧, they are orthogonal ifܙ ௜ andܘ ୬ሽ, whereܙ
and only if ܘ௜ ٣ ௜ held at least for one of the dimension ݅. Or in short, we have ෠ܲܙ ٣ ෠ܳ ֞ ,݅׌ such that ܘ௜ ٣  ௜ܙ
Proof: Let  ܘ෥ and ܙ෥ be the unfolding vectors of ෠ܲ and ෠ܳ , it is easy to figure out that  ܘ෥்ܙ෥ ൌ∏ ௜்ܘ ௜୬୧ୀଵܙ  based on the property of Kronecker product (See Definition 4). 

“⇒”: if ෠ܲ ٣ ෠ܳ , by Definition 5, we have ܘ෥்ܙ෥ ൌ ∏ ௜்ܘ ௜୬୧ୀଵܙ ൌ Ͳ . If there does not exists an ݅, 
such that ܘ௜ ٣ ௜்ܘ ௜ , we would haveܙ ௜ܙ ് Ͳ for all ݅. Then we would have  ∏ ௜்ܘ ௜୬୧ୀଵܙ ് Ͳ, 

which is conflicting with the setting. Therefore, there exists at least one ݅, such that ܘ௜் ௜ܙ ൌ Ͳ, 
i.e., ܘ௜ ٣  .௜ܙ
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“⇐”: If there exists one ݅ , such that ܘ௜ ٣ ௜்ܘ ௜, we haveܙ ௜ܙ ൌ Ͳ. Then we immediately have  ∏ ௜்ܘ ௜୬୧ୀଵܙ ൌ Ͳ . That essentially means that ܘ෥்ܙ෥ ൌ Ͳ, and thus ෠ܲ ٣ ෠ܳ.∎  
Theorem 1 reveals that for a pair of rank-one tensors to be orthogonal, it is suffice that the 
two corresponding vectors in one dimension of their reconstruction vector sets to be 
orthogonal. 

3. Global-local tensor representation 

Earlier subspace based methods for face recognition normally treat a face image as a vector 
data, which completely ignores the spatial structure of the 2 dimensional face image. It is 
until recently that tensor based representation for face images has become popular (He et al., 
2005b; Chen et al., 2005; Xu et al., 2006; Hua et al., 2007). In tensor based representation, a 
face image is either regarded as an order 2 tensor (raw image) or an order 3 tensor (multi-
band filter responses).  
With the tensor representation, multi-linear (e.g., bilinear for order 2 tensors) are pursued 
for discriminative subspace analysis. Tensor based representation enjoys several advantages 
over vector based representation. First, it has the potential to utilize the spatial structure of 
the face images. Second, it suffers less from the curse-of-dimensionality because the multi-
linear projection has much less parameters to estimate than normal linear vector projections. 
To give a concrete example, for face images of size ͵ʹ × ͵ʹ, pursuing one discriminative 
projection for vector based representation needs to estimate ͵ʹ × ͵ʹ ൌ ͳͲʹͶ parameters. 
While for order 2 tensor representation (raw image), pursuing one bilinear projection only 
needs to estimate ͵ʹ ൅ ͵ʹ ൌ 6Ͷ  parameters. Thirdly, because multi-linear projection has 
much less parameters to estimate, it is less likely to over-fit with the training data, especially 
when we only have small number of training examples. 
Nevertheless, the majority of the previous works regard the raw face image as the order 2 

tensor. Given a order 2 tensor ܆ א ௡భ×௡మ܀  , the rank-one tensor projection ෠ܲ ൌ ሼܘଵ,  ଶ ሽ is alsoܘ

called a bilinear projection such that ݕ ൌ ଵ்ܘ  ଶ  are named the leftܘ ଵ andܘ ૛, whereܘ܆
projection and right projection, respectively. Essentially the left and right projections of the 
bi-linear projection are performing analysis on the column pixel space and raw pixel space 
of the raw images, respectively. It does not really explore much of the spatial structures of 
the pixels. In the following, we will introduce a new 2D tensor (a.k.a., order 2 tensor) 
representation, which we call the Global-Local representation. It is firstly proposed by (Chen 
et al., 2005), and later on advocated by (Hua et al., 2007). 
Instead of using the raw images directly as the 2D tensor representation. The Global-Local 
representation firstly partitions the original raw face image into non-overlapping blocks. 
Following the raster scan order, each block is then raster-scanned as a column vector and 
concatenated together to form the new Global-Local representation. This transformation 
process is illustrated in Figure.1.  
The biggest merit of the Global-Local representation is that it explores the spatial structure 
of the face image pixels in a good fashion. As we can clearly observe in Figure.1, the column 
vector of the Global-Local 2D tensor representation is the unfolded vectors from the local 
blocks of the original raw image. On the other hand, it is also easy to see that the row vector 
of the Global-Local representation is indeed the unfolded vector of smaller images down-
sampled from the original image. Why it is better to perform discriminative subspace 
analysis on this Global-Local tensor representation? 
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Fig. 1. Original 6×9 2D tensor (left side) and the Glocal-Local Tensor representation of 9×6 
(right side) based on 3×3 local blocks. 

