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Abstract

The development of reliable methods for restoring susceptibility after antibiotic resistance

arises has proven elusive. A greater understanding of the relationship between antibiotic

administration and the evolution of resistance is key to overcoming this challenge. Here we

present a data-driven mathematical approach for developing antibiotic treatment plans that

can reverse the evolution of antibiotic resistance determinants. We have generated adap-

tive landscapes for 16 genotypes of the TEM β-lactamase that vary from the wild type geno-

type “TEM-1” through all combinations of four amino acid substitutions. We determined the

growth rate of each genotype when treated with each of 15 β-lactam antibiotics. By using

growth rates as a measure of fitness, we computed the probability of each amino acid sub-

stitution in each β-lactam treatment using two different models named the Correlated Proba-

bility Model (CPM) and the Equal Probability Model (EPM). We then performed an

exhaustive search through the 15 treatments for substitution paths leading from each of the

16 genotypes back to the wild type TEM-1. We identified optimized treatment paths that re-

turned the highest probabilities of selecting for reversions of amino acid substitutions and

returning TEM to the wild type state. For the CPMmodel, the optimized probabilities ranged

between 0.6 and 1.0. For the EPMmodel, the optimized probabilities ranged between 0.38

and 1.0. For cyclical CPM treatment plans in which the starting and ending genotype was

the wild type, the probabilities were between 0.62 and 0.7. Overall this study shows that

there is promise for reversing the evolution of resistance through antibiotic treatment plans.

Introduction

Antibiotic resistance is an inevitable outcome whenever antibiotics are used. There are many

reasons for this: 1) As humans (also as eukaryotes), we are vastly outnumbered by bacteria in

nearly all measures, including total population size, biomass, genetic diversity, emigration, and
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immigration [1]; 2) bacteria can use horizontal gene transfer to share resistance genes across

distantly related species of bacteria, including non-pathogens [2]; 3) compared to humans, bac-

teria have relatively few vulnerable target sites [3]; 4) microbes are the sources of nearly all anti-

biotics that are used by humans [4]. Given the overwhelming numbers of bacteria, the limited

number of target sites, the numerous ways that they can infect humans, and that they have

been exposed to naturally occurring antibiotics for billions of years, resistance to antibiotics

used by human populations is unavoidable.

Once resistance is present in a bacterial population, it is exceedingly difficult to remove for

several reasons. If any amount of antibiotic is present in the environment, antibiotic resistance

genes will confer a large fitness advantage [5], and even when antibiotics are not present in an

environment, the fitness costs for carrying and expressing resistance genes are small to non-ex-

istent [6]. In addition to it being difficult to remove antibiotics from the environment [7], even

if humans were to completely abandon the use of antibiotics, resistance would persist for years

[8].

Efforts to remove resistance genes from clinical environments by either discontinuing or re-

ducing the use of specific antibiotics for some period of time, either through general reduction

of antibiotic consumption or periodic rotations of antibiotics (cycling) have not worked in any

reliable or reproducible manner [9]; indeed it would have been surprising if they had worked

[10],[11].

Since antibiotic resistance is unavoidable, it only makes sense to accept its inevitability and

develop methods for mitigating the consequences. One reasonable approach is to rotate the use

of antibiotics. This has been implemented in many ways and there are recent studies to model

the optimal duration, mixing versus cycling, and how relaxed antibiotic cycles may be and still

function as planned [12, 13]. However, none of those models have focused on developing a

method for designing an optimal succession of antibiotics.

In a previous publication [14], we proposed that susceptibility to antibiotics could be re-

stored by rotating consumption of multiple antibiotics that are a) structurally similar, b) inhib-

it/kill bacteria through the same target site, and c) result in pleiotropic fitness costs that reduce

the overall resistance of bacteria to each other. We presented a proof-of-principle example [14]

of how this might work with a series of β-lactam antibiotics in which some of them would select

for new amino acid substitutions in the TEM β-lactamase and others that would select rever-

sions in TEM ultimately leading back to the wild type (un-mutated) state. We have focused

particularly on β-lactamases because there is often no fitness cost associated with their expres-

sion, and they are particularly difficult to remove from clinical microbial populations.

Our current work seeks to identify β-lactam treatment plans that have the highest probabili-

ty of returning a population expressing a small number of variant TEM genotypes to the wild

type state. The wild type TEM-1, and a handful of its descendants, confers resistance to penicil-

lins alone. However, most of the descendants confer resistance to either cephalosporins or pen-

icillins combined with β-lactamase inhibitors (inhibitor resistance), and a few confer resistance

to both. Of the 194 clinically identified TEM genotypes that encode unique amino acid se-

quences [15], 174 (89.7%) differ from the wild type TEM-1 by at most four amino acid substi-

tutions (see Table 1). Our choice of a system that includes four amino acid substitutions is

based upon an apparent threshold for amino acid substitutions among functional TEM geno-

types. The rarity of the co-existence of cephalosporin resistance and inhibitor resistance and

the fact that no single substitution confers both phenotypes suggested that sign epistasis (i.e. re-

versals of substitutions from beneficial to detrimental) exists as the substitutions that contrib-

ute to this dual phenotype are combined. We have assumed that substitutions arise according

to the strong selection weak mutation model (SSWM) [16] in which single substitutions reach

fixation before the next substitution occurs. Recent work [17] in addition to past phylogenetic
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analysis [18] and competition experiments [19] suggest that this is a valid model for

TEM evolution.

The ability to apply selective pressures that favor reversions of substitutions within an

evolved TEM genotype would increase the number of antibiotics that could be used. To embark

upon our effort of determining the best way to do this, we decided to create a model system

based upon the TEM-50 genotype, which differs from TEM-1 by four amino acid substitutions.

