Predicting the presence of drug-adverse event pairs in discharge summaries

Tan Hui Xing¹, Tham Mun Yee¹, Ang Pei San¹, Belinda Foo¹, Sally Soh¹, Desmond Teo¹, Tan Siew Har¹, Tang Yixuan², Yang Jisong², Ling Zheng Jye³

Anthony Tung², Cynthia Sung^{1,4}, Sreemanee Raaj Dorajoo¹

¹Vigilance & Compliance Branch, Health Sciences Authority, ²Department of Computer Science, School of Computing, National University of Singapore, ³National University Health System, ⁴Health Services and Systems Research, Duke-NUS Medical School For more information, please contact: sreemanee dorajoo@hsa.gov.sg

OBJECTIVE

To compare rule-based versus machine learning algorithms in their abilities to detect drug-adverse event (AE) pairs as documented in discharge summaries, as a means of enhancing post-market surveillance of approved medications.

INTRODUCTION

Hospital discharge summaries offer a potentially rich resource to enhance pharmacovigilance efforts to evaluate drug safety in real-world clinical practice. However, it is infeasible for experts to read through all discharge summaries to find cases of drug-adverse event (AE) relations.¹

This work presents a comparison of our previously published rule-based algorithm, named REAP (Readpeer for Active Pharmaco-vigilance), against a novel machine learning approach to automatically extract segments of text that contain drug-AE relationships.²

METHODOLOGY

Rule-based algorithm development

- NLP pipeline developed to extract drug and AE names based on a list of customized dictionaries, fuzzy logic (including Soundex) and negation detection (Fig.1)
- A set of expert-derived rules based on specific trigger phrases are carefully designed to identify candidate drug-AE pairs (Fig. 2)
- The customised Readpeer interface allows pharmacovigilance (PV) experts to annotate and label the rule-based algorithm output

Machine learning algorithm development

- Using 90% of the annotated data (n=1692), we built models and tested the best performing ones on the remaining 10% (n=188) as a form of validation.
- Term-frequency-inverse document frequency (TF-IDF) and word2vec were used to vectorize the text before training the models using k-nearest neighbour (kNN), Naïve-Bayes (NB), Stochastic Gradient Descent (SGD) and Random Forest (RF) algorithms.

METHODOLOGY

Figure 1. Workflow for rule-based algorithm development

Figure 2. Selected Drug-AE Relationship Rules

No	Relation Rule Group Phrase Set		Exam Isoniazid DII	
1 Drug Cause AE		Cause: {caused, induced, resulted in,}		
2	AE AttributeTo drug	AttributeTo: {attributed to, due to, secondary to}	Hypoglyce to glime	
3	AllergyTo drug	AllergyTo: {da to, allergic to,}	Allergic to	
4	Drug <i>StopAfter</i> AE, word distance (drug,AE) < 12	StopAfter: {stop, held off, discontinued,}	Simva discontinu leg mu became	
5				

Figure 3. Annotation Tool (selected screenshots)

RESULTS & DISCUSSION

Expert validation Predict drug-AE relation Potential sentence output

Drug name extraction

ples

induced

emia due epiride

penicillin

statin ued after scles painful

Annotation 54. hsa2 2017-12-08 17:16:55

Correct 🔥 🖓 🖓 🖓 1. hsa2 2017-12-08 17:18:48 RUG:ertapener

P0

Optimal vectorization methods prior to machine learning

Training Phase (n=1692)							
Vectorization method	Average	Average	Average				
	Precision	Recall	F-score				
TF-IDF	0.778	0.704	0.738				
Word2vec	0.840	0.718	0.772				

Word2vec word embeddings generated models with a higher average precision and recall compared to TF-IDF. Therefore, all validation phase models were built using word2vec.

Optimal vectorization methods prior to machine learning

Validation Phase (n=188)							
	Precision	Recall	F-score				
Rule-based algorithm	0.757	0.586	0.661				
k-Nearest neighbour	0.780	0.780	0.780				
Naïve Bayes	0.820	0.690	0.750				
Stochastic Gradient Descent	0.820	0.660	0.740				
Random Forest	0.830	0.750	0.790				

CONCLUSION

Machine learning approaches appear to be better at detecting drug-AE pairs in discharge summaries than expert-derived rule-based algorithm.

ACKNOWLEDGEMENTS

This work was supported by a Strategic Positioning Fund grant from the Biomedical Research Council of the Agency for Science, Technology and Research of Singapore (SPF2014/001).

SELECTED REFERENCES

1.G.B. Melton et al. Automated detection of adverse events using natural language processing of discharge summaries. JAMIA 12 (4) (2005) 448-45. 2.T Yixuan et al. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer IJMI 128 (2019) 62-70.