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1. Introduction 

This chapter covers some of the latest developments in optical correlation techniques for 
face recognition using the concept of spectral fusion and placing a special emphasis on its 
practical aspects and applications for face recognition. Optical correlation is reviewed as a 
method to carry out instantly a decision on the target form (form to be recognized). A range 
of relevant practical topics is discussed, such as JTC (Joint Transform Correlator) and the 
Vander-Lugt architectures. Both of them are based on the "4f" optical setup and on a 
comparison between the target image and a reference image. The similarity between the two 
images is achieved by the detection of a correlation peak. The development of suitable 
algorithms for optical correlation and new technologies in electro-optical interfaces has 
significantly improved the processing capacity of optical correlators and reduce their sizes. 
To overcome the limitations of a decision taken by a simple detection of a correlation peak, 
more complex decision algorithms are required. These algorithms necessitate the integration 
of new correlation filters and the realization of multiple correlations and reconfigurable 
multi-channel architectures.  
 
This chapter surveys also the main correlation filters and the main multi-decision correlator 
architectures. It will describe the development of a multi-reconfigurable architecture based 
of a new version of correlation filter, i.e. the segmented filter. More specifically, we will 
describe an all-optical and compact correlator and a new phase optimized filter which based 
on four ingredients: POF, sector, composite and segmented filters. To extend the application 
of the algorithm and improve this system, a correlation filter is adapted in order to 
recognize a 3D face using multiple cameras arranged in a pickup grid. To minimize the 
effect of overlapping between the different spectra, the filter optimization is realized by 
shifting different reference spectral images. This could increase the number of references 
included in the same filter.  
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2. Background and Notations of optical correlation  

The use of optical correlation methods has evolved over the past thirty years. Thus, their 
scope has extended to security applications, as for example tracking and/or identifying for 
military applications (aircraft recognition, boats recognition, etc) or civilian applications 
(road signs recognition, face identification: bank, metro, airport). This interest for optical 
correlation techniques, based on the use of two Fourier transform (FT), is essentially due to 
the fact that it is possible to achieve an optical Fourier Transform instantly [1] (using a 
simple converging lens).  
 
To perform optical correlation techniques, two major approaches of correlators are proposed 
and validated in the literature: JTC (Joint Transform Correlator) [2] and Vander Lugt 
correlator [3]. Both approaches are based:  
 

1) On an all-optical set-up, called "4f" set-up [1], 
2) On a comparison between the target image and reference image coming from a 

learning data-base,  
3) On a simple detection of a correlation peak. The latter measures the similarity 

degree between the target image and the reference one. 
 

We begin this section by recalling the principles of these two approaches: 

 
2.1 Principle of the all optical filtering 4f setup 
The 4f set-up (Fig. 1) is an all optical system composed of two convergent lenses. The 2D 
object O (displayed in the input plane) is illuminated by a monochromatic wave [1]. A first 
lens performs the FT of the input object O in the image focal plane (Fourier plane), SO. In 
this focal plane, a specific filter H is positioned (using optoelectronic interfaces). Next, a 
second convergent lens performs the inverse Fourier transform (FT-1) in the output plane of 
the system to get the filtered image O’ captured using a CCD (charge-coupled device) 
camera. 

 
2.2 JTC : Joint transform correlator  
Weaver and Goodman introduced the foundations of a new type of correlator for pattern 
recognition called JTC [2]. In their pioneering article [2], Weaver and Goodman 
demonstrated the possibility and the necessary conditions to achieve optically the 
convolution between two images displayed in the input plane of the JTC correlator: a target 
image (image to be recognized) and a reference image (image coming from a given data-
base). Using this property and the classical "4f" set-up, Javidi and co-workers proposed [4] 
an optimized version of this JTC correlator. This optimized version allowing us to obtain 
very sharp and very intense peak correlations can increase the capacity of this type of 
correlators. This optimization is made possible by binarizing the joint spectrum1 according 
to a well-defined threshold and using a SLM modulator. Another optimized version of the 
                                                                 
1 Joint spectrum: spectrum obtained after performing a FT of the input plane of the JTC 
correlator, containing the target image and the reference image placed at a distance d from 
the target [5-6]. 

JTC correlator was proposed by Javidi [5] by introducing a non-linearity in its Fourier plane 
(the JTC Fourier plane). This non-linearity in the Fourier plane increases the performances of 
this type of correlators. 
 

 
Fig. 1. All optical filtering 4f setup 
 
The architecture of a non-linear JTC correlator (JTC-NL) [6] is now described in some detail. 
Other types of architecture will be listed in subsection (2. 3). A synoptic diagram of the JTC 
set-up is presented in Fig. 2-a. Basically, it is an arrangement based upon the 4f set-up with a 
non-linear operation in its Fourier plane [5-6]. Its principle is to introduce, in the input 
plane, both the target and reference images separated by a given distance and to separate 
the writing and reading phases. In Ref.[6], this non-linear operation was achieved by using 
an Optically Addressed Spatial Light Modulator (OASLM) in the Fourier plane. A first beam 
coming from a laser illuminates the input plane, I(x, y) Eq. (1), which contains the scene, s(x, 
y), i.e. the target image to be recognized, and the image reference, r(x-d, y-d), where d 
represents the distance between the target and the reference images.  
 
      dydxryxsyxI  ,,, . (1) 
 
The joint spectrum, obtained with Fourier transformed of I(x,y), is recorded by the OASLM 
modulator and yields t(u, v) Eq. 2 (writing stage shown in Fig. 2-b).  
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After a FT-1 of the joint spectrum, lighted with a second beam (reading stage shown in Fig. 
2-c), the correlation between the target and the reference image on a CCD camera is 
obtained. The correlation plane has several peaks which correspond to the autocorrelation of 

www.intechopen.com



Understanding Correlation Techniques for Face Recognition: From Basics to Applications 355

2. Background and Notations of optical correlation  

The use of optical correlation methods has evolved over the past thirty years. Thus, their 
scope has extended to security applications, as for example tracking and/or identifying for 
military applications (aircraft recognition, boats recognition, etc) or civilian applications 
(road signs recognition, face identification: bank, metro, airport). This interest for optical 
correlation techniques, based on the use of two Fourier transform (FT), is essentially due to 
the fact that it is possible to achieve an optical Fourier Transform instantly [1] (using a 
simple converging lens).  
 