All four substitutions by themselves confer clearly defined resistance advantages in the pres-

ence of certain antibiotics. Additionally, TEM-50 is one of the few genotypes that simulta-

neously confers resistance to cephalosporins and inhibitor combined therapies.

Results

From experimental data to mathematical models

We created all 16 variant genotypes of the four amino acid substitutions found in TEM-50

using site directed mutagenesis (Table 2) and measured the growth rates of 12 replicates of E.

Table 1. Distribution of substitutions among TEM enzymes.

Number of amino acid substitutions Number of identified TEM genotypes

1 53

2 53

3 37

4 31

5 10

6 2

7 2

8 0

9 0

10 1

11 1

doi:10.1371/journal.pone.0122283.t001

Table 2. Variant Genotypes Created, Binary Codes, Substitutions and (Names of Genotypes Identified in Clinical Isolates).

Number of Substitutions Binary Genotype Code Genotypes with substitutions found in TEM-50

0 0000 No substitutions, (TEM-1)

1 1000 M69L, (TEM-33)

1 0100 E104K, (TEM-17)

1 0010 G238S, (TEM-19)

1 0001 N276D, (TEM-84)

2 1100 M69L, E104K, (Not identified)

2 1010 M69L, G238S, (Not identified)

2 1001 M69L, N276D, (TEM-35)

2 0110 E104K, G238S, (TEM-15)

2 0101 E104K, N276D, (Not identified)

2 0011 G238S, N276D, (Not identified)

3 1110 M69L, E104K, G238S, (Not identified)

3 1101 M69L, E104K, N276D, (Not Identified)

3 1011 M69L, G238S, N276D, (Not identified)

3 0111 E104K, G238S, N276D, (Not identified)

4 1111 M69L, E104K, G238S, N276D, (TEM-50)

doi:10.1371/journal.pone.0122283.t002
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coli DH5α-E expressing each genotype in the presence of one of fifteen β-lactam antibiotics

(Table 3). Each genotype was grown in each antibiotic in 12 replicates. We computed the mean

growth rate of those replicates (Table 4) and the variance of each sample, as well as the signifi-

cance between adjacent genotypes that differed by one amino acid substitution. This was done

using one-way ANOVA analysis.

The results are summarized in Figs 1–15, where the arrows in the fitness graphs connect

pairs of adjacent genotypes. For each comparison of adjacent genotypes, we indicate the one

whose expression resulted in the faster growth by directing the arrowhead towards that geno-

type, and implying that evolution would proceed in that direction if the two genotypes oc-

curred simultaneously in a population [20, 21]. In other words, the node indicated by the

arrowhead would increase in frequency and reach fixation in the population, while the other

would be lost. Red arrows indicate significance, and black arrows indicate differences that were

not statistically significant by ANOVA, but that may still exist if a more sensitive assay

was used.

Figs 1–15. These figures present fitness graphs, which are a visual summary of the adaptive

landscape 2x2x2x2 tensors in which each resistance phenotype conferred by each TEM geno-

type is enumerated. Arrows pointing upward represent selection for the addition of a substitu-

tion. Arrows pointing downward represent selection for reversions. Red arrows indicate

significance between adjacent growth rates as determined by one way ANOVA. Genotypes that

confer the most resistance to each antibiotic are shown in red.

We rank ordered the genotypes (Table 5) in each landscape diagram with a score from 1 to

16, with the genotype promoting the fastest growth receiving a score of “1” and the genotype

with the slowest growth a score of “16”. This analysis shows that all genotypes have a score of 5

or better and a score of 13 or worse, in at least one landscape, indicating that there is abundant

pleiotropy as antibiotic selective pressures change. That pleiotropy provides a basis for effec-

tively alternating antibiotic to restore the wild type.

We considered the 15 antibiotics previously mentioned in Table 3: AMP, AM, CEC, CTX,

ZOX, CXM, CRO, AMC, CAZ, CTT, SAM, CPR, CPD, TZP, and FEP and their interactions

with a bi-allelic 4-locus TEM system {0,1}4 where four functionally important amino acid resi-

dues involved in the evolution of TEM-50 are considered. The number "1" denotes an amino

Table 3. β-lactam Antibiotics used for this study.

β-lactam Antibiotic FDA approval Antibiotic Group

Ampicillin (AMP) 1963 Aminopenicillin

Amoxicillin (AM) 1972 Aminopenicillin

Cefaclor (CEC) 1979 Cephalosporin

Cefotaxime (CTX) 1981 Cephalosporin

Ceftizoxime (ZOX) 1983 Cephalosporin

Cefuroxime (CXM) 1983 Cephalosporin

Ceftriaxone (CRO) 1984 Cephalosporin

Amoxicillin + Clavulanic acid (AMC) 1984 Penicillin derivative + β-Lactamase inhibitor

Ceftazidime (CAZ) 1985 Cephalosporin

Cefotetan (CTT) 1985 Cephalosporin

Ampicillin + Sulbactam (SAM) 1986 Penicillin derivative + β-Lactamase inhibitor

Cefprozil (CPR) 1991 Cephalosporin

Cefpodoxime (CPD) 1992 Cephalosporin

Pipercillin + Tazobactam (TZP) 1993 Penicillin derivative + β-Lactamase inhibitor

Cefepime (FEP) 1996 Cephalosporin

doi:10.1371/journal.pone.0122283.t003

Rational Design of Antibiotic Treatment Plans

PLOS ONE | DOI:10.1371/journal.pone.0122283 May 6, 2015 4 / 25



acid substitution, whereas "0" denotes no substitution at the site. We experimentally deter-

mined growth rates for all genotypes in our TEM system at a selected concentration of each an-

tibiotic. Those growth rates depend upon the states of the four amino acid residues. The

growth rates for all genotypes in one antibiotic can be represented by a real 2×2×2×2 tensor f =

(fijkl), where f(ar) is the fitness landscape for the antibiotic r. We can identify f(ar) with a vector

whose coordinates are indexed by {0,1}4. The resulting 15 vectors, one for each antibiotic, are

the rows in Table 4.