Let us take a look of the operations of the left projections on the Global-Local tensor 
representation. By putting it back into the context of the original raw image, it is 
straightforward to see that the left projection is equivalent to convolute a local filter 
repeatedly on the different block partitions. Therefore, pursuing discriminative left 
projections is equivalent to identifying the most discriminative local filters for the original 
raw image.  
On the other hand, the right projection is operating on the row vector of the Global-Local 
tensor representation. By putting it back into the context of the original raw image, the 
interpretation could be two-folds: First, by itself the projection is filtering on the down-
sampled and shifted version of the original raw face image; on the other hand, coupling 
with the right projection, it selects which block partition we should weight the most to 
achieve the highest discriminative power.  
Therefore, the combined interpretation of pursuing discriminative bi-linear projection with 
the Global-Local tensor representation is to seek for the most discriminative local filter and 
the best weighting scheme for the local pixel blocks. It is more sensible than using the raw 
face images directly as the 2D tensor representation. It is also clear that the Global-Local 
representation better utilized the spatial structure of the pixels on the face images. 
In the rest of the Chapter, by default all the 2D tensors are with the Global-Local 
representation. We present here a discriminative orthogonal rank-one tensor decomposition 
method for face recognition, which is first proposed by (Hua et al., 2007). 

4. Discriminative orthogonal rank-one tensor decomposition 

In this section, we present the mathematic formulation of the discriminative orthogonal rank 
one tensor decomposition method followed by the detailed algorithm of how to pursue the 
tensor decomposition based on a set of labelled training data set. We present all the 
mathematic formulation under order ݊ tensor but it should be just straightforward to derive 
from it for order ʹ tensors. 
We start from a set of training examples ञ ൌ ሼ܆௜: ௜܆ א ௡భ×௡మ×…×௡೙܀ , ݅ ൌ ͳ,ʹ, … , ܰሽ with pair-
wise labels ख ൌ ሼ݈௜௝: ͳ ൑ ݅ ൏ ݆ ൑ ܰ, ݈௜௝ א ሼͲ, ͳሽሽ where ݈௜௝ ൌ ͳ if ܆௜ and ܆௝ are in the same 

category (i.e., the faces of the same person under the context of face recognition), and ݈௜௝ ൌ Ͳ 

if  ܆௜ and ܆௝ are in different categories. We denote the k-nearest neighbour of the example ܆௜ 
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in the original input space to be ୩ࣨሺ܆௜ሻ. Then we define the positive label set and negative 

label set as झ ൌ ሼሺ݅, ݆ሻ: ݈௜௝ ൌ ͳ, ͳ ൑ ݅ ൏ ݆ ൑ ܰ, ௜܆ א ୩ࣨ൫܆௝൯ or ܆௝ א ୩ࣨሺ܆௜ሻሽ and ऎ ൌ ሼሺ݅, ݆ሻ: ݈௜௝ ൌͳ, ͳ ൑ ݅ ൏ ݆ ൑ ܰ, ௜܆ א ୩ࣨ൫܆௝൯ or ܆௝ א ୩ࣨሺ܆௜ሻሽ, which are the k-nearest neighbour example 

pairs from the same or different categories, respectively. 
For pursuing a discriminative embedding for face recognition, our objective here is to learn 

a set of orthogonal rank-one tensor projections  ሼ ෠ܲଵ, ෠ܲଶ, … , ෠ܲ௄ሽ such that in the projective 
embedding space, the distance for those example pairs in झ are minimized while the 
distance for those example pairs in ऎ are maximized. 
Following similar ideas as in (Duchene & Leclercq, 1988), we optimize a series of locally 
weighted discriminative cost function to build the discriminative embedding. More 
formally, suppose that we have already discriminatively pursued ݇ െ ͳ orthogonal rank one 

tensor projections  ሼ ෠ܲሺଵሻ, ෠ܲሺଶሻ, … , ෠ܲሺ௞ିଵሻ ሽ, to pursue the ݇௧௛ rank one tensor projections, we 
solve for the following optimization problem, 

max௉෠ሺೖሻ ∑ ߱௜௝ሺ ෠ܲሺ௞ሻ ٘ ऎא௜ሺ௜,௝ሻ܆ െ ෠ܲሺ௞ሻ ٘ ∑௝ሻଶ܆ ߱௜௝ሺ ෠ܲሺ௞ሻ ٘ झא௜ሺ௜,௝ሻ܆ െ ෠ܲሺ௞ሻ ٘ ௝ሻଶ܆  (9) 

 s. t.  ෠ܲሺ௞ሻ ٣ ෠ܲሺ௞ିଵሻ, ෠ܲሺ௞ሻ ٣ ෠ܲሺ௞ିଶሻ, … , ෠ܲሺ௞ሻ ٣ ෠ܲሺଵሻ  (10) 

where ߱௜௝ is a weight assigned according to the importance of the example pair ሼ܆௜ ,  .௝ሽ܆

There are different strategies in setting the weight ߱௜௝. In our experiments, we adopted the 

most popular heat kernel weights, i.e., ߱௜௝ ൌ exp ቄെ ฮ܆௜ െ ௝ฮிଶ܆ tൗ ቅ, where ԡ•ԡி denotes the 

Frobenius norm of matrices, and ݐ is a constant heat factor. This weight setting induces 
heavy penalties to the cost function in Equation (9) for example pairs which are very close in 
the input space. One more thing to be noticed is that for ݇ ൌ ͳ, we only need to solve for the 
unconstrained optimization problem in Equation (9). 
To solve for the constrained optimization problem in Equation (9~10), we are confronted by 
two difficulties: First, there is even no closed-form solution for the unconstrained 
optimization problem in Equation (9). Fortunately, it is well known that this unconstrained 
problem can be solved by using a sequential iterative optimization strategy. Second, it is in 
general difficult to keep both the rank-one and orthogonality properties. We address this 
issue by leveraging the sufficient and necessary conditions for orthogonal rank one tensors 
in Theorem 1. 
In essence, Theorem 1 states that to make two rank one tensors to be orthogonal to each 
other, we only need to place the orthogonal constraints on one dimension of the rank-
one tensors. Therefore, an equivalent set of constraints to the orthogonality constraints 
is 