To perform optical correlation techniques, two major approaches of correlators are proposed 
and validated in the literature: JTC (Joint Transform Correlator) [2] and Vander Lugt 
correlator [3]. Both approaches are based:  
 

1) On an all-optical set-up, called "4f" set-up [1], 
2) On a comparison between the target image and reference image coming from a 

learning data-base,  
3) On a simple detection of a correlation peak. The latter measures the similarity 

degree between the target image and the reference one. 
 

We begin this section by recalling the principles of these two approaches: 

 
2.1 Principle of the all optical filtering 4f setup 
The 4f set-up (Fig. 1) is an all optical system composed of two convergent lenses. The 2D 
object O (displayed in the input plane) is illuminated by a monochromatic wave [1]. A first 
lens performs the FT of the input object O in the image focal plane (Fourier plane), SO. In 
this focal plane, a specific filter H is positioned (using optoelectronic interfaces). Next, a 
second convergent lens performs the inverse Fourier transform (FT-1) in the output plane of 
the system to get the filtered image O’ captured using a CCD (charge-coupled device) 
camera. 

 
2.2 JTC : Joint transform correlator  
Weaver and Goodman introduced the foundations of a new type of correlator for pattern 
recognition called JTC [2]. In their pioneering article [2], Weaver and Goodman 
demonstrated the possibility and the necessary conditions to achieve optically the 
convolution between two images displayed in the input plane of the JTC correlator: a target 
image (image to be recognized) and a reference image (image coming from a given data-
base). Using this property and the classical "4f" set-up, Javidi and co-workers proposed [4] 
an optimized version of this JTC correlator. This optimized version allowing us to obtain 
very sharp and very intense peak correlations can increase the capacity of this type of 
correlators. This optimization is made possible by binarizing the joint spectrum1 according 
to a well-defined threshold and using a SLM modulator. Another optimized version of the 
                                                                 
1 Joint spectrum: spectrum obtained after performing a FT of the input plane of the JTC 
correlator, containing the target image and the reference image placed at a distance d from 
the target [5-6]. 

JTC correlator was proposed by Javidi [5] by introducing a non-linearity in its Fourier plane 
(the JTC Fourier plane). This non-linearity in the Fourier plane increases the performances of 
this type of correlators. 
 

 
Fig. 1. All optical filtering 4f setup 
 
The architecture of a non-linear JTC correlator (JTC-NL) [6] is now described in some detail. 
Other types of architecture will be listed in subsection (2. 3). A synoptic diagram of the JTC 
set-up is presented in Fig. 2-a. Basically, it is an arrangement based upon the 4f set-up with a 
non-linear operation in its Fourier plane [5-6]. Its principle is to introduce, in the input 
plane, both the target and reference images separated by a given distance and to separate 
the writing and reading phases. In Ref.[6], this non-linear operation was achieved by using 
an Optically Addressed Spatial Light Modulator (OASLM) in the Fourier plane. A first beam 
coming from a laser illuminates the input plane, I(x, y) Eq. (1), which contains the scene, s(x, 
y), i.e. the target image to be recognized, and the image reference, r(x-d, y-d), where d 
represents the distance between the target and the reference images.  
 
      dydxryxsyxI  ,,, . (1) 
 
The joint spectrum, obtained with Fourier transformed of I(x,y), is recorded by the OASLM 
modulator and yields t(u, v) Eq. 2 (writing stage shown in Fig. 2-b).  
 

 
   

   )(exp),(exp),(
),(exp),(,

vdudjvuvuR
vuvuSvut

r

s







. (2) 

 
After a FT-1 of the joint spectrum, lighted with a second beam (reading stage shown in Fig. 
2-c), the correlation between the target and the reference image on a CCD camera is 
obtained. The correlation plane has several peaks which correspond to the autocorrelation of 

www.intechopen.com



Face Recognition356

the whole scene in the center (zero order), and two correlation peaks (corresponding to the 
reference and target images). The location of the different correlation peaks depends on the 
positions of the reference and the target images within the scene.  
 

 
Fig. 2. Principle of the JTC correlator. 
 
The performance of the JTC-NL correlators [5-6] proved to be larger than the linear JTC 
correlators [2-3]. Furthermore, by modifying the non-linearity in the Fourier plane of the 
JTC-NL correlator, it is possible to increase or decrease the discrimination power of the JTC-
NL correlator. The interested reader may want to consult [7]. The optical implementation of 
the JTC correlator using an OASLAM modulator is simple to perform [6-7] and allows a 
high cadence (1 kHz) of processing (comparison between the target and reference images). 
Further adjustment in the non-linearity parameters can be easily made by changing, e.g. the 
voltage control of the modulator, the pulse duration, or the illumination of the modulator. 
 
However, this correlator suffers from physical and algorithmic drawbacks. Indeed, the use 
of two SLM modulators in the JTC (a first one is used in the input plane to display jointly 
the target image and the reference one, and the other one is used in the Fourier plane to 
write/read the joint spectrum of JTC correlator) imposes a limited resolution depending on 
the technology used to manufacture these modulators. Besides the loss of information 
caused by these resolutions, set by the manufacturers, they also impose constraints on the 
choice of lens to be used for performing the FT of the input plane. The focal must verify 
equation (3). 
 

 
Re Reinput plane Fourier planeN s s

f


  ,    (3) 

 
where planeinputs Re  denotes the resolution of the modulator used in the input plane, 

planeFouriers Re  is the resolution of the Fourier plane modulator, N is the number of pixels 

and  is the wavelength. Similarly, the focal length of the second lens (to perform the 
second Fourier transform) is calculated by respecting the resolution of the modulator used 
in the Fourier plane and the resolution of the camera used to record the output plane: 
correlation plane. 
 
Figure (3) shows an example of a correlation plane using a JTC-NL correlator [8]. In this 
plane, three peaks are visible: a central peak characterizing the zero-th order of the JTC 
correlator; the other two peaks are the two correlation peaks which show similar 
correlations between the target and reference images. The position of the two correlation 
peaks depends of the position of the target image relatively to the reference image placed 
both in the input plane. 
 

 
Fig. 3. Correlation plane obtained with an all Optical NL-JTC correlator [8]. 