Our substitution modelM(f) is a functionM : R
16 ! R

16�16 that assigns a transition matrix

to each fitness landscape. The rows and columns ofM(f) are labeled by the genotypes {0,1}4 ac-

cording to the degree lexicographic order. The entries inM(f(ar))u,v represent the probability

that that genotype u is replaced by genotype v under the presence of antibiotic ar. For that rea-

son, the rows of our transition matrices have nonnegative entries and their rows sum to 1.

We require that our transition matrices respect the adjacency structure of the 4-cube, that

is,M(f)u,v = 0 unless u and v are vectors in {0,1}4 that differ in at most one coordinate. In other

Table 4. Average Growth Rates (x 10–3): the rows are the fitness landscapes.

0000 1000 0100 0010 0001 1100 1010 1001

AMP 1.851 1.570 2.024 1.948 2.082 2.186 0.051 2.165

AM 1.778 1.720 1.448 2.042 1.782 1.557 1.799 2.008

CEC 2.258 0.234 2.396 2.151 1.996 2.150 2.242 0.172

CTX 0.160 0.185 1.653 1.936 0.085 0.225 1.969 0.140

ZOX 0.993 1.106 1.698 2.069 0.805 1.116 1.894 1.171

CXM 1.748 0.423 2.940 2.070 1.700 2.024 1.911 1.578

CRO 1.092 0.830 2.880 2.554 0.287 1.407 3.173 0.540

AMC 1.435 1.417 1.672 1.061 1.573 1.377 1.538 1.351

CAZ 2.134 0.288 2.042 2.618 2.656 2.630 1.604 0.576

CTT 2.125 3.238 3.291 2.804 1.922 0.546 2.883 2.966

SAM 1.879 2.198 2.456 0.133 2.533 2.504 2.308 2.570

CPR 1.743 1.553 2.018 1.763 1.662 0.223 0.165 0.256

CPD 0.595 0.432 1.761 2.604 0.245 0.638 2.651 0.388

TZP 2.679 2.709 3.038 2.427 2.906 2.453 0.172 2.500

FEP 2.590 2.067 2.440 2.393 2.572 2.735 2.957 2.446

0110 0101 0011 1110 1101 1011 0111 1111

AMP 2.033 2.198 2.434 0.088 2.322 0.083 0.034 2.821

AM 1.184 1.544 1.752 1.768 2.247 2.005 0.063 2.047

CEC 2.230 1.846 2.648 2.640 0.095 0.093 0.214 0.516

CTX 2.295 0.138 2.348 0.119 0.092 0.203 2.269 2.412

ZOX 2.138 2.010 2.683 1.103 1.105 0.681 2.688 2.591

CXM 2.918 2.173 1.938 1.591 1.678 2.754 3.272 2.923

CRO 2.732 0.656 3.042 2.740 0.751 1.153 0.436 3.227

AMC 0.073 1.625 1.457 1.307 1.914 1.590 0.068 1.728

CAZ 2.924 2.756 2.688 2.893 2.677 1.378 0.251 2.563

CTT 3.082 2.888 0.588 3.193 3.181 0.890 3.508 2.543

SAM 0.083 2.437 0.094 2.528 3.002 2.886 0.094 3.453

CPR 2.042 2.050 1.785 1.811 0.239 0.221 0.218 0.288

CPD 2.910 1.471 3.043 0.963 0.986 1.103 3.096 3.268

TZP 2.528 3.309 0.141 0.609 2.739 0.093 0.143 0.171

FEP 2.652 2.808 2.832 2.796 2.863 2.633 0.611 3.203

doi:10.1371/journal.pone.0122283.t004
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words, we reasoned that resistant strains are most likely to be in competition with those that

express resistance genotypes that are immediately adjacent (vary by a single amino acid

substitution).

Fig 1. AMP: Ampicillin 256 μg/ml.

doi:10.1371/journal.pone.0122283.g001

Fig 2. AM: Amoxicillin 512 μg/ml.

doi:10.1371/journal.pone.0122283.g002
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Fig 3. CEC: Cefaclor 1 μg/ml.

doi:10.1371/journal.pone.0122283.g003

Fig 4. CTX: Cefotaxime 0.05 μg/ml.

doi:10.1371/journal.pone.0122283.g004
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Fig 6. CXM: Cefuroxime 1.5 μg/ml.

doi:10.1371/journal.pone.0122283.g006

Fig 5. ZOX: Ceftizoxime 0.03 μg/ml.

doi:10.1371/journal.pone.0122283.g005
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Fig 7. CRO: Ceftriaxone 0.045 μg/ml.

doi:10.1371/journal.pone.0122283.g007

Fig 8. AMC: Amoxicillin/Clavulanate 512 μg/ml and 8μg/ml.

doi:10.1371/journal.pone.0122283.g008
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Fig 9. CAZ: Cefazidime 0.1 μg/ml.

doi:10.1371/journal.pone.0122283.g009

Fig 10. CTT: Cefotetan 0.312 μg/ml.

doi:10.1371/journal.pone.0122283.g010
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Fig 11. SAM: Ampicillin/Sulbactam 8 μg/ml and 8μg/ml.

doi:10.1371/journal.pone.0122283.g011

Fig 12. CPR: Cefprozil 100 μg/ml.

doi:10.1371/journal.pone.0122283.g012
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Fig 13. CPD: Cefpodoxime 2 μg/ml.

doi:10.1371/journal.pone.0122283.g013

Fig 14. TZP: Pipercillin / Tazobactam 8.12μg/ml and 8 μg.ml.

doi:10.1371/journal.pone.0122283.g014
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Fig 15. FEP: Cefepime 0.0156μg/ml.

doi:10.1371/journal.pone.0122283.g015

Table 5. Rank Order of Genotypes in Each β-Lactam Antibiotic (Derived From Table 4).