:ሼ݆௟ ׌  ݈ ൌ ͳ,ʹ, … , ݇ െ ͳ; ͳ ൑ ݆௟ ൑ ݊ሽ   ݏ. ௝ೖషభሺ௞ሻܘ  .ݐ ٣ ,௝ೖషభሺ௞ିଵሻܘ ௝ೖషమሺ௞ሻܘ ٣ ,௝ೖషమሺ௞ିଶሻܘ … , ௝భሺ௞ሻܘ ٣ ௝భሺଵሻܘ
,  (11) 

where ܘ௝ሺ௞ሻ
 indicates the projection vector corresponding to the ݆௧௛ dimension of the rank 

one tensor projection  ෠ܲሺ௞ሻ which is of order ݊. 
To ease the optimization process, we replace the constraints in Equation (11) with another 
set of stronger constraints, i.e., 

:ሼ݆ ׌  ͳ ൑ ݆ ൑ ݊ሽ   ݏ. ௝ሺ௞ሻܘ  .ݐ ٣ ,௝ሺ௞ିଵሻܘ ௝ሺ௞ሻܘ ٣ ,௝ሺ௞ିଶሻܘ … , ௝ሺ௞ሻܘ ٣ ௝ሺଵሻܘ
  (12) 
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These constraints are stronger in the sense that it requires all the different ݆௟ in Equation (11) 
to be same value. It is just trying to put all orthogonal constraints on one dimension of the 
rank-one tensor projections. With the sufficient condition to ensure the orthogonal property 
for the rank-one projections in Equation (12), we proceed to derive the solution for the 
constrained optimization problem in Equation (9~10). 
As we have mentioned beforehand, the unconstrained optimization problem in Equation (9) 
is usually solved numerically in a sequential iterative fashion. That is, at each iteration, we 

fix ෠ܲି ௜ሺ௞ሻ ൌ ሼܘଵሺ௞ሻ, ,ଶ ሺ௞ሻܘ … , ௜ିଵ ሺ௞ሻܘ , ௜ାଵ ሺ௞ሻܘ , … , ௡ሺ௞ሻሽ for one of the ͳܘ ൑ ݅ ൑ ݊, and optimize Equation 

(9) with respect to ܘ௜ ሺ୩ሻ
. As a matter of fact, once we fixed ෠ܲି ௜ሺ௞ሻ

, the optimization problem 

boils down to a problem in a vector space of dimension ݊௜. To simplify the notation, we denote ܡሺ௞,௜ሻ ൌ ܆ ×ଵ ଵሺ௞ሻܘ ×ଶ ଶሺ௞ሻܘ ×ଷ … ×௜ିଵ ௜ିଵሺ௞ሻܘ ×௜ାଵ ௜ାଵሺ௞ሻܘ ×௜ାଶ … ×௡ ௡ሺ௞ሻܘ ؝ ܆ ٘ ෠ܲି ௜ሺ௞ሻ
  (13) 

which is an ݊௜ dimensional vector. Then it is easy to figure out that the optimization 
problem in Equation (9) boils down to the following problem 

arg maxܘ೔ሺౡሻ ௗ௜ۯ௜ሺ௞ሻTܘ ௦௜ۯ௜ሺ௞ሻTܘ௜ሺ௞ሻܘ ௜ሺ௞ሻܘ  (14)

where  

ௗ௜ۯ  ൌ ∑ ߱௦௧ ቀܡ௦ሺ௞,௜ሻ െ ऎא௧ሺ௞,௜ሻቁሺ௦,௧ሻܡ ቀܡ௦ሺ௞,௜ሻ െ ௧ሺ௞,௜ሻቁ்ܡ
  (15) 

௦௜ۯ   ൌ ∑ ߱௦௧ ቀܡ௦ሺ௞,௜ሻ െ झא௧ሺ௞,௜ሻቁሺ௦,௧ሻܡ ቀܡ௦ሺ௞,௜ሻ െ ௧ሺ௞,௜ሻቁ்ܡ
  (16) 

௢ሺ௞,௜ሻܡ  ൌ ௢܆ ٘ ෠ܲି ௜ሺ௞ሻ
.  (17) 

It is also well known that the solution to the unconstrained optimization problem in 
Equation (14) could be obtained by solving a generalized eigenvalue system, i.e., 

ௗ௜ۯ  ܘ ൌ λۯ௦௜  (18)  ܘ

and the optimal ܘ௜ ሺ୩ሻכ is the eigenvector associated with the largest eigenvalue. Equation (15) 

is solved iteratively over ݅ ൌ ͳ,ʹ, … , ݊ until convergence. The converged output ෠ܲሺ௞ሻכ ൌሼܘଵሺ௞ሻכ, ,כଶ ሺ௞ሻܘ … , ,כ௜ ሺ௞ሻܘ … ,  ሽ is regarded to the optimal solution to the unconstrainedכ௡ሺ௞ሻܘ
optimization problem of Equation (9). It only guarantees a local optimal solution, though. 
But we are missing the orthogonal constraints Equation (10) here. As we have discussed, the 
constraints in Equation (12) is a sufficient condition for the constraint in Equation (10). So 
we need to ensure the constraints in Equation (12). It immediately implies that we only need 
to ensure the orthogonality for one of the dimension ݆ during the sequential iterative 
optimization process to ensure the orthogonality of the tensor projections.  
That is to say, for ݅ ് ݆, we only need to solve for an unconstrained optimization problem in 
Equation (14). But for ݅ ൌ ݆, we essentially need to solve for the following constrained 
optimization problem,  