 
2.3 The correlator JTC applied to facial recognition 
To have a general overview on this type of correlator, we test by numerical simulations, 
some JTC architectures proposed in the literature. We examine the performance of this type 
of correlator vis-à-vis the face recognition application that interests us in this chapter. For 
this purpose, we begin by recalling the principles of several architectures implementing the 
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JTC correlator. All these architectures use the 4f set-up and differ from the treatment applied 
on the joint spectrum of the JTC correlator:  

 
 Classical JTC [2]: CL-JTC 

 

This classical architecture consists to record the intensity of the joint spectrum given by 
equation (2). The result is as follows 
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To obtain the correlation plane using the CL-JTC, we need to perform a FT-1 of the recorded 
intensity (Eq. 4) to get the three peaks in the correlation plane: one representing the zero-th 
order resulting from the FT-1 of the first line of Eq. 4, and two correlation peaks 
corresponding to the FT-1 of the second and third lines in Eq. 4. Studying these two 
correlation peaks determine the degree of resemblance between the target and the reference 
faces. However, this classical correlator has two major drawbacks rendering the decision of 
this type of correlator not always reliable:  
  

1. It presents a very large zero-th order and very intense peak compared to the 
correlation peaks, 

2. It is characterized by two low-intensity and large correlation peaks. 

 
 Binary JTC [4]: B-JTC  

 

Once the intensity of the joint spectrum (Eq. 4) is recorded, the binary JTC consists to 
binarize this intensity (Eq. 4) using the method detailed in equation (5). Then a FT-1 is 
performed to obtain the correlation plane. 
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where SJ_Bin is the binarized joint spectrum and S is a threshold that corresponds to the 
medium of the intensity joint spectrum values [4]. This correlator provides better 
performance than the classical JTC. It is more discriminating, has very sharp and intense 
correlation peaks and a very sharp zero-th order [4]. However, it is too sensitive especially 
to deformations of the target image relatively to the reference image (rotation, scale), which 
appear often in face recognition applications. 
 
 

 

  Nonlinear JTC [5]: NL-JTC 
 

To control the sensitivity of the JTC correlator, the authors of Ref [5] presented a non-linear 
version of this correlator. It consists in introducing a non-linearity function “g(E)” in the 
joint spectrum intensity (Eq. 4). The non-linearity function g(E) is given by the following 
equation: 
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where K represents the degree of freedom applied to our correlator. If K=0, we obtain the 
binary JTC correlate. Here we set 0.5K  since this value leads to a good compromise 
between the power discrimination and the sensitivity [7-8]. 

         
 JTC order without zeros [9]: NZ-JTC 

  

As was mentioned previously, the JTC correlator has a high zero-th order which is 
detrimental to obtain a good and reliable decision, especially for a small distance length 
between the object to recognize and the reference image. Reducing this distance is required 
for decreasing the size of the input plane that has a limited space-bandwidth product 
(SBWP). Indeed, the size of the input plane depends on the size of the scene (which contains 
the object to be recognized), the reference image and the distance between them. To solve 
this problem a first technique is proposed consisting in hiding the zero-th order by 
multiplying the correlation plane with a binary mask given by equation (7) 
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where c is the width value of the desired mask. However, this mask cannot entirely solve 
the problem. Depending on the value of c, the correlation peaks can be filtered out. To 
overcome correctly the zero-th order problem, another technique was proposed and 
validated in the literature [9]. It consists in eliminating the first two terms of the joint 
spectrum (Eq. 4), i.e.  22 ),(),( vuRvuS   , which introduce this zero-th order.  
 
This approach was chosen by us. For that purpose, we first record separately the spectra 
intensities of the two images presented in the input plane: the face to be recognized and the 
reference. Then, we subtract the two intensity values of the equation (4) to get 
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This equation contains only terms corresponding to the two correlation peaks. Then, by 
performing a FT-1 of this quantity only two correlation peaks are visible. 

 
 Fringe-Adjusted Joint Transform Correlation: FA-JTC [10]  

 

To optimize this JTC correlator and to render it more robust to noise, the authors of [10] 
suggested and validated a new approach of JTC, called Fringe-Adjusted Joint Transform 
Correlation FA-JTC. Basically, it consists in multiplying the intensity of the JTC joint 
spectrum (Eq 4) with the fringe-adjusted filter (Eq. 9) 
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where G(u,v) denotes a function to obtain an optical gain larger than 1 and N(u,v) is a 
function used to reduce the noise effect in the correlation peak and/or to delete the band 
limit the signal. A comparison of the FA-JTC method with the classical JTC and binary JTC 
shows that they are successful to increase the decision performance of the JTC correlator 
[10]. 

 
 Comparison and conclusion  

 

In this section, we give an overview of the performance of several JTC correlators vis-à-vis 
the face recognition issue. The example chosen, Table (l-a), is to recognize the face of Lena 
with a reference face-image Lena. This study was conducted in a controlled environment: 
without noise. 
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Table 1. 3D representation of the various correlation planes obtained with several 
approaches of the JTC correlator. 
 
Table (1) presents information of the JTC correlator performances. The binary JTC correlator 
has very intense and sharp correlation peaks (Table (1-c)) compared to the values obtained 
with the classical JTC (Table 1-b). This results in a reliable and discriminating decision. The 
B-JTC correlators have good discriminating features, however they are too sensitive with 
respect to noise like for e.g. the deformation of the target face relative to the reference one, 
i.e. a small change between the reference face and the face to be recognized yields a 
significant decrease of the intensity of the correlation peaks. Thus, it is necessary to increase 
the number of reference images in the database to cover all possibilities that the target image 
can have in a given scene.  
 
One solution to overcome this problem is realized by introducing a non-linearity in the 
Fourier plane. This allows us to control the performance of the JTC correlator (Table 1-d) 
and to increase or decrease its discriminating characteristic. By changing the non-linearity 
degree of the JTC correlator, different applications, with or without noise, can be considered. 
Suppression of the zero-th order can make easier the decision and increase the performance 
(Table 1-e).  
 