Antibiotic 0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

AMP 11 12 9 10 7 5 15 6 8 4 2 13 3 14 16 1

AM 8 11 14 3 7 12 6 4 15 13 10 9 1 5 16 2

CEC 4 12 3 7 9 8 5 14 6 10 1 2 15 16 13 11

CTX 11 10 7 6 16 8 5 12 3 13 2 14 15 9 4 1

ZOX 14 11 8 5 15 10 7 9 4 6 2 3 12 16 1 3

CXM 11 16 2 7 12 8 10 15 4 6 9 14 13 5 1 3

CRO 10 11 4 7 16 8 2 14 6 13 3 5 12 9 15 1

AMC 9 10 3 14 6 11 7 12 15 4 8 13 1 5 16 2

CAZ 10 15 11 8 6 7 12 14 1 3 4 2 5 13 16 9

CTT 12 3 2 10 13 16 9 7 6 8 15 4 5 14 1 11

SAM 12 11 8 13 5 7 10 4 16 9 14 6 2 3 15 1

CPR 7 9 3 6 8 13 16 11 2 1 5 4 12 14 15 10

CPD 13 14 7 6 16 12 5 15 4 8 3 11 10 9 2 1

TZP 6 5 2 10 3 9 12 8 7 1 15 11 4 16 14 13

FEP 10 15 13 14 11 7 2 12 8 5 4 6 3 9 16 1

Best value 4 3 2 3 3 5 2 4 1 1 1 2 1 3 1 1

Worst value 14 16 14 14 16 16 15 15 16 13 15 14 15 16 16 13

Median value 10 11 7 7 9 8 7 12 6 6 4 6 5 9 15 2

Based on the strong patterns of pleiotropy we observed, we reasoned that the choice and the succession of antibiotics were at least as important as other

cycling considerations. We formalized our approach to identifying optimal antibiotic treatment paths as follows.

doi:10.1371/journal.pone.0122283.t005
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The combined effect of a sequence a1,. . .,ak of k antibiotics is described by a new transition

matrix

Mðfa1Þ �Mðfa2Þ � ::: �MðfakÞ

obtained as the product of the transition matrices for each drug.

For any genotype u other than 0000, our goal is to find a sequence of antibiotics which max-

imizes the probability of returning to the wild type. In other words, if we restrict to sequences

of length k our goal is to find a sequence of antibiotics a1,. . .,ak which maximizes the matrix

entryM(f(a1))�M(f(a2))�. . .�M(f(ak))u,0000. For each u this requires searching over all 15k antibi-

otic sequences of length k.

Finding optimal sequences of antibiotics

We used two substitution models to determine the optimal (highest probability) sequences of

β-lactams for returning TEM genotypes back to their wild type state. Briefly, the Correlated

Probability Model (CPM) allows probabilities to be based upon the actual growth rates. It is

given by applying Eq (3) to the growth rates in Table 4. The Equal Probability Model (EPM) as-

sumes that beneficial substitutions are equally likely and that only the direction of the arrows

in Figs 1–15 is important. This means that the matrix entryM(f)u,v is 1/N if genotype u has N

outgoing arrows and there is an arrow from u to v.

A visual summary of the highest probabilities according to the CPM is provided in Fig 16.

The CPM provides good estimates if fitness differences between genotypes are small [14, 22–

24]. The EPM has been used in settings where only rank order (as in Table 5) is available [25].

From the graph, it is possible to find candidate treatment plans. For example, when starting

at genotype 1010 the graph shows that the probability for ending at 0000 is 0.71for the se-

quence ZOX-TZP (0.71 is the product of the arrow labels). Similarly, when starting at 1111 the

probability for ending at 0000 is 0.62 for the sequence CEC-CAZ-TZP-AM. When starting at

0001 the graphs shows that a single drug gives probability at most 0.29, whereas the probability

for ending at 0000 for the sequence AMC-CRO-AM (one arrow up, two arrows down) is at

least 0.96�0.62 = 0.6.

This graph can also be used to generate treatment paths that start and end at the same geno-

type, making possible the development of a fixed treatment plan. For example, from a starting

point 0000, the probability for ending at 0000 is 0.62 for the sequence: CEC-CTX-ZOX-CPD-

CPR-CAZ-TZP-AM

For all sequences of antibiotics of a fixed length (two, three, four, five, and six), we examined

the probability that a given genotype is returned to the wild type state. It is worth noting that

within these paths, a single genotype can be repeated consecutively with different antibiotics,

thus making it possible to have an odd number of steps in the treatment paths when an even

number of subtitutions are introduced. For every starting genotype, we found we were able to

return to the wild type genotype with a probability between 0.6 and 1.0 when using the CPM

model and a probability of 0.375 and 1.0 when using the EPMmodel. These results are summa-

rized in Tables 6–9 and Fig 17. These results show the number of paths and their probabilities

(Tables 6 and 7) and the substitutions selected through the optimal treatment plans (Tables 8–

11) for returning to the wild type state from various starting points.

