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Abstract

In this chapter, a new image denoising approach is proposed. It combines two image
denoising techniques. The first one is based on a wavelet transform (WT), and the second
one is a two-stage image denoising by PCA (principal component analysis) with LPG
(local pixel grouping). In this proposed approach, we first apply the first technique to the
noisy image in order to obtain the first estimation version of the clean image. Then, we
estimate the noise-level from the noisy image. This estimate is obtained by applying the
third technique of noise estimation from noisy images. The third step of the proposed
approach consists in using the first estimation of the clean image, the noisy image, and the
estimate of the noise-level as inputs of the second image denoising system (LPG-PCA). A
comparative study of the proposed technique and the two others denoising technique
(one is based on WT and and the second is based on LPG-PCA), is performed. This
comparative study used a number of noisy images, and the obtained results from PSNR
(peak signal-to-noise ratio) and SSIM (structural similarity) computations show that the
proposed approach outperforms the two other denoising approaches (the first one is
based on WT and the second one is based on LPG-PCA).
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1. Introduction

In the image acquisition process, the noise will be inevitably introduced so denoising is a

necessary step for ameliorating the image quality. As a primary low-level image processing,

noise suppression has been extensively studied, and numerous denoising approaches have

been proposed, from the earlier frequency domain denoising approaches and smoothing filters

[1] to the lately developed wavelet [2–11], curvelet- [12] and ridgelet- [13] based approaches,

sparse representation [14] and K-SVD approaches [15], shape-adaptive transform [16], bilateral

filtering [17, 18], nonlocal mean-based techniques [19, 20], and nonlocal collaborative filtering
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[21]. With the quick development of modern digital imaging devices and their increasingly

broad applications in our daily life, there are rising necessities of new denoising techniques for

higher quality of image. The WT (wavelet transform) [22] proved its effectiveness in noise

cancelation [2–11]. This transform decomposes the input signal into multiple scales which

represent different time-frequency components of the original signal. At each scale, some

operations, such as statistical modeling [4–6] and thresholding [2, 3], can be applied for

canceling noise. Noise reduction is performed by transforming back the processed wavelet

coefficients into spatial domain. Late development of WT-based denoising techniques includes

ridgelet- and curvelet-based techniques [12, 13] for line structure conservation. Despite WT

proved its effectiveness in denoising, it uses a fixed wavelet basis (with translation and

dilation) for representing image. However, for natural images, a rich amount of different local

structural patterns exists and therefore cannot be well represented by using just one fixed

wavelet basis. Consequently, WT-based techniques can generate many visual artifacts in the

denoising output. To overcome the problem of WT, in [23], Muresan and Parks proposed a

spatially adaptive principal component analysis (PCA)-based denoising technique, which

computes the locally fitted basis for transforming the image. In [15, 16], Elad and Aharon

proposed K-SVD-based denoising approach and sparse and redundant representation by

training a highly over-complete dictionary. In [16], Foi et al. applied a shape-adaptive discrete

cosine transform (DCT) to the neighborhood, which can attain very sparse representation of

the image and consequently lead to efficient denoising. All these approaches proved better

denoising performance than classical WT-based denoising techniques. The NLM (nonlocal

means) schemes used a very different philosophy from the above approaches in noise cancel-

ation. The NLM idea can be traced back to [24], where the similar image pixels are averaged

according to their intensity distance. Similar ideas were used in the bilateral filtering schemes

[17, 18], where both the spatial and intensity similarities are exploited for pixel averaging. The

NLM denoising framework was well established in [19]. In the image, each pixel is estimated

as the weighted average of all the pixels and the weights are determined by the similarity

between the pixels. This scheme was improved in [20], where the pair-wise hypothesis testing

was used in the NLM estimation. Inspired from the success of NLM schemes, Dabov et al. [21]

proposed a collaborative image denoising scheme by sparse 3D transform and patch matching.

They look for similar blocks in the image by using block matching and grouped these blocks

into a 3D cube. Then, a sparse 3D transform was applied to that cube, and noise was canceled

by Wiener filtering in the transformed domain. The so-called BM3D approach attains remark-

able denoising results, yet its implementation is a little complex. Lei Zhang et al. [25] have

presented an efficient PCA-based denoising approach with local pixel grouping (LPG). PCA is

a classical de-correlation technique in statistical signal processing, and it is pervasively used in

dimensionality reduction and pattern, etc. [26]. The original dataset is transformed into PCA

domain, and only the different most significant principal components are conserved. Conse-

quently, trivial information and noise can be eliminated. In [23], a PCA-based scheme was

proposed for image denoising by using a moving window for computing the local statistics,

from which the local PCA transformation matrix was estimated. This technique applies PCA

directly to the noisy image without data selection, and much residual noise and visual artifacts

appear in the denoised image. In the LPG-PCA-based technique, Lei Zhang et al. [25] modeled

a pixel and its nearest neighbors as a vector variable. The training samples of this variable are

chosen by grouping the pixels with similar local spatial structures to the underlying one in the
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local window. With such an LPG technique, the local statistics of the variables can be accu-

rately calculated so that the image edge structures can be well conserved after shrinkage in the