Despite improvements found in the literature, the JTC architecture has still a serious 
drawback: it requires a large input SBWP [11]. The very nature of the JTC requires that the 
target and the reference (or references) images are placed side by side in the input plane 
(Figure 4). Assuming that Ns is the pixel size of the scene (that contains the target image 
with size=No) and Nr is the pixel size of the reference image, the pixel size of the input plane 
(Figure 4) Ne can be written as 
 
 rrse NPNNN  2 , (10) 
 
where P denotes the number of reference images to include in the input entry [11]. The use 
of many references in the input plane is necessary to overcome the problem of making a 
decision based on a single comparison between the target image with a single reference 
image. Thus, a decrease of the inputSBWP _  appears because of non-active zones to avoid 
overlapping of the correlation planes in the output plane of the JTC correlator [11]; the target 
and the reference images must be placed in the input plane at a distance d. Consequently, 
one can write 2_ eNinputSBWP  , indicating that inputSBWP _  increases when the size of 
the object is increased. For example if we want to recognize a face that has a size equal to 
 6464  pixels, it is necessary to use an input plane with a size equal to  320320  pixels. 
This plane has an unused area equals to  8 64 64   (with reference to Figure (4)) [11]. 

 
Fig. 4. Input plane of a JTC correlator using multiple references.   
 
The implementation of an all-optical NL_JTC correlator is quite simple. It has a good 
compromise between discrimination and robustness; this compromise is mainly due to the 
use of non-linearity in the Fourier plane introduced via an optically addressed modulator 
(OASLM). However, the number of references that can be treated in a parallel manner is 
limited by the structure of the input plane ( inputSBWP_ ), i.e. the target and references 
must be positioned in the input plane. In addition, the use of several references in the input 
plane can lead to saturation in the joint spectrum, when increasing the number of references 
[7,11]. 
 
To overcome this problem the Vander Lugt Correlator (VLC)-based technique can be used. 
This technique does not require a large input plane because only the scene is presented. 
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Thus, all the correlation features are introduced in the Fourier plane. This technique is now 
described. 

 
2.4 Vander Lugt Correlator (VLC) and mono-channel approach 
The synoptic diagram of the VLC is presented in Figure 5. Basically, this technique is based 
on the multiplication of the spectrum, S0, of the target image O by a correlation filter, H, 
made from a reference image. The input plane is illuminated with a linearly polarized 
incident parallel beam. Located in the rear focal plane of a Fourier lens, a SLM is used in 
order to display the chosen correlation filter in the Fourier plane of the optical set-up. Many 
approaches for designing this filter can be found in the literature according to the specific 
object that needs to be recognized [1,3][13-19]. A second FT is then performed with a lens in 
a CCD Camera (correlation plane). This results in a more or less intense central correlation 
peak depending on the degree of similarity between the target object and the image 
reference. 
 
Since the publication of the first optical correlator VLC [3], much research has been done to 
render it more discriminating and robust. The 1980s and 1990s have seen a large number of 
correlation filters to improve the Classical Matched filter (CMF) [3]. These improvements 
were intended to include physical constraints of the SLM modulators which are required to 
display filters in the optical set-up. A few words about the notation: I(x,y) and Ri(x,y) are the 
(2D) target image (to recognize) and the 2D reference image number #i, respectively. In like 
fashion, SI(u,v) and SR(u,v) denote the Fourier transform of the target image and the 
reference image, respectively. Subsequently, we will focus on presenting several filters 
which have been designed for 3D face recognition. 
 

 
Fig. 5. Synoptic diagram of VLC. 

 Classical Matched filter: HCMF 
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of the background noise and  is a constant. This filter is very robust, but presents a low 
discriminating power [1,3,13-14]. Without noise this filter can be written as: 
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 Phase Only Filter:  HPOF  
 

The POF filter is an optimized version of the classical matched filter ( CMFH ) and is defined 
by equation (12). This filter has a very sharp peak, is very discriminating, but is too sensitive 
to specify noise arising e.g. in object deformation [13,20].  
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 Binary Phase Only Filter: HBPOF 

 
This filter is a binary version of the HPOF filter to take into account the physical constraints 
imposed by using fast and binary SLM [8,21]. Several techniques have been proposed to 
achieve this binarization, e.g. [21]. Here, this filter is binarized according to the following 
equation:  
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Different types of binarization were considered, see e.g. Ref [22] for a review. 
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 Phase Only Filter with region of support: HROS_POF  
 
The principle of this filter is very important for the definition of our multi-correlation 
segmented filter. It is defined as a multiplication of the HPOF filter with a pass-band function 
P [22-23] and can be written as following: 
  

 ROS POF POFH H P  ,  (14)  
 
where P is a pass-band function used to select the desired information in the HPOF filter. This 
HROS_POF filter permits to increase the robustness of the classical HPOF, and has a good 
discriminating power. 
 
The following set of filters was also proposed and discussed in the literature: 

- HAMPOF: Amplitude Matched Phase only filter [24]  
- HCTMF: Complex Ternary Matched Filter [25]  
- HFPF: Fractional power filter [14] 
- HIF: Inverse filter [14]  
- HPCMF: Phase With Constrained Magnitude filter [26] 
- HPMF: Phase mostly filter [27]  
- HQPF: Quad-Phase filter [28-29] 

 
All these filters have been proposed to optimize the performance of the decision taken with 
the classical correlation filter HCMF. However, in every case, each filter uses a single 
reference. For a reliable decision, we must compare the target image with a large number of 
filters. These results in a huge increase of the time required to make a decision. In addition, a 
small part of the SBWP of the output plane is used (decision based on one point in the 
output plane: mono-correlation). To overcome these problems and improve the reliability of 
the decision, multi-correlation approaches constitute a useful option [8,30]. 

 
2.5 VLC and multi-correlation approaches 
Multi-correlation consists in considering a larger part of the correlation plane [8,30] to cover 
all possible situations and have a discriminating power. Other words stated, we explore 
decision-making structures based on several correlations to overcome the drawbacks 
existing with a decision taken with a single reference. From a practical point of view, the use 
of several references can be realized with a temporal multiplexing of these references 
(Figure 6). For that purpose, we consider successively several (number of used references) 
correlations to make the decision. This obviously increases the computational time. 
 

 
Fig. 6. Architecture using the temporal multiplexing of references.  
 
Alfalou et al. [18-19] proposed and validated another solution that consists of spatially 
multiplexing these references together by combining their respective filters as shown in 
Figure (7). This solution performs simultaneously and independently many correlations. 
Then, the decision is taken by comparing all these correlations. 

 
Fig. 7. Architecture using spatial multiplexing: principle of a correlator using a segmented 
composite filter for the multi-correlation. 
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Here, the filter that we seek to build is a filter allowing us to recognize one or several objects 
in a scene. To build such a filter, we have chosen to work with the composite filter approach 
for multi-correlation [18-19]. 
 