arg maxܘ೔ሺౡሻ ௗ௝ۯ௝ሺ௞ሻTܘ ௦௝ۯ௝ሺ௞ሻTܘ௝ሺ௞ሻܘ ௝ሺ௞ሻܘ  (19)
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.ݏ  ௝ ሺ௞ିଵሻܘ௝ ሺ௞ሻTܘ  .ݐ ൌ Ͳ, ܘ௝ ሺ௞ሻTܘ௝ ሺ௞ିଶሻ ൌ Ͳ, ... , ܘ௝ ሺ௞ሻTܘ௝ ሺଵሻ ൌ Ͳ  (20) 

It is easy to see that it is equivalent to solve for the following constrained optimization 
problem, i.e., 

 arg maxܘ೔ ሺౡሻ ௗ௝ۯ௝ ሺ௞ሻTܘ ௝ ሺ௞ሻܘ
  (21) 

.ݏ  ௦௝ۯ௝ ሺ௞ሻTܘ       .ݐ ௝ ሺ௞ሻܘ ൌ ͳ, ௝ ሺ௞ିଵሻܘ௝ ሺ௞ሻTܘ ൌ Ͳ, ܘ௝ ሺ௞ሻTܘ௝ ሺ௞ିଶሻ ൌ Ͳ, ... , ܘ௝ ሺ௞ሻTܘ௝ ሺଵሻ ൌ Ͳ.  (22) 

For the constrained optimization problem in Equation (21~22), we show here that the 
optimal solution can be obtained by solving for the following eigenvalue problem: 

 ग෪ ௝ ሺ௞ሻܘ ൌ ቀ۷ െ  ൫ۯ௦௝ ൯ିଵऋऌିଵऋ்ቁ ௦௝ۯ ିଵۯௗ௝ ௝ ሺ௞ሻܘ ൌ λܘ௝ ሺ௞ሻ
  (23) 

where 

 ऋ ൌ ቂܘ௝ ሺଵሻ, ,௝ ሺଵሻܘ  … ,  ௝ ሺ௞ିଵሻቃ  (24)ܘ

 ऌ ൌ ऋ்ۯ௦௝ ିଵऋ .  (25) 

The optimal ܘ௝ ሺ௞ሻכ is the eigenvector corresponding to the largest eigenvalue of ग෪ . 

Following similar steps as shown in (Hua et al., 2007; Duchene & Leclercq, 1988), in the 
following we demonstrate how we derive the solution presented in Equation (23). 
We firstly formulate the Lagrangian multipliers out of the constrained optimization problem 
in Equation (21~23), i.e., ܮ ቀܘ௝ ሺ௞ሻ, λ, µଵ, µଶ, … , µ୩ିଵቁ ൌ ௗ௝ۯ௝ ሺ௞ሻTܘ ௝ ሺ௞ሻܘ െ λ ൬ܘ௝ ሺ௞ሻTۯ௦௝ ௝ ሺ௞ሻܘ െ ͳ൰    

 െߤ௞ିଵܘ௝ ሺ௞ሻTܘ௝ ሺ௞ିଵሻ െ ڮ െ µଶܘ௝ ሺ௞ሻTܘ௝ ሺଶሻ െ µଵܘ௝ ሺ௞ሻTܘ௝ ሺଵሻ
.  (26) 

Take the derivative of ܮ ቀܘ௝ ሺ௞ሻ, λ, µଵ, µଶ, … , µ୩ିଵቁ with respect to ܘ௝ ሺ௞ሻ
, and set it to zero, we 

have ߲ܮ ቀܘ௝ ሺ௞ሻ, λ, µଵ, µଶ, … , µ୩ିଵቁ߲ܘ௝ሺ௞ሻ ൌ ௗ௝ۯʹ ௝ሺ௞ሻܘ െ ʹλۯ௦௝ ௝ሺ௞ሻܘ െ ௝ሺ௞ିଵሻܘ௞ିଵߤ െ ڮ െ ௝ሺଵሻܘଵߤ ൌ Ͳ (27)

Left multiply both side of Equation (27) by ܘ௝ ሺ௞ሻT
, we immediately have 

ௗ௝ۯ௝ ሺ௞ሻTܘ    ௝ ሺ௞ሻܘ െ  λ ൬ܘ௝ ሺ௞ሻTۯ௦௝ ௝ ሺ௞ሻܘ െ ͳ൰ ൌ Ͳ .  (28) 

We have λ ൌ ௗ௝ۯ௝ሺ௞ሻTܘ ௦௝ۯ௝ሺ௞ሻTܘ௝ሺ௞ሻܘ ௝ሺ௞ሻܘ  (29)
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which is exactly the quantity we want to maximize in Equation (19). Multiply both side of 

Equation (29) by ܘ௝ ሺ௟ሻTۯ௦௝ ିଵ
 for ݈ ൌ ͳ,ʹ, … , ݇ െ ͳ, and with easy manipulation, we obtain a set 

of ݇ െ ͳ equations, i.e., 

 ∑ ௝ ሺଵሻ்௞ିଵ௠ୀଵܘ௠ߤ ௦௝ۯ ିଵܘ௝ ሺ௠ሻ
௦௝ۯ௝ ሺଵሻTܘʹ= ିଵۯௗ௝ ௝ ሺ௞ሻܘ

  (30) 

 ∑ ௝ ሺଶሻ்௞ିଵ௠ୀଵܘ௠ߤ ௦௝ۯ ିଵܘ௝ ሺ௠ሻ
௦௝ۯ௝ ሺଶሻTܘʹ= ିଵۯௗ௝ ௝ ሺ௞ሻܘ

  (31) 

... ... ... 