Once returned to the wild type state, we identified cycles that would allow for alternation of

antibiotics, and allow for some variation through amino acid substitution, but then rapidly re-

turn bacteria to the wild type state (Table 12 and Fig 18). Such cycles were possible for path

length of two, four, and six and the probabilities of those paths were respectively 0.704, 0.617,

0.617. We found that in the most probable cases, the genotype varied by only one amino acid

Rational Design of Antibiotic Treatment Plans
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Fig 16. Summary of CPM Substitutions with the Highest Probabilities. Each arrow is labeled by the drug or drugs corresponding to the maximal
transition probability, taken over all 15 drugs. Each arrow is also labeled by the maximal probability. The top panel shows which antibiotics selected the
addition of substitutions and the bottom panel shows which antibiotics selected reversions. Unlabled arrows are those with low probabilities across
all antibiotics.

doi:10.1371/journal.pone.0122283.g016

Rational Design of Antibiotic Treatment Plans

PLOS ONE | DOI:10.1371/journal.pone.0122283 May 6, 2015 15 / 25



substitution before reverting back to the wild type state. However, when treatment plans with

lower probabilities are considered, we find that more amino acid substitutions in the genotype

are allowed.

Discussion

In this study, we have developed an experimental approach for measuring pleiotropy and a

computational mathematical approach for optimizing antibiotic treatment paths. The experi-

mental approach we developed is rapid and high throughput, consistent with previous work

[26], and should be applicable to many species of resistant bacteria. The mathematical model

Table 7. Maximum Probability and Number of Paths Using EPM.

Starting
Genotype

1
Step

No. of
paths

2
Step

No. of
paths

3
Step

No. of
paths

4
Step

No. of
paths

5
Step

No. of
paths

6 Step No. of
paths

1000 1.0 1 1.0 3 1.0 7 1.0 15 1.0 31 1.0 63

0100 0.33 1 0.33 6 0.33 39 0.38 1 0.46 1 0.46 9

0010 0.50 1 0.50 4 0.50 6 0.50 8 0.50 10 0.50 12

0001 0.50 1 0.50 1 0.66 4 0.66 8 0.66 14 0.66 24

1100 - 0.33 27 0.39 1 0.39 1 0.39 4 0.46 5

1010 - 0.50 3 0.50 19 0.58 1 0.58 8 0.59 1

1001 - 0.66 2 0.66 4 0.66 7 0.66 12 0.69 1

0110 - 0.33 1 0.33 10 0.33 81 0.38 1 0.46 1

0101 - 0.29 1 0.38 1 0.46 1 0.46 4 046 1

0011 - 0.25 4 0.25 32 0.50 2 0.50 18 0.50 133

1110 - - 0.33 2 0.33 24 0.33 221 0.38 6

1101 - - 0.29 2 0.38 2 0.46 2 0.46 14

1011 - - 0.33 3 0.33 8 0.39 1 0.52 1

0111 - - 0.15 1 0.20 8 0.33 4 0.38 6

1111 - - - - 0.33 4 0.38 4 0.46 4

doi:10.1371/journal.pone.0122283.t007

Table 6. Maximum Probability and Number of Paths Using CPM.

Starting
Genotype

1
Step

No. of
paths

2
Step

No. of
paths

3
Step

No. of
paths

4
Step

No. of
paths

5
Step

No. of
paths

6
Step

No. of
paths

1000 1.0 1 1.0 3 1.0 7 1.0 15 1.0 31 1.0 63

0100 0.617 1 0.617 6 0.617 36 0.617 219 0.617 1360 0.617 8568

0010 0.715 1 0.715 2 0.715 3 0.715 4 0.715 5 0.715 6

0001 0.287 1 0.287 1 0.592 2 0.592 8 0.726 2 0.726 4

1100 - 0.617 3 0.617 18 0.617 108 0.617 657 0.617 4110

1010 - 0.715 1 0.715 6 0.715 27 0.715 112 0.715 453

1001 - 0.559 1 0.559 4 0.726 1 0.726 2 0.729 1

0110 - 0.617 1 0.617 10 0.617 78 0.617 555 0.617 3805

0101 - 0.592 1 0.592 9 0.612 1 0.612 9 0.617 34

0011 - 0.361 1 0.361 9 0.586 2 0.600 2 0.617 8

1110 - - 0.617 2 0.617 24 0.617 215 0.617 1720

1101 - - 0.592 2 0.592 24 0.617 12 0.617 252

1011 - - 0.532 1 0.532 1 0.684 1 0.690 1

0111 - - 0.586 1 0.600 1 0.617 4 0.617 84

1111 - - - - 0.617 4 0.617 72 0.617 906

doi:10.1371/journal.pone.0122283.t006
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we created expresses the problem of antibiotic resistance in general terms, and can therefore be

applied to other resistance phenotypes where pleiotropy occurs to identify the antibiotic treat-

ment plans that have the highest probability of reversing the evolution of resistance.

The purpose of this study was to determine whether it is possible to use selective pressures

to return TEM-genotypes to the wild type state, as observed in 1963 when TEM-1 was original-

ly isolated. The methods may also be used to select for any particular genotype within our data

set. As such, we may select with reasonably high probabilities, resistance genotypes that existed

at some prior point in time. To highlight this feature, we have named our software package

“Time Machine”.

Once given growth rates of adjacent genotypes, Time Machine returned treatment plans

that restored the wild type state as observed in 1963 with probabilities greater than 0.6 when

using the CPMmodel and greater than 3/8 (>0.375) when using EPM. These results suggest

that when possible it is desirable to use actual growth rates rather than rough ranking data.