 Composite Filter: HCOMP  
 

This filter allows one to merge multiple versions of a reference image. This type of filter is 
interesting to solve the correlation filter sensitivity vis-à-vis the rotation and the scaling 
operations. This filter can be defined as a linear combination of different reference versions:  
 

 
i

iiCOM RaH ,  (15) 

 

where the ais are coefficients to optimize a cost function defined for a desired application 
[16-17]. In the composite filter approach, each point of the Fourier plane is involved in the 
correlation of a given class according to the intensity of its spectrum at this point. However, 
this may be inconvenient if several classes use the same point in the Fourier plane. 
 

 Segmented Composite Filter: Hseg  
 
To get a reliable decision, it turned out to be necessary to perform a multi-decision and 
reconfigurable correlator, in order to display the different references rapidly. A first solution 
consists in adding a grating in the correlator in order to obtain several channels at the same 
time [8]. However this kind of architecture lacks programmability: this is due to the fact that 
the various channels (necessary to separate the several decisions) are implemented in the 
correlator by a fixed grating. After investigating programmability opportunities of the 
various correlators architectures, we opted for a phase only filter based correlator [3,20] for 
optical implementation simplicity. But, the programmability of such architectures turned 
out to be a serious issue. Consequently, the study was directed towards composite filters 
based architectures, where the programmability introduced into the Fourier plane is easier 
to implement [16-17]. The various references are merged together in the same filter and can 
be placed in the correlator using reconfigurable interfaces. A specific carrier is assigned to 
each reference for separating the correlation results. 
However, this needs to cope with the issue of information encoding in the Fourier plane. To 
perform such encoding, various schemes of the Fourier plane were proposed. One of them is 
adapted to the composite filters for correlation and can be carried out using the concept of 
segmented composite filter [18-19]. This architecture is illustrated in Figure 7. It deals with a 
standard optical correlator using a spatial light modulator (SLM) with binary phase-like 
filters in the Fourier plane. 
To improve the robustness of the HPOF filter, it was shown that the multiplication of the 
latest filter with a binary pass-band function ( P(i)=0 i<N or P(i)=1 if i>N, where N is chosen 
according to the specific application) increases the robustness of the POF filter against noise. 
To improve the pass-band function, Ding and co-workers [23] proposed an iterative method. 
This technique requires a large computing time and depends on the desired application. 
Moreover, it is based on a binary function (0 or 1) leading to a loss of Horner efficiency 
which can be detrimental for optical implementation. A similar technique was proposed in 
Refs. [18-19] to improve the pass-band function based on a non-iterative method and 

optimized by using the SBWP in the Fourier plane. This technique was shown to give a good 
Horner efficiency identical to a conventional HPOF.  
This property was used to design our multi-correlation filter optimizing the use of the SBWP 
in the Fourier plane of the VLC correlator. We begin first by multiplying each filter 
(manufactured from one reference image) with a given pass-band function. Note that each 
pass-band function is chosen to eliminate all non-important areas in each filter. In these non-
used areas information coming from another filter to obtain is included. Thus, a single filter 
containing information on several references images is used. 
The significant increase in the processing capacity is due to the parallelism offered by the 
segmented composite filters, ensuring that an optimal use of the SBWP is available in the 
correlator. The parallelism provided by these filters offers two important advantages:  

- First, it enables to increase the rate of correlations independently from the 
technology used for SLMs. 

- Second, it offers a more efficient decision-making processes (the decision is made 
by the simultaneous consideration of several peaks). 

 
 Advantages of the segmented composite filter: 

 

In addition to parallelism, this filter allows one to obtain a better optimization of the SBWP 
available than conventional filters. With the composite filter, the phenomenon of local 
saturation in the Fourier plane is much more awkward than that met with the segmented 
filter, due to the fact that the manufacture of the composite filter is based on the local 
addition of spectral information coming from different references. On the other hand, the 
nature of the segmented composite filter, whose synoptic diagram is presented Figure (8), 
allows us to reduce the phenomenon of local saturation in Fourier plane. This result is 
obtained by segmenting the Fourier plane in several zones and by allotting a class to each 
zone. Separation at the output plane is obtained by adding a spatial carrier to each class.  

 
Fig. 8. Synoptic diagram of a correlator using a segmented composite filter for multi-
correlation  
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Here, the filter that we seek to build is a filter allowing us to recognize one or several objects 
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this may be inconvenient if several classes use the same point in the Fourier plane. 
 

 Segmented Composite Filter: Hseg  
 
To get a reliable decision, it turned out to be necessary to perform a multi-decision and 
reconfigurable correlator, in order to display the different references rapidly. A first solution 
consists in adding a grating in the correlator in order to obtain several channels at the same 
time [8]. However this kind of architecture lacks programmability: this is due to the fact that 
the various channels (necessary to separate the several decisions) are implemented in the 
correlator by a fixed grating. After investigating programmability opportunities of the 
various correlators architectures, we opted for a phase only filter based correlator [3,20] for 
optical implementation simplicity. But, the programmability of such architectures turned 
out to be a serious issue. Consequently, the study was directed towards composite filters 
based architectures, where the programmability introduced into the Fourier plane is easier 
to implement [16-17]. The various references are merged together in the same filter and can 
be placed in the correlator using reconfigurable interfaces. A specific carrier is assigned to 
each reference for separating the correlation results. 
However, this needs to cope with the issue of information encoding in the Fourier plane. To 
perform such encoding, various schemes of the Fourier plane were proposed. One of them is 
adapted to the composite filters for correlation and can be carried out using the concept of 
segmented composite filter [18-19]. This architecture is illustrated in Figure 7. It deals with a 
standard optical correlator using a spatial light modulator (SLM) with binary phase-like 
filters in the Fourier plane. 
To improve the robustness of the HPOF filter, it was shown that the multiplication of the 
latest filter with a binary pass-band function ( P(i)=0 i<N or P(i)=1 if i>N, where N is chosen 
according to the specific application) increases the robustness of the POF filter against noise. 
To improve the pass-band function, Ding and co-workers [23] proposed an iterative method. 
This technique requires a large computing time and depends on the desired application. 
Moreover, it is based on a binary function (0 or 1) leading to a loss of Horner efficiency 
which can be detrimental for optical implementation. A similar technique was proposed in 
Refs. [18-19] to improve the pass-band function based on a non-iterative method and 

optimized by using the SBWP in the Fourier plane. This technique was shown to give a good 
Horner efficiency identical to a conventional HPOF.  
This property was used to design our multi-correlation filter optimizing the use of the SBWP 
in the Fourier plane of the VLC correlator. We begin first by multiplying each filter 
(manufactured from one reference image) with a given pass-band function. Note that each 
pass-band function is chosen to eliminate all non-important areas in each filter. In these non-
used areas information coming from another filter to obtain is included. Thus, a single filter 
containing information on several references images is used. 
The significant increase in the processing capacity is due to the parallelism offered by the 
segmented composite filters, ensuring that an optimal use of the SBWP is available in the 
correlator. The parallelism provided by these filters offers two important advantages:  

- First, it enables to increase the rate of correlations independently from the 
technology used for SLMs. 