 ∑ ௝ ሺ௞ିଵሻ்௞ିଵ௠ୀଵܘ௠ߤ ௦௝ۯ ିଵܘ௝ ሺ௠ሻ
௦௝ۯ௝ ሺ௞ିଵሻTܘʹ= ିଵۯௗ௝ ௝ ሺ௞ሻܘ

.  (32) 

We can write Equation (30~32) more concisely in matrix form as 

ێێۏ 
ۍ ௦௝ۯ௝ ሺଵሻTܘ ିଵܘ௝ ሺଵሻ ڮ ௦௝ۯ௝ ሺଵሻTܘ ିଵܘ௝ ሺ௞ିଵሻڭ ڰ ௦௝ۯ௝ ሺ௞ିଵሻTܘڭ ିଵܘ௝ ሺଵሻ ڮ ௦௝ۯ௝ ሺ௞ିଵሻTܘ ିଵܘ௝ ሺ௞ିଵሻۑۑے

ې ൦ ௞ିଵ൪ߤڭଶߤଵߤ ൌ ʹ
ێێۏ
ۍێێ ௝ ሺଵሻTܘ

ۑۑے௝ ሺ௞ିଵሻTܘڭ௝ ሺଶሻTܘ
ېۑۑ ௦௝ۯ ିଵۯௗ௝ ௝ ሺ௞ሻܘ

.  (33) 

We can further simplify Equation (33) to be 

 

ێێۏ
ۍێێ ௝ ሺଵሻTܘ

ۑۑے௝ ሺ௞ିଵሻTܘڭ௝ ሺଶሻTܘ
ېۑۑ ௦௝ۯ ିଵ ቂܘ௝ ሺଵሻ ௝ ሺଶሻܘ ڮ ௝ ሺ௞ିଵሻቃܘ ൦ ௞ିଵ൪ߤڭଶߤଵߤ ൌ ʹ

ێێۏ
ۍێێ ௝ ሺଵሻTܘ

ۑۑے௝ ሺ௞ିଵሻTܘڭ௝ ሺଶሻTܘ
ېۑۑ ௦௝ۯ ିଵۯௗ௝ ௝ ሺ௞ሻܘ

  (34) 

Denote ૄ ൌ ሾߤଵ, ,ଶߤ … ,  ௞ିଵሿ், and use the notation in Equation (24~25), we can rewriteߤ
Equation (34) to be 

 ऌૄ ൌ ऋ்൫ۯ௦௝ ൯ିଵऋૄ ൌ ʹऋ்ۯ௦௝ ିଵۯௗ௝ ௝ ሺ௞ሻܘ
  (35) 

Therefore, we have  

 ૄ ൌ ʹऌିଵऋ்ۯ௦௝ ିଵۯௗ௝ ௝ ሺ௞ሻܘ
  (36) 

 

Multiply both side of Equation (27) by ۯ௦௝ ିଵ
 and rearrange it to be in matrix form, we can 

easily obtain 

௦௝ۯʹ  ିଵۯௗ௝ ௝ ሺ௞ሻܘ െ ʹλܘ௝ ሺ௞ሻ െ ௦௝ۯ ିଵ ऋૄ ൌ Ͳ.  (37) 

 

Embedding Equation (36) into Equation (37), we obtain 

௦௝ۯʹ  ିଵۯௗ௝ ௝ ሺ௞ሻܘ െ ʹλܘ௝ ሺ௞ሻ െ ௦௝ۯʹ ିଵ ऋऌିଵऋ்ۯ௦௝ ିଵۯௗ௝ ௝ ሺ௞ሻܘ ൌ Ͳ .  (38) 
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         Input    : ञ ൌ ሼ܆௜: ௜܆ א ௡భ×௡మ×…×௡೙܀ , ݅ ൌ ͳ,ʹ, … , ܰሽ 

                       झ ൌ ሼሺ݅, ݆ሻ: ݈௜௝ ൌ ͳ, ͳ ൑ ݅ ൏ ݆ ൑ ܰ, ௜܆ א ୩ࣨ൫܆௝൯ or ܆௝ א ୩ࣨሺ܆௜ሻሽ 

                       ऎ ൌ ሼሺ݅, ݆ሻ: ݈௜௝ ൌ ͳ, ͳ ൑ ݅ ൏ ݆ ൑ ܰ, ௜܆ א ୩ࣨ൫܆௝൯ or ܆௝ א ୩ࣨሺ܆௜ሻሽ 

        Output : च෡ ൌ ሼ ෠ܲሺଵሻ, ෠ܲሺଶሻ, … , ෠ܲሺ௄ሻ ሽ, a set of ܭ discrimiantive rank one tensor projections. 
 

1. Initialize ݇ ൌ Ͳ, and randomly initialize each vector ܘ௜ ሺ௞ሻ
 as a normal vector for ݅ ൌ ͳ,ʹ, … , ݊. Then sequentially and iteratively solve for the unconstrained 

discriminative eigenvalue problem in Equation (18) until convergence to obtain the 

first discriminative rank-one tensor projection ෠ܲሺଵሻ. Set ݇ ൌ ݇ ൅ ͳ. 