Table 8. CPM Additions of Substitutions And Associated β-lactam Antibiotics FromOptimal Six Step
Treatment Plans (*MaximumProbability for Path).

Substitutions Drugs associated with substitutions in optimal paths (probability)

0000–1000 CTT(0.38*)

0000–0100

0000–0010

0000–0001

1000–1100

1000–1010

1000–1001

0100–1100 SAM(1.0*)

0100–0110 CTX(1.0*), CPD(1.0*)

0100–0101

0010–1010 CTT(0.22)

0010–0110

0010–0011

0001–1001 AM(1.0*), CTT(0.47), SAM(1.0*)

0001–0101

0001–0011

1100–1110 CAZ(0.85*), SAM(0.046), FEP(0.32)

1100–1101 AMP(1.0*),CAZ(0.15), SAM(0.95), FEP(0.68)

1010–1110 CEC(1.0*), CTT(0.47)

1010–1011

1001–1101

1001–1011 CTX(0.50*)

0110–1110 FEP(1.0*)

0110–0111 ZOX(1.0*), CXM(0.94), CPD(1.0*)

0101–1101 AMP(1.0*), FEP(1.0*)

0101–0111 CTX(0.58), ZOX(1.0*), CXM(0.59), CPD(0.85)

0011–1011 CTT(0.04)

0011–0111 ZOX(1.0*), CPD(1.0*)

1110–1111 AM(0.90), CRO(0.53), SAM(1.0*), CPD(0.39), FEP(0.72)

1101–1111 AMP(1.0*), SAM(1.0*), FEP(1.0*)

1011–1111 TZP(0.03)

0111–1111 CPD(1.0*)

doi:10.1371/journal.pone.0122283.t008
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While these treatment methods may have clinical value, we have yet to determine the ideal

duration of each therapy. Additionally the antibiotics included in our study may have different

applications in the clinic. A further issue is that if new genotypes arise, the treatment plan may

fail. The inclusion of more resistance genes in this type of approach may aid in the creation of

robust treatment plans that are effective even when unexpected genotypes arise.

The discrete optimization problem motivated by our goal to reverse resistance, or the chal-

lenge to build a better time machine, is of independent mathematical interest. Tables 6 and 7

suggest that the maximum probabilities in each row stagnate after a limited number of steps.

This is not always the case. We have created an example (see supplemental information) of two

substitution matrices on a 3-locus system where the maximum probabilities can be increased

indefinitely (S1 Fig).

These results show that great potential exists for remediation of antibiotic resistance

through antibiotic treatment plans when pleiotropic fitness costs are known for an appropriate

Table 9. CPM Reversions of Substitutions And Associated β-lactam Antibiotics FromOptimal Six
Step Treatment Plans (*MaximumProbability for Path).

Reversions Drugs associated with substitutions in optimal paths (probability)

1111–1110 CEC(1.0*), CAZ(0.74), CTT(0.29), CPR(1.0*), TZP(0.15)

1111–1101 AM(1.0*), AMC(1.0*), CAZ(0.26), TZP(0.85)

1111–1011

1111–0111 ZOX(1.0*), CXM(1.0*)

1110–1100 TZP(0.49*)

1110–1010 AM(0.10), CRO(0.47*), CPD(0.28), FEP(0.28)

1110–0110 CAZ(1.0*), CPR(1.0*), CPD(0.33), TZP(0.51)

1101–1100

1101–1001

1101–0101

1011–1010 TZP(0.30)

1011–1001 TZP(0.92*)

1011–0011 TZP(0.18)

0111–0110

0111–0101

0111–0011

1100–1000 CTT(0.25)

1100–0100 CTX(1.0*), ZOX(1.0*), CXM(1.0*)

1010–1000 CTT(0.53*), TZP(0.49)

1010–0010 ZOX(1.0*), TZP(0.43)

1001–1000 CTX(0.42), CTT(0.56)

1001–0001

0110–0100 CXM(0.58), TZP(1.0*)

0110–0010

0101–0100 CTX(0.42), CXM(0.41), CPD(0.15)

0101–0001

0011–0010 CTT(0.33), TZP(0.45)

0011–0001 CTT(0.20), TZP(0.55)

1000–0000 CPR(1.0*)

0100–0000 AM(0.62*)

0010–0000 TZP(0.71*)

0001–0000 CTT(0.092), CPR(0.14)

doi:10.1371/journal.pone.0122283.t009
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set of antibiotics. While developed using a model of Gram-negative antibacterial resistance,

this approach could also be used for Gram-positive bacteria and HIV treatment plans.

Methods

Experimental methods

Strains and Cultures. We expressed 16 mutant constructs of the blaTEM gene in plasmid

pBR322 from strain DH5-αE. The 16 genotypes differ at all combinations of four amino acid

residues and have been previously described [14]. We grew them overnight (16 hours) in

standing cultures and diluted them to a concentration of 1.9X105 as described elsewhere [14].

We transferred 80 μl of each culture to a 384-well plate with one genotype present in each of

the 16 rows. The first 12 wells of each row were antibiotic free (controls) and the last 12 wells

contained a single antibiotic at an inhibitory, sublethal concentration. We tested many concen-

trations and used those that maximized our ability to make comparisons between alleles.

After plating, a membrane is placed over the plate and simultaneously incubated/measured

in the Eon Microplate Spectrophotometer at a temperature of 25.1°C for 22 hours. This rela-

tively cool (<37°) temperature is used because degradation of the antibiotics is much slower,

while the growth rate of the bacteria is still sufficient to capture the complete exponential peri-

od of growth over the duration of the experiment. Overall, we have found that a temperature

~25°C yields more reliable and consistent measurement of growth rates in the presence

of antibiotics.