- Second, it offers a more efficient decision-making processes (the decision is made 
by the simultaneous consideration of several peaks). 

 
 Advantages of the segmented composite filter: 

 

In addition to parallelism, this filter allows one to obtain a better optimization of the SBWP 
available than conventional filters. With the composite filter, the phenomenon of local 
saturation in the Fourier plane is much more awkward than that met with the segmented 
filter, due to the fact that the manufacture of the composite filter is based on the local 
addition of spectral information coming from different references. On the other hand, the 
nature of the segmented composite filter, whose synoptic diagram is presented Figure (8), 
allows us to reduce the phenomenon of local saturation in Fourier plane. This result is 
obtained by segmenting the Fourier plane in several zones and by allotting a class to each 
zone. Separation at the output plane is obtained by adding a spatial carrier to each class.  

 
Fig. 8. Synoptic diagram of a correlator using a segmented composite filter for multi-
correlation  
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The used criterion which was worked out in [18] is purely energetic and does not take into 
account the phase information. Here, the validation of such optimization of this criterion is 
illustrated. The decision to assign this pixel to a reference is based on the overall 
comparison: 
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where L is the number of references, N is the size of the filter plane, and  lkE ij ,  is the 

spectral intensity of the i-th class at the pixel  lk , . Figure (9) presents a segmented filter 
with a reference base made up of 4 classes (with three references per class, i.e. 9 references at 
all).  

 
Fig. 9. Segmentation of each class in the Fourier plane   
 

 Criteria for assessing pattern-recognition 
 
Several criteria have been proposed to evaluate the correlation performance, i.e. recognition, 
discrimination [14, 31]. Here, two of them will be chosen for illustrative purpose. The first is 
the Peak-to-Correlation Energy (PCE) defined as the energy of the peak correlation 
normalized to the total energy of the correlation plane: 
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where N denotes the size of the peak correlation spot, and M is the size of correlation plane. 
A second criterion is the SNRout, defined as ratio of the energy of the peak correlation spot to 
the noise in the correlation plane: 
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 Performance of the segmented composite filter vis-à-vis the rotational invariance 

 

From a practical point of view, the Phase Only Segmented Composite Filter is a filter having 
a very good capacity of discrimination, but it is not robust. To illustrate such low robustness, 
we take a face onto which a rotation between 0° and 90° (0°, 10°, 20°, … 90°) is performed. 
The obtained faces are then compared with a single phase segmented composite filter made 
from two positions of faces: 0° and with a rotation equal to 90°. Figure (10-a) confirmed the 
low robustness of this kind of filter, i.e. the PCE is lowered by a factor of 4. To overcome this 
issue, we add a reference, a face rotated by 45° in the filter. The results, incorporating the 
same conditions as before, are presented in figure (10-b). These results demonstrate the 
increase of the robustness of the segmented filter by using only three references in each class 
(at 0 °, the second at 45° and a third to 90°). 
 

(a) (b) 

Fig. 10. Robustness of the segmented composite filter: (a) results obtained with a segmented 
filter used two references at 0° and 90°. (b) Results obtained with a segmented filter with 
three references at 0°, 45° and 90° [8] 

 
 Comparison between the classical composite filter and the segmented composite 

filter : application to face recognition  
 

Taking into account the limited space band-width product (SBWP), the quantity of 
information which can be introduced into the filter is rather limited. Consequently, the 
number of references which can be incorporated in the composite filter is low. Table (2) 
summarizes the PCE obtained numerically by introducing into the Fourier plane a single 
phase filter for a face recognition application. The evolution of the PCE versus the number 
of correlation is displayed in figure (11) (base consisted of 4 classes, with 4 references per 
class).  
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The used criterion which was worked out in [18] is purely energetic and does not take into 
account the phase information. Here, the validation of such optimization of this criterion is 
illustrated. The decision to assign this pixel to a reference is based on the overall 
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where L is the number of references, N is the size of the filter plane, and  lkE ij ,  is the 

spectral intensity of the i-th class at the pixel  lk , . Figure (9) presents a segmented filter 
with a reference base made up of 4 classes (with three references per class, i.e. 9 references at 
all).  
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 Criteria for assessing pattern-recognition 
 
Several criteria have been proposed to evaluate the correlation performance, i.e. recognition, 
discrimination [14, 31]. Here, two of them will be chosen for illustrative purpose. The first is 
the Peak-to-Correlation Energy (PCE) defined as the energy of the peak correlation 
normalized to the total energy of the correlation plane: 
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where N denotes the size of the peak correlation spot, and M is the size of correlation plane. 
A second criterion is the SNRout, defined as ratio of the energy of the peak correlation spot to 
the noise in the correlation plane: 
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 Performance of the segmented composite filter vis-à-vis the rotational invariance 

 

From a practical point of view, the Phase Only Segmented Composite Filter is a filter having 
a very good capacity of discrimination, but it is not robust. To illustrate such low robustness, 
we take a face onto which a rotation between 0° and 90° (0°, 10°, 20°, … 90°) is performed. 
The obtained faces are then compared with a single phase segmented composite filter made 
from two positions of faces: 0° and with a rotation equal to 90°. Figure (10-a) confirmed the 
low robustness of this kind of filter, i.e. the PCE is lowered by a factor of 4. To overcome this 
issue, we add a reference, a face rotated by 45° in the filter. The results, incorporating the 
same conditions as before, are presented in figure (10-b). These results demonstrate the 
increase of the robustness of the segmented filter by using only three references in each class 
(at 0 °, the second at 45° and a third to 90°). 
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Fig. 10. Robustness of the segmented composite filter: (a) results obtained with a segmented 
filter used two references at 0° and 90°. (b) Results obtained with a segmented filter with 
three references at 0°, 45° and 90° [8] 

