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Predicting the presence of drug-adverse event pairs in discharge summaries

INTRODUCTION

Hospital discharge summaries offer a potentially rich resource

to enhance pharmacovigilance efforts to evaluate drug safety

in real-world clinical practice. However, it is infeasible for

experts to read through all discharge summaries to find cases

of drug-adverse event (AE) relations.1

This work presents a comparison of our previously published

rule-based algorithm, named REAP (Readpeer for Active

Pharmaco-vigilance), against a novel machine learning

approach to automatically extract segments of text that contain

drug-AE relationships.2

OBJECTIVE

To compare rule-based versus machine learning algorithms in

their abilities to detect drug-adverse event (AE) pairs as

documented in discharge summaries, as a means of

enhancing post-market surveillance of approved medications.

METHODOLOGY

Rule-based algorithm development

• NLP pipeline developed to extract drug and AE names

based on a list of customized dictionaries, fuzzy logic

(including Soundex) and negation detection (Fig.1)

• A set of expert-derived rules based on specific trigger

phrases are carefully designed to identify candidate drug-

AE pairs (Fig. 2)

• The customised Readpeer interface allows pharmaco-

vigilance (PV) experts to annotate and label the rule-based

algorithm output

Machine learning algorithm development

• Using 90% of the annotated data (n=1692), we built

models and tested the best performing ones on the

remaining 10% (n=188) as a form of validation.

• Term-frequency-inverse document frequency (TF-IDF) and

word2vec were used to vectorize the text before training

the models using k-nearest neighbour (kNN), Naïve-Bayes

(NB), Stochastic Gradient Descent (SGD) and Random

Forest (RF) algorithms.

METHODOLOGY

Figure 1. Workflow for rule-based algorithm development

Figure 2. Selected Drug-AE Relationship Rules

Figure 3.  Annotation Tool (selected screenshots)
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RESULTS & DISCUSSION

Optimal vectorization methods prior to machine learning

Machine learning versus rule-based algorithms

We compared the performances of these 2 approaches to detect

true drug-AE pairs on the validation data (Table 1).

Word2vec word embeddings generated models with a higher

average precision and recall compared to TF-IDF. Therefore, all

validation phase models were built using word2vec.

Optimal vectorization methods prior to machine learning

Detection of drug-adverse event containing pairs

Validation Phase (n=188)

Precision Recall F-score

Rule-based 

algorithm
0.757 0.586 0.661

k-Nearest 

neighbour
0.780 0.780 0.780

Naïve Bayes 0.820 0.690 0.750
Stochastic 

Gradient Descent
0.820 0.660 0.740

Random Forest 0.830 0.750 0.790

CONCLUSION

• Machine learning approaches appear to be better at detecting 
drug-AE pairs in discharge summaries than expert-derived 
rule-based algorithm.

• REAP’s rule-based algorithm to identify drug-AE relationships

achieved 75% precision and 58% recall.

• REAP is a potentially useful algorithm for identifying adverse

drug reactions in free text documents.
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Training Phase (n=1692)

Vectorization method
Average 

Precision 

Average

Recall

Average 

F-score

TF-IDF 0.778 0.704 0.738

Word2vec 0.840 0.718 0.772
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