PCA domain for noise suppression. The LPG-PCA scheme proposed in [25] has two stages

where the first stage yields an initial image estimation by eliminating the most of the noise and

the second stage will further refine the first stage output. The two stages have the same

procedures except for the noise-level parameter. Since the noise is significantly reduced in the

first stage, the LPG precision will be much improved in the second stage so that the final

denoised image is visually much better. When compared with WT which uses a fixed basis

function for decomposing the noisy image, the proposed LPG-PCA approach is a spatially

adaptive image representation so that it can better characterize the image local structures.

When compared with BM3D and NLM approaches, the LPG-PCA-based technique proposed

in [25] can use a relatively small local window to group the similar pixels for PCA training, yet

it yields competitive results with state-of-the-art BM3D algorithm. In this paper we propose a

new image denoising approach which combines the dual-tree discrete wavelet transform (DT-

DWT)-based denoising approach [12] and the two-stage image denoising technique by PCA

with local pixel grouping (LPG) [25]. To evaluate this proposed technique, we have compared

it to the two techniques (the DT-DWT-based denoising technique [12] and LPG-PCA [25]). This

comparison is based on PSNR and SSIM computation. In the rest of this paper, we first will

deal with PCA. Then, we will be interested in DT-DWT [12]. After that we will deal with noise-

level estimation from the noisy image proposed in [27, 28]. Then, we will present the two

denoising techniques proposed in [12, 25]. After that we will detail the proposed image

denoising technique, and finally we will give results and evaluation.

2. Principal component analysis (PCA)

Let

X ¼

x11 x21 … xn1
x12 x22 … xn2
:
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:
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(1)

Xi ¼ x11 x
2
1…xn1

� �

(2)

representing the sample vector of xi. The mean value of Xi is computed as follows:

μi ¼
1

n

X

n

j¼1

Xi jð Þ: (3)

And then, the sample vector is centralized as follows:

Xi ¼ Xi � μi ¼ x1i x
2
i…xni

� �

(4)

with x
j
i ¼ x

j
i � μi. Accordingly, the centralized matrix of X is expressed as follows:
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X ¼ Xi � μ
i
¼ XT

i XT
2…x

T

m

h iT
: (5)

Finally, the covariance matrix of the centralized dataset is computed as follows:

Ω ¼
1

n
XX

T
: (6)

The PCA aim consists in finding an orthonormal transformation matrix P in order to de-

correlate X, i.e., Y ¼ PX, so that the matrix of covariance of Y is diagonal. Since the covariance

matrix Ω is symmetrical; therefore, it can be expressed as follows:

Ω ¼ ϕΛϕT (7)

where Λ ¼ diag λ1;λ2;…;λmf g is the diagonal eigenvalue matrix with λ1 ≥λ2 ≥… ≥λm and

ϕ ¼ ϕ1 ϕ2…ϕ
m

� �
represents the m�m orthonormal eigenvector matrix. The terms

λ1,λ2,…,λm and ϕ1,ϕ2,…,ϕ
m
are, respectively, the eigenvalues and the eigenvectors of Ω. By

setting the matrix P as follow:

P ¼ ϕT
, (8)

X can be de-correlated, i.e., Λ ¼ 1
n

Y

Y
T andY ¼ PX. An interesting property of PCA is that it fully

de-correlates the original datasetX. In general, the signal energywill concentrate on a small subset

of the PCA transformed dataset, whereas the noise energy will evenly spread over the whole

dataset. Consequently, the noise and signal can be better distinguished in the domain of PCA.

3. LPG-PCA denoising algorithm

3.1. Modeling of spatially adaptive PCA denoising

In [25] and in previous literature, the noise υ degrading the original image I is supposed to be

white and additive with standard deviation σ and zero mean, and the noisy image,Iυ, is

expressed as follows:

Iυ ¼ I þ υ (9)

Both noise υ and image I are supposed to be uncorrelated. The purpose of image denoising

consists in estimating the clean image I from Iυ, and the estimate is denoted by bI. The latter is

expected to be as close as possible to the original image, I. Two quantities describe an image

pixel. Those quantities are its intensity and the spatial location. However, the image local

structure is represented as a set of neighboring pixels at different intensity levels. As most of

the semantic information of an image is conveyed by its edge structures, edge conservation is

highly required in denoising of this image. In [25], the pixel and its nearest neighbors were
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modeled as a vector variable and perform denoising on the vector instead of the single pixel.