 
 Comparison between the classical composite filter and the segmented composite 

filter : application to face recognition  
 

Taking into account the limited space band-width product (SBWP), the quantity of 
information which can be introduced into the filter is rather limited. Consequently, the 
number of references which can be incorporated in the composite filter is low. Table (2) 
summarizes the PCE obtained numerically by introducing into the Fourier plane a single 
phase filter for a face recognition application. The evolution of the PCE versus the number 
of correlation is displayed in figure (11) (base consisted of 4 classes, with 4 references per 
class).  
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Correlation number PCE : Composite filter PCE : Segmented composite filter 
1 0.256 0.323 
2 0.163 0.309 
3 0.088 0.181 
4 0.066 0.141 
5 0.062 0.155 
6 0.033 0.138 
7 0.033 0.121 
8 0.029 0.121 
9 0.028 0.113 
10 0.029 0.099 
11 0.016 0.090 
12 0.012 0.090 

Table 2. PCE values according various methods of calculation from filter considered  
 

 
Fig. 11. PCE values obtained versus correlation number for two composite filters 
 
In figure (11) the PCE decreases as a function of the number of correlations for different 
filters. It is also important to observe in figure (11), the quasi-impossibility of recognizing a 
face (with a classical composite filter) when more than 5 references are used. While the 
segmented composite filter makes it possible to incorporate 12 references the PCE loses only 
1/3 of its initial value.  

 
3. Multi-view segmented filter for multi-correlation: Application to 3D face 
recognition 

In many practical applications, e.g. face recognition, 3D objects need to be recognized. In 
order to identify them, they should be first converted in 2D images. In this case, SLMs, used 

to display the input plane and the filters into a correlator are 2D. The 3D-2D conversion is 
generally achieved with a CCD camera resulting in a loss of information. To deal with this 
issue, we propose to use a basic correlator (VLC) and to merge information of both object 
shape and object depth in its Fourier plane. Two main methods for 3D object reconstruction 
can be found in the literature. The first is based on holography, i.e. the PSI technique [32-33]. 
Even though it can provide a reliable 3D object reconstruction, it is discarded here because it 
needs achieving complex transmittances using several specific reference waves. 
Furthermore, it requires the registration of these transmittances. The second method, called 
integral imaging technique (II) [34] is easy to achieve since it does not require complex 
amplitudes and acquisition of a large amount of information. Indeed, this technique is based 
on the registration of multi-views of a 3D target object. These different views are called 
elemental 2D images. They are taken using a matrix of fixed cameras (pickup grid). Each of 
these cameras captures a view of the 3D object (Figure (12)). Then, the elemental 2D images 
are used to rebuild the 3D object by a specific process [34].  

 
3.1. Our approach to recognize 3D object 
The first step in our approach consists in decomposing the 3D object into many elemental 
2D images. For this purpose, we use a pickup grid, i.e. symmetric arrangement with three 
rows of cameras: A first row is associated to an angle of -15° view of the object, a second one 
to 0°, and the third one to +15°. In our arrangement, the cameras are placed at a distance 
equal to 3 cm each in length and width. To validate our approach, we used objects without 
noise: the subject is positioned in front of the camera placed at the center. To recognize the 
3D object, we can correlate each 2D elemental image with its appropriate 2D correlation 
filter, thus giving an elemental decision. The final decision on the 3D object is taken by 
combining all these elemental decisions. However, it is a very long process that requires the 
a priori knowledge of the information on the object (especially on its orientation). To deal 
with this problem, we propose to merge the different elemental images together to produce 
a single image that contains all the necessary information on the various views of the 3D 
object. Next, we compare this image with only one filter. Two fusion techniques were used: 
the first one is to carry out the composite filter and the second one is to carry out the 
segmented filter. Next, we will detail the process to merge the input elemental images and 
the fabrication of the filter. 
For the dual purpose of merging the information dealing with a 3D object and reducing it in 
a 2D image, we start by applying the technique used in the fabrication of composite filters. 
The 3D/2D image obtained is a combination of different elemental images. However, a 
major drawback of this technique lies in its saturation problem, especially when the number 
of elemental images is large, which eventually leads to a decrease of the performance of the 
correlator. This saturation is due to the fact that the technique we want to propose here 
should be optically implementable. SLMs are used to display the input images and filters 
that require 8-bit coding of information for the SEIKO modulator (amplitude modulator, 
with 256 gray levels) and 2-bit coding for the Displaytech modulator. The former modulator 
is used to display the target image in the input plane of our correlator. The latter modulator 
is used to display the various filters. To overcome the saturation, the number of merged 
elemental images is limited to three. A fusion technique based on the segmentation of the 
Fourier plane is employed [18-35].  
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generally achieved with a CCD camera resulting in a loss of information. To deal with this 
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elemental 2D images. They are taken using a matrix of fixed cameras (pickup grid). Each of 
these cameras captures a view of the 3D object (Figure (12)). Then, the elemental 2D images 
are used to rebuild the 3D object by a specific process [34].  

 
3.1. Our approach to recognize 3D object 
The first step in our approach consists in decomposing the 3D object into many elemental 
2D images. For this purpose, we use a pickup grid, i.e. symmetric arrangement with three 
rows of cameras: A first row is associated to an angle of -15° view of the object, a second one 
to 0°, and the third one to +15°. In our arrangement, the cameras are placed at a distance 
equal to 3 cm each in length and width. To validate our approach, we used objects without 
noise: the subject is positioned in front of the camera placed at the center. To recognize the 
3D object, we can correlate each 2D elemental image with its appropriate 2D correlation 
filter, thus giving an elemental decision. The final decision on the 3D object is taken by 
combining all these elemental decisions. However, it is a very long process that requires the 
a priori knowledge of the information on the object (especially on its orientation). To deal 
with this problem, we propose to merge the different elemental images together to produce 
a single image that contains all the necessary information on the various views of the 3D 
object. Next, we compare this image with only one filter. Two fusion techniques were used: 
the first one is to carry out the composite filter and the second one is to carry out the 
segmented filter. Next, we will detail the process to merge the input elemental images and 
the fabrication of the filter. 
For the dual purpose of merging the information dealing with a 3D object and reducing it in 
a 2D image, we start by applying the technique used in the fabrication of composite filters. 
The 3D/2D image obtained is a combination of different elemental images. However, a 
major drawback of this technique lies in its saturation problem, especially when the number 
of elemental images is large, which eventually leads to a decrease of the performance of the 
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should be optically implementable. SLMs are used to display the input images and filters 
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is used to display the various filters. To overcome the saturation, the number of merged 
elemental images is limited to three. A fusion technique based on the segmentation of the 
Fourier plane is employed [18-35].  
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Fig. 12. Decomposition of the 3D object into several multi-view images. 