2. Randomly initialize each vectorܘ௜ ሺ௞ሻ
  as a normal vector for ݅ ൌ ͳ,ʹ, … , ݊. Then 

randomly generate a number ݆, such that Ͳ ൑ ݆ ൑ ݊ & ܿ௞ሺ݆ሻ ൏ ௝݊ where ܿ௞ሺ݆ሻ 

indicates the number of times that dimension ݆ was picked up prior to this step k.  
2a. For each ݅ ൌ ݆, ͳ,ʹ, … , ݆ െ ͳ, ݆ ൅ ͳ, … , ݊, fix all the other projection vectors 

except ܘ௜ ሺ௞ሻ
, i.e., ෠ܲି ௜ሺ௞ሻ ൌ ሼܘଵሺ௞ሻ, ,ଶ ሺ௞ሻܘ … , ௜ିଵ ሺ௞ሻܘ , ௜ାଵ ሺ௞ሻܘ , … , ݅ ௡ሺ௞ሻሽ. Ifܘ ൌ ݆, then solve 

for the eigenvalue system in Equation (23) to update ܘ௜ ሺ௞ሻ
. Otherwise, 

solve for the eigenvalue system in Equation (18) to update ܘ௜ ሺ௞ሻ
. Normalize ܘ௜ ሺ௞ሻ

 after the update. 

2b. Repeat step 2a until convergence, we obtained the ݇௧௛ discriminative 

rank-one projection ෠ܲሺ௞ሻ. Go to step 3. 
3. Set ݇ ൌ ݇ ൅ ͳ, if ݇ ൏  repeat step 2. Otherwise output the final set of ,ܭ

discriminative rank-one tensor projection: च෡ ൌ ሼ ෠ܲሺଵሻ, ෠ܲሺଶሻ, … , ෠ܲሺ௄ሻ ሽ. 
 

Fig. 2. Orthogonal rank-one tensor discriminative decomposition. 

From Equation (29), it is straightforward to have 
 

 ቀ۷ െ ௦௝ۯ  ିଵऋऌିଵऋ்ቁ ௦௝ۯ ିଵۯௗ௝ ௝ ሺ௞ሻܘ ൌ ग෪ ௝ ሺ௞ሻܘ ൌ λܘ௝ ሺ௞ሻ
.  (39) 

 

Since λ is exactly the quantity we want to maximize, we have the conclusion that the optimal ܘ௝ ሺ௞ሻכ
 for the constrained optimization problem in Equation (19~20) or Equation (21~22) is 

the eigenvector corresponding to the largest eigenvalue of the matrix ग෪ . 

With all the analysis above, we summarize here a sequential iterative optimization scheme 

for solving the constrained optimization problem in Equation (9~10), namely discriminative  

orthogonal rank-one tensor decomposition, as shown in Figure 2. Such a discriminative 

orthogonal rank-one tensor decomposition method is firstly presented in (Hua et al., 2007). 

Note when choosing the dimension to reinforce the orthogonal constraint in Step 2 of Figure 

2, we cannot choose the same dimension ݆ for more than ௝݊ times because there are at most ௝݊ vector can be orthogonal to each other in a ௝݊ dimensional vector space. In the next 

section, we present some experimental results on face recognition using our method, and 

compare them with the state-of-the-art discriminative embedding methods for face 

recognition, with either vector or tensor based representation. 
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 Recognition Rate (%)/Dimension of the embedding space 

Method\Dataset Yale ORL YaleB PIE 

SSD baseline 54.4%/1024 88.1%/1024 65.4%/1024 62.1%/1024 

PCA 54.8%/    71 88.1%/  189 65.4%/  780 62.1%/1023 

LDA 77.5%/   14 93.9%/    39 81.3%/    37 89.1%/    67 

LPP 78.3%/   14 93.7%/    39 86.4%/    76 89.2%/    86 

Tensor LPP 76.4%/   35 95.8%/    71 92.4%/  311 90.3%/   68 

OLPP 82.1%/   14 96.6%/    41 94.3%/  241 93.6%/ 381 

RPAM 79.1%/ 242 92.0%/  219 92.4%/  389 89.8%/ 399 

2DLDE4×2 80.7%/  113 95.5%/    87 90.2%/    88 88.0%/ 104 

ORO 70.2%/   32 92.8%/    30 88.1%/    32 88.1%/   31 

ORO4×4 80.8%/   53 95.2%/    58 89.1%/    53 91.5%/  49 

ORO4×2 86.8%/   94 

(82.4%/   14) 
97.0%/  105 

(95.0%/    41) 
91.0%/  108 

------- 

93.6%/  73 

------- 

Table 1. Face recognition results on Yale, ORL, YaleB and PIE. 

5. Experiments and discussions 

The proposed method of using discriminative rank-one tensor projections with Global-Local 
tensor representation are extensively tested on four widely used benchmark face recognition 
datasets including the Yale dataset (Belhumeur et al., 1997), the Olivetti Research Laboratory 
(ORL) database (Samaria & Harter 1994), the extended Yale face database B dataset 
(Georghiades et al., 2001), and the CMU PIE dataset (Sim et al., 2003). We call them Yale, 
ORL, YaleB, and PIE, respectively.  
In all the dataset, we crop the grey scale face images, and align all face images based on their 
eye positions. The aligned face image is then resized to be ͵ʹ × ͵ʹ images. No other pre-
processing on the image is performed. For each dataset, we randomly split the dataset into 
training and testing dataset. The average performance over several random splits is 
reported. Except for Yale dataset, on which we report results with 20 random splits, the 
results from 50 random splits are aggregated for all the other three dataset. All the results 
we discuss here are summarized from (Hua et al., 2007). In our experiments, the face 
recognition is performed based on a 1-Nearest Neighbour classifier based on the Euclidean 
distance on the embedding space.  