Measurements of cell density (light scattering) at a wavelength of 600 nanometers were au-

tomatically collected every 20 minutes after brief agitation to homogenize and oxygenate

the culture.

Fig 17. Summary of Optimal 6 Step CPM and EPM Treatment Paths beginning at genotype 1111 and ending at genotype 0000. An arrow indicates
that the substitution is included in a path that starts at 1111 and ends at 0000, where the pathway has non-zero probability. Black arrows show substitutions
present in six step paths computed using both the CPM and the EPM. Red arrows signify substitutions found only in optimum paths computed using the CPM
whereas blue signify substitutions only found using the EPM.

doi:10.1371/journal.pone.0122283.g017
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Growth Rates. The data obtained from the microplate spectrophotometer is exported to

the GrowthRates program to derive the growth rates. In essence, by measuring the optical den-

sity at frequent intervals the GrowthRates program can estimate the growth rate,α, through a

linear regression algorithm fitting the data from the exponential growth phase. Details can be

found in [27] in the section entitled “The Growth Curve” located on pages 233–4. There is not

a direct or simple correlation between this method and other methods such as minimum inhib-

itory (MIC) or disk diffusion testing. The output of this program for the data we collected was

a list f(a1),f(a2),. . .,f(ak) of 15 tensors, each of format 2×2×2×2. These are the rows in Table 4.

So if u ∊ {0,1}4 is a genotype, then f(ai)u is the fitness of genotype u in the presence of antibiotic

ai. This fitness is a growth rate, so we are here using the letter f for a quantity often denoted

by α.

Table 10. EPMAdditions of Substitutions and Associated β-lactamAntibiotics FromOptimal Six Step
Treatment Plans (*MaximumProbability for Path).

Mutations β-lactams associated with substitutions in optimal paths (probability)

0000–1000

0000–0100

0000–0010

0000–0001

1000–1100

1000–1010

1000–1001

0100–1100 SAM(1.0*)

0100–0110

0100–0101 TZP(1.0*)

0010–1010

0010–0110

0010–0011

0001–1001 AM(1.0*), SAM(1.0*)

0001–0101 TZP(1.0*)

0001–0011

1100–1110 CTT(1/4)

1100–1101 AMP(1.0*), CPR(1/4)

1010–1110 CTT(1/2)

1010–1011

1001–1101

1001–1011 CTX(1/2*)

0110–1110 CTT(1/3)

0110–0111

0101–1101 AM(1/2), AMC(1/2)

0101–0111

0011–1011 AMC(1/2*)

0011–0111

1110–1111 SAM(1.0*)

1101–1111

1011–1111 CTT(1/3)

0111–1111 SAM(1/2), CPD(1.0*)

doi:10.1371/journal.pone.0122283.t010
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One-Way Analysis of Variance (ANOVA) was then used to compare the means of the

growth rates obtained, and to determine if there were significant differences between the

growth rates of adjacent genotypes.

Correlated Probability Model (CPM): Once the growth rates have been determined under

various experimental conditions, the next step is to use them to compute fixation probabilities.

If the (multiplicative) absolute fitnessesWu andWv of two neighboring genotypes u and v,

differ by a small quantity then the (additive) relative fitness ln Wu

Wv

� �

can be approximated by

ln
Wv

Wu

� �

¼ Tðfv � fuÞ 1

Table 11. EPMReversions of Substitutions and Associated β-lactam Antibiotics FromOptimal Six
Step Treatment Plans (*MaximumProbability for Path).

Reversions β-lactams associated with substitutions in optimal paths (probability)

1111–1110 CTT(1/3)

1111–1101 AM(1.0*), AMC(1.0*)

1111–1011

1111–0111

1110–1100 TZP(1/2*)

1110–1010

1110–0110 CAZ(1.0*), CPR(1.0*), TZP(1/2)

1101–1100

1101–1001 CPR(1/3*)

1101–0101 CAZ(1.0*), TZP(1.0*)

1011–1010 CTT(1/3*)

1011–1001 AM(1/2*), CTT(1/3)

1011–0011

0111–0110

0111–0101 SAM(1/2*)

0111–0011

1100–1000 CTT(1/4), CPR(1/4), TZP(1/3*)

1100–0100 CTX(1.0*), ZOX(1.0*), CXM(1.0*)

1010–1000 CTT(1/2*), TZP(1/3)

1010–0010

1001–1000 CEC(1/2*), CTX(1/2*), CTT(1/2*), CPR(1/2*), TZP(1/3)

1001–0001 CEC(1/2*), CPR(1/2*)

0110–0100 TZP(1.0*)

0110–0010

0101–0100 CEC(1/2*), AMC(1/2*)

0101–0001 AM(1/2*), CEC(1/2*)

0011–0010

0011–0001 AMC(1/2*)

1000–0000 CPR(1.0*)

0100–0000 FEP(1/4)

0010–0000 SAM(1/2*), TZP(1/2*)

0001–0000 CEC(1/2*), CPR(1/3), FEP(1/3)

doi:10.1371/journal.pone.0122283.t011
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Table 12. Cyclical Treatment Paths showing Substitutions and Associated β-lactam Antibiotics.