 
3.2. Optimized multi-view segmented filter 
After this short presentation of the principle of the segmented filter technique, an extension 
of this technique to 3D recognition is now proposed. For that purpose, we first consider a 
linear combination of different elemental 2D images (Figure 13-a) taken by one camera row 
in the pickup-grid (with reference to Figure 13-b). Next, each spectrum of merged elemental 
images is shifted (Figure 13-c). It was also necessary to shift the spectra to optimize the 
segmentation in the Fourier plane. This is required because the elemental 2D images are too 
close to each other. In practice, the shifting is realized optically by multiplying each merged 
elemental image by a specific phase term [18]. Afterwards, a segmentation to obtain the 
SMVSF is performed. 

Particular attention was paid to find the appropriate value of the shifting parameter   
that minimizes the overlap between the different spectra. For that purpose, we rely on 
previous work by Papoulis [36], who determined the necessary minimal size of a given 
spectrum by calculating the quantity called RMS duration 
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where ),( vuH is the gradient of the spectrum, SI(u,v) denotes the spectrum of an image I, 
and 

 
1 2 is a normalization factor. 

 

 
Fig. 13. Principle of the optimized multi-view segmented filter. 

 
3.3. Proposed 3D correlator set-up 
The principle of our approach is presented in Figure 14. The first operation is to add the 
different elemental target images. To realize this operation, we perform the same merging 
steps applied to fabricate our filter presented above. A multiplication with the SMVSF is 
followed by a FT-1 giving us the correlation plane. In the output plane, we get the result of 
simultaneous correlation of all elemental images obtained from the 3D face. 

 
Fig. 14. Principle of the 3D Correlator set-up. 
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3.4. Results and Discussion 
The purpose of this section is to validate the principle of our approach by numerical 
simulations. These simulations were conducted without noise, but taking into account the 
limitations imposed by using SLMs and their specific coding, i.e. 8 bit-coding of the input 
image and 2 bit-coding of the filter. We recall that the specific application we have in mind 
for these simulations is the recognition of a 3D face (with reference to Figure 15). 

 
Fig. 15. Example of decomposition of a 3D face into multi-view 2D elemental images 
 
If we apply our protocol for correlating the target image with a non-shifted multi-view 
segmented filter (Non-SMVSF), the correlation plane is presented in Figure 16(a). This figure 
shows the presence of a single correlation peak resulting from the autocorrelation between 
elemental input images with different corresponding elemental filters. It must be noted that 
the large width and the high level noise presented in the correlation plane (-38 dB) affects 
the performance of this filter. The segmentation of the different spectra is made from very 
similar spectra leading to strong spectral segmentation and consequently to the emergence 
of the isolated pixel phenomenon. 

  
PCE = 0.00127 

SNR1= -37.8 dB 
PCE = 0.00221 
SNR1= -32 dB 

(a) (b) 
Fig. 16. Correlation plane (a) without spectra shifting, i.e. Non-SMVSF, and (b) with spectra 
shifting, i.e. SMVSF. 
 
To overcome the problem of strong segmentation, we propose to optimize the use of the 
filter space SBWP. This is done by shifting the spectra to eliminate the high overlapping 

areas. The shifting value was calculated using the RMS duration criterion. Figure 16-b 
shows the correlation plane obtained with this optimization. It is seen that the correlation 
peak is higher and that the noise has been significantly reduced in the correlation plane (-32 
dB). Form the implementation standpoint, it is necessary to binarize the filter. Figures (17-a) 
and (17-b) show the correlation result obtained by the binarization of two filters used in 
(Figure 16). The most compelling result is the significantly higher correlation peak observed 
in these figures. 

  
PCE = 0.0051 
SNR1= - 45.8 dB 

PCE= 0.00221 
SNR1= - 41 dB 

(a) (b) 
Fig. 17. Correlation plane obtained by binarizing the (a) Non-Shifting MVSF filter, and (b) 
the SMVSF filter, respectively. 
 
A new approach for the purpose of recognizing 3D objects has been presented and 
validated. This approach is based on the decomposition of the 3D target object and the 3D 
reference images by using the II method. Once the elemental images are obtained, they are 
merged together using composite and segmented techniques. To deal with the problem of 
isolated pixel the different spectra were shifted. This shifting has been calculated based on 
the RMS duration criterion. The work presented here allows one to correlate a 3D object 
with a single filter, to obtain a higher and sharper correlation peak, and to reduce the noise 
level in the correlation plane.  
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of the standard optical set-up called 4f. Although the optical implementation of the JTC 
correlator is easier to realize than the VLC correlator, the JTC requires the use of a very large 
input plane in order to introduce both the face to recognize and references. Consequently, 
we have chosen the VLC correlator to perform our face recognition application. This choice 
seems appropriate, especially when a new concept of correlation filter called segmented 
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performances of this filter applied to face recognition. Moreover, to take into account the 
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3.4. Results and Discussion 
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robustness of this filter against noise and with respect to the modification of a 3D target 
object compared to 3D references images (rotation, scaling).  
 
To have a broader view of face recognition problem and not to be limited only to the optical 
approaches, the reader may want to consult [37]. This reference presents a pure numerical 
approach for face recognition based on ICA (Independent Component Analysis). A 
comparison between these numerical and optical approaches is also provided in [37].  
 
Finally, we point out the need of new research topics which can maximize the speed and 
improve the decision of the optical correlator for face recognition. Moreover, in some 
applications the correlator is not located in the same physical place as the target image to be 
recognized, thus requiring transmission and storage of the images before being processed. 
Therefore, it is necessary to develop appropriate techniques of image compression and 
encryption for recognizing a 3D face [38-39]. 
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