 
Fig. 3. Face recognition results on the Yale data set (recognition rate v.s. dimensionality). 

www.intechopen.com



Recent Advances in Face Recognition 50

The discriminative orthogonal rank-one tensor decomposition method is tested with 3 
different settings by performing it on: a.) raw image 2D tensors representations; b.) Global-
Local tensor representation based on Ͷ × ʹ block partitions; and c.) Global-Local tensor 
representation based on Ͷ × Ͷ block partitions. We name them ORO, ORO4×2, and ORO4×4, 
respectively. We have compared the results from these three settings with almost all the 
state-of-the-art linear embedding methods such as PCA (Turk & Pentlend, 1991), LDA 
(Belhumeur et al., 1997), LPP (He et al., 2005a), tensor LPP (He et al, 2005b), orthogonal LPP 
(Cai et al., 2006), the two dimensional local discriminative embedding with  Global-Local 
representation based on Ͷ × ʹ blocks (2DLDE4×2) from (Chen et al., 2005), and the Rank-one 
projection with adaptive margins (RPAM) (Xu et al., 2006). 
The recognition accuracies of all the different methods are presented in Table 1. As a 
baseline, we also present the results of using SSD in the raw image space. For each dataset, 
the top 5 performed methods are highlighted in the table. In the following subsections, we 
will discuss in more details of the results dataset by dataset. 
Yale Data Set: The Yale data set is indeed a very small face benchmark. It contains 165 faces 
of 15 different individuals with different facial expressions. The results of the different 
methods running on this data set are presented in the first column of Table 1. The results 
reported are the average accuracy over 20 random splits of the data set, with 5 from each 
person for training and the rest for testing. Therefore, each split utilizes 55 faces for training 
and 110 for testing. 
As we can clearly observe, ORO4×2 achieves the best recognition accuracy of 86.8% with 94 
dimensions. Its performance is significantly better than all the other methods. In Figure 3, 
we present the recognition rates of different methods versus the number of dimensionality 
of the embedding space. It clearly shows that ORO4×2 outperforms all the other methods. 
Interestingly, when it goes beyond dimension 14, which is the maximum number of 
projections LDA can pursue (because there are only 15 different subjects), the recognition 
accuracy for ORO4×2 continues to go up. The recognition accuracies for both the LPP and the 
OLPP drop rapidly. 

 

Fig. 4. Face recognition results on the ORL data set (recognition rate v.s. dimensionality). 

It is also observed that ORO did not perform as well as the Tensor LPP and RPAM methods. 
Our intuition is that for small training example set, the orthogonal regularization on the ͵ʹ × ͵ʹ rank one tensor projections is too strong. Moreover each rank-one projection only 
has 64 parameters, which significantly limits the capacity of the rank-one projection.  
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Without the orthogonal constraints, the Tensor LPP method and RPAM method are able to 
leverage some additional capacities to achieve higher recognition rate. Last but not least, the 
effective-ness of the orthogonal constraint regularization can be understood by comparing 
the result of ORO4×2 with that of 2DLDE4×2 since the only difference of the two methods are 
the orthogonal regularization. 
ORL Dataset: the ORL dataset has 40 different subjects. Each has 10 different faces which 
amount to a total of 400 faces. For each subject, the 10 different faces are taken at different 
time, under different lighting conditions, and with different facial expressions. In our 
experiments, 5 images are selected for each person to form the 200 training images, and the 
rest 200 images are used for testing purpose. The reported results are the aggregated results 
over 50 random splits.  
Again, ORO4×2 leads all the other method, which achieves a recognition rate of 97% with 105 
dimensions. This is followed by OLPP with a recognition rate of 96.6% with 41 dimensions. 
ORO4×2 with 41 dimensions achieves an accuracy of 95%, which is inferior to OLPP. But it is 
still better than PCA, LDA, LPP and RPAM. It is interesting to observe that with increased 
number of training examples compared with the Yale data set, the recognition rate of RPAM 
with 218 dimensions cannot beat that of ORO with only 32 dimensions. Assuming the 
adaptive margin step poses positive effects, it indicates that with the increased number of 
training examples, the orthogonal constraint really improves the ability for generalization 
for the learned rank-one tensor projections. We plot the recognition rate versus 
dimensionality of the embedding space for all the different methods in Figure 4. 
YaleB Dataset: The YaleB dataset contains 21888 face images of 38 different persons under 9 
poses and 64 illumination conditions. We choose the subset of 2432 nearly frontal faces (i.e., 
64 face images per person). In our evaluation we randomly choose 20 images per person for 
 

 

Fig.  5. Face recognition results on the YaleB data set (recognition rate v.s. dimensionality). 

