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OBJECTIVE METHODOLOGY RESULTS & DISCUSSION

To compare rule-based versus machine learning algorithms in
their abilities to detect drug-adverse event (AE) pairs as
documented in discharge summaries, as a means of
enhancing post-market surveillance of approved medications.

INTRODUCTION

Hospital discharge summaries offer a potentially rich resource
to enhance pharmacovigilance efforts to evaluate drug safety
in real-world clinical practice. However, it is infeasible for
experts to read through all discharge summaries to find cases
of drug-adverse event (AE) relations.’

This work presents a comparison of our previously published
rule-based algorithm, named REAP (Readpeer for Active
Pharmaco-vigilance), against a novel machine learning
approach to automatically extract segments of text that contain
drug-AE relationships.2

METHODOLOGY

Rule-based algorithm development

« NLP pipeline developed to extract drug and AE names
based on a list of customized dictionaries, fuzzy logic
(including Soundex) and negation detection (Fig.1)

A set of expert-derived rules based on specific trigger
phrases are carefully designed to identify candidate drug-
AE pairs (Fig. 2)

« The customised Readpeer interface allows pharmaco-
vigilance (PV) experts to annotate and label the rule-based
algorithm output

Machine learning algorithm development

 Using 90% of the annotated data (n=1692), we built
models and tested the best performing ones on the
remaining 10% (n=188) as a form of validation.

« Term-frequency-inverse document frequency (TF-IDF) and
word2vec were used to vectorize the text before training
the models using k-nearest neighbour (kNN), Naive-Bayes
(NB), Stochastic Gradient Descent (SGD) and Random

Forest (RF) algorithms.

Figure 1. Workflow for rule-based algorithm development Optimal vectorization methods prior to machine learning
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« Machine learning approaches appear to be better at detecting

drug-AE pairs in discharge summaries than expert-derived

Flgure 3. Annotation Tool (selected screenshots) ,
rule-based algorithm.
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