Path length and probability (prob) 0000-0010/ 0010–0000 0000-0100/ 0100–0000 0100-0110/ 0110–0100 0100-1100/ 1100–0100

2-step (0.70)

Cycle 1 AM/TZP

4-step (0.62)

Cycle 2 CEC/AM CTX/TZP

Cycle 3 CEC/AM SAM/CTX

Cycle 4 CEC/AM SAM/ZOX

Cycle 5 CEC/AM SAM/CXM

Cycle 6 CEC/AM CPD/TZP

6-step (0.62)

Cycle 7 CEC/AM CTX/TZP(2x)*

Cycle 8 CEC/AM CTX/TZP SAM/CTX

Cycle 9 CEC/AM CTX/TZP SAM/ZOX

Cycle 10 CEC/AM CTX/TZP SAM/CXM

Cycle 11 CEC/AM CTX/TZP, CPD/TZP

*Steps visited twice along the paths

doi:10.1371/journal.pone.0122283.t012

Fig 18. Summary of Optimal CPM 2, 4, and 6 Step Antibiotic Cycles. In this figure, cycles are distinguished from paths in that TEM-1 (0000) is the first and
last genotype visited, thus creating circular paths. An arrow indicates a substitution included in a mutational pathway which starts and ends at 0000, where
the mutational pathway has a non-zero probability for the optimal treatment cycle. The substitutions that are included in optimal two steps cycles are shown in
red. Substitutions that are included in optimal four and six step cycles are shown in blue. Four and six step cycles differ only in the number of substitutions
and reversions that occur within each cycle. Their probabilities are identical.

doi:10.1371/journal.pone.0122283.g018
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where T is the generation time. Using a Taylor series approximation,

ln
Wv

Wu

� �

�
Wv

Wu

� 1: 2

IfWv >Wu, then

pu;v ¼
fv � fu

X

ðfuj � fuÞ
3

is the probability for v to substitute u, where uj are the neighbors of u with higher fitness than u

[23].

Equal Probability Model (EPM): According to the EPMmodel, the probabilities are equal

for all beneficial substitutions, so that one needs the fitness graphs only for computing the

probabilities. The matrix entryM(f)u,v is 1/N if genotype u has N outgoing arrows and there is

an arrow from u to v.

CPM is accurate if fitness differences between genotypes are small, while EPMmay provide

better estimates if fitness differences are substantial. Indeed, if the fitness effects of all available

beneficial mutants exceed some threshold, then fixation probabilities are independent of fitness

values [28]. We applied both CPM and EPM, since no complete theory for substitution proba-

bilities exists. Additionally, comparison of two models is useful in learning how sensitive our

results are for variation in substitution probabilities.

Time Machine Programs. Optimal antibiotic sequences and pathways of genotypes: LetM

(f(a)) denote the 16×16 transition matrix we derived for the antibiotic labeled a (S1 File EPM

Prepare and S2 File CPM Prepare). For any sequence a1,a2,. . .ak of k antibiotics, we consider

the matrix productM(f(a1))M(f(a2))M(f(a3)). This product is also a 16×16 transition matrix.

Its entry in row u and column v is the fixation probability of genotype umutating to genotype

v under the antibiotic sequence a1,a2,. . .,ak. That probability is a sum of products of entries in

the individual matricesM(f(ai)), with one sum for each possible pathway of genotypes from u

to v. The Time Machine enumerates all 15k antibiotic sequences of length k, and it selects all se-

quences that maximize the entry in row u and column v of the matrix product (S3 File EPM

Run and S4 File CPM Run). In a subsequent step we then analyze these optimal antibiotic se-

quences, and for each such sequence, we extract the full list of genotype pathways that contrib-

ute (S5 File EPM Out and S6 File CPM Out).

We implemented this algorithm in the computer algebra software Maple, and we ran it for

k = 2,3,4,5,6. The running time of the program is slow because of the exponential growth in the

number of sequences. At present we do not know whether an efficient algorithm exists for solv-

ing our optimization problem for larger values of k.

Cycles of antibiotics: We also used this method to compute cyclical treatment paths in which

the starting and ending genotypes were the wild type 0000 (S7 File EPM CyclingOut and S8

File CPM CyclingOut). The problem we solved was somewhat different from the previous one,

in that we focused on obtaining the maximal probabilities of a cycle that includes some substi-

tutions and then returns to the wild type without halting. Halting means that adjacent geno-

types in a mutational pathway coincide, which is undesirable.

Supporting Information

S1 Fig. Locus Model. For any biallelic system and set of drugs, the maximum probabilities for

returning to the wild-type depend on how many steps one allows in the treatment plan. The

following example demonstrates that the maximum probabilities may increase by the number
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of steps indefinitely. Consider a three-loci system where the genotypes are ordered as 000; 100;

010; 001; 110; 101; 011; 111: Assume that the starting point is the genotype 100 and that Drugs

A and B (see the next page) are available. For the sequence A, the probability for ending at 000

is 0.9, for A-B-A 0.99, for A-B-A-B-A 0.999, and so forth.

(TIFF)

S1 File. EPM Prepare. File used to convert growth rate averages into data matrices.

(TXT)

S2 File. CPM Prepare. File used to convert growth rate averages into data matrices.

(TXT)

S3 File. EPM Run. Input file for computing the probabilities of all possible paths through the

landscapes under the EPMModel.

(TXT)

S4 File. CPM Run. Input file for computing the probabilities of all possible paths through the

landscapes under the CPMModel.

(TXT)

S5 File. EPM Out. Number of paths under the EPMmodel with the greatest probabilities and

the antibiotics and genotypes included in those paths.

(TXT)

S6 File. CPM Out.Number of circular paths under the CPMmodel with the greatest probabil-

ities and the antibiotics and genotypes included in those paths.

(TXT)

S7 File. EPM Cycling Out. Number of circular paths under the EPMmodel with the greatest

probabilities and the antibiotics and genotypes included in those paths.

(TXT)

S8 File. CPM Cycling Out. Number of circular paths under the CPMmodel with the greatest

probabilities and the antibiotics and genotypes included in those paths.

(TXT)
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