training and the rest for testing. Hence there are 760 training face images and 1672 testing 
faces. This training set is of medium size compared with the raw image dimensionality 1024. 
We report the results averaged over 50 random splits in the third column of Table 1. The 
recognition accuracy of ORO4×2 is 91.0% with 108 dimensions, which is better than LDA, lPP 
and 2DLDE4×2, and inferior yet comparable to RPAM, Tensor LPP and OLPP. RPAM is 
obviously benefiting from the adaptive margin step. Moreover, with more training data, the 
negative effect of high dimensionality is less severe and thus OLPP may achieve better 
results. Again, we plot the recognition rate versus dimensionality of all the different 
methods on this dataset in Figure 5. 
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PIE Dataset: The PIE database contains 41368 face images of 68 people, which are taken 
under 13 poses, 43 illumination conditions, and 4 expressions). We use the images of 5 
nearly front poses (C05, C07, C09, C27, C29) under all illumination conditions and 
expressions. This forms a subset of 11560 face images with 170 images per person. For each 
run, 30 images are randomly picked up for training and the rest 120 images per person are 
used for testing. Again, the average recognition rate over 50 different runs is summarized in 
the fourth column of Table 1. 
Both the ORO4×2  and OLPP achieves the highest recognition rate of 93.6%. But ORO4×2 

achieves this performance using only 73 dimensions while OLPP needs to pick up as high as 
381 projection vectors. The red curve in Figure 6 shows how ORO4×2   can greedily pursue 
the smallest but most discriminative set of orthogonal rank-one projections to achieve the 
highest recognition rate.  

6. Remarks 

We highlight some of our general remarks about the performance of the discriminative 
rank-one tensor projections on the task of face recognition. 

• First of all, it is noted in our experiments that the discriminative power (i.e., the largest 
eigenvalue corresponding to the linear system defined in either Equation (18) or 
Equation (23) ) of consecutively pursued orthogonal rank-one projections is not 
monotonically decreasing. Therefore, after the final solution set was obtained, we need 
to sort these orthogonal rank-one tensor projections by their discriminative powers and 
pick up the top ܭ ones to form the discriminative embedding for the face recognition 
task. 

 

 

Fig. 6. Face recognition results on the PIE data set (recognition rate v.s. dimensionality). 

• As shown in Figure (5~6), on the YaleB and PIE datasets, adding in the last several 
orthogonal rank-one projections obtained by ORO4×2 dramatically degrades the 
recognition accuracy. In this case the orthogonal regularization forces these last 
projections to preserve only non-discriminative information. 

• The performance of ORO is limited by the number of orthogonal rank one projections 
we can obtain from the algorithm presented in Figure 2. However, on YaleB, it achieves 
the error rate of 11.9% with only 32 dimensions, which is much better than LDA (18.7% 

www.intechopen.com



Face Recognition by Discriminative Orthogonal Rank-one Tensor Decomposition 53 

with 37 dimensions) and LPP (13.6% with 76 dimensions). This may be partially due to 
the tensor based representation, which suffers less from the curse-of-dimensionality.  

• The Global-Local tensor representation in general gives an significant boost to the 
performance. For example, the two methods ORO4×2 and ORO4×4, which adopted the 
Global-Local tensor representation, are consistently performing better across all the four 
datasets than ORO, which adopted the naive tensor representation of raw images.  

• Posing orthogonal constraints on the discriminative rank-one tensor projections in 
general helps to improve the performance. This conclusion comes from comparing the 
recognition results between ORO4×2 and 2DLDE4×2. ORO4×2 consistently achieves better 
recognition accuracy than 2DLDE4×2 across all the four face benchmark. 

• Overall, the two orthogonal constrained algorithms, ORO4×2 and OLPP achieve the best 
recognition rate. ORO4×2 outperforms OLPP on Yale and ORL, and achieves equivalent 
performance to that of OLPP on PIE. It is only inferior to OLPP on the YaleB dataset. 

• RPAM (Xu et al., 2006) tends to require more projections to achieve a good 
performance. This may be due to the adaptive margin step, which seems to be effective 
according to our experiments. 

• On small or medium size face datasets such as Yale and ORL, the discriminative 
orthogonal rank-one tensor projection method outperforms the other state-of-the-art 
discriminative embedding methods. On larger size database such as YaleB or PIE, it 
achieves comparable results to the best state-of-the-art, but uses much less number of 
projections. This is a very interesting phenomenon we observe. It surely makes it more 
scalable for face recognition on larger scale face databases.  

Nevertheless, further investigation and consolidation of the remarks we summarized above 
is definitely beneficial to have a deeper understanding of the behaviour of the 
discriminative rank-one tensor decomposition method presented in this Chapter. 

7. Conclusions 

This Chapter illustrated two types of regularization methods recently developed in the 
computer vision literature for robust face recognition (Hua et al, 2007). The first 
regularization method is a new tensor representation of face images, which we call Global-
Local tensor representation. It enables the successive discriminative embedding analysis to 
better leverage the geometric structure of the face image pixels. It also reinforces physically 
meaningful interpretation of the different dimensions of the tensor projections.  
The second type of regularization method is an orthogonal constraint on discriminative 
rank-one tensor projections. We reveal a nice property of orthogonal rank-one tensors, 
which enables a fairly simple scheme to reinforce the orthogonality of the different rank-one 
projections. A novel, simple yet effective sequential iterative optimization algorithm is 
proposed to pursue a set of orthogonal rank-one tensor projections for face recognition. 
By combining the two regularization methods, our extensive experiments demonstrate that 
it outperforms previous discriminative embedding methods for face recognition on small 
scale face databases. When dealing with larger face databases, it achieves comparable results 
to the best state-of-the-art, but results in more compact embeddings. In other words, it 
achieves comparable results to the best in the literature while uses much less number 
projections. This makes it far more efficient to handle larger face databases, in terms of both 
memory usage and recognition speed. 
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