According to Figure 1, for an underlying pixel to be denoised, Lei Zhang et al. [25] set a K � K

window centered on it, and denoted by x ¼ x1;…; xm½ �T , m ¼ K2, the vector contains all com-

ponents within the window.

As the observed image is the original image degraded by the noise, they denote the noisy

vector of x by [25]:

xυ ¼ xþ υ (10)

x where υ ¼ υ1…υm½ �T , xυ
k
¼ xk þ υk, k ¼ 1,…, m, and xυ ¼ xυ1…xυm

� �

. For estimating x from the

noisy vector, xυ, they are viewed as (both noiseless and noisy) vector variables so that one can

use the statistical techniques such as PCA. For canceling the noise from the noisy vector xυ by

using PCA, a set of training samples of xυ is needed so that the covariance matrix of xυ and

therefore the PCA transformation matrix can be computed. For this aim, Lei Zhang et al. [25]

have used an L� L L > Kð Þ training block centered on xυ in order to find the training samples,

as illustrated in Figure 1. The simplest manner consists in taking the pixels in each possible

K � K block within the L� L training block as the samples of noisy variable xυ. In this way, for

each component xυ
k
of xυ, there are in total L� K þ 1ð Þ2 training samples. Though, there can be

very different blocks from the given central K � K block in the L� L training window, taking

all the K � K blocks as the training samples of xυwill lead to inaccurate estimation of the matrix

of covariance of xυ, which subsequently leads to inaccurate estimation of the PCA transforma-

tion matrix and finally results in much residual noise. Consequently, selecting and grouping

the training samples that are similar to the central K � K block are required before image

denoising by applying the PCA transform.

3.2. Local pixel grouping (LPG)

Grouping the training samples similar to the central K � K block in the L� L training window

is certainly a problem of classification, and therefore different grouping techniques such as

Figure 1. Illustration of the modeling of LPG-PCA-based denoising [25].
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correlation based matching, block matching, K-means clustering, etc. can be used based on

different criteria. The block matching-based technique may be the simplest but very efficient

one, and it is used in [25] for LPG. There are totally L� K þ 1ð Þ2 possible training blocks of xυ
in the L� L training window. We will denote xυ0 in the column sample vector which contains

the pixels in the central K � K block, and denoted by xυi , i ¼ 1, 2,…, L� K þ 1ð Þ2 � 1, the sam-

ple vectors correspond to the other blocks. Let xi and x0 be, respectively, the associated

noiseless sample vectors of xυi and xυ0 . It can be simply computed that

ei ¼
1

m

X

m

k¼1

xυ0 kð Þ � xυi kð Þ2 ≈
1

m

X

m

k¼1

x0 kð Þ � x0 kð Þ2 þ 2σ2 (11)

In Eq. (11), the fact that noise υ is white and uncorrelated with signal is used. With Eq. (11), if

we have the following condition

ei < T þ 2σ2 (12)

where T designates a preset threshold, then we select xυi as a sample vector of xυ. Assume that n

sample vectors of xυ are selected including the central vector xυ0. For the expression convenience,

these sample vectors are denoted as xυ0 , x
υ

1 ,…, xυn�1. The noiseless counterparts of those vectors

are denoted as x0, x1,…, xn�1, accordingly. Then, the training dataset for xυ is constituted by.

Xυ ¼ xυ0; x
υ

1;…; xυn�1

� �

(13)

The noiseless counterpart of Xυ is designated as X ¼ x0; x1;…; xn�1½ �. To insure the existence of

enough samples in calculating the PCA transformation matrix, ncould not be too small.

Practically speaking, it will be used in denoising at least c �m training samples of xυ, with

c ¼ 8˜10. That is to say that in case of n < c �m, we will use the best c �m-matched samples in

PCA training. Often, the best c �m-matched samples are robust for estimating the local statis-

tics of image, and this operation makes the algorithm more stable for computing the PCA

transformation matrix. The problem now is how to estimate from the noisy data Xυ, the

noiseless dataset X. Once this dataset X is estimated, the central block and therefore we can

extract the central underlying pixel. Such procedure is applied to each pixel, and then the

entire image Iυ can be denoised. The LPG-PCA-based denoising is detailed in [25], and the

denoising refinement in the second stage will be detailed in the next part of this paper.

3.3. Denoising refinement in the second stage

Most of the noise will be suppressed by employing the denoising procedures described in [25].

However, there is still much visually unpleasant residual noise in the denoised image. Figure 2

shows an example of image denoising where (a) is the original image Cameraman, (b) the

noisy version of it with PSNR ¼ 22:1 dB and σ ¼ 20, and að Þ is the denoised image with

PSNR ¼ 29:8 dB by employing the LPG-PCA technique proposed in [25]. Despite the remark-

able improvement of PSNR, one can still see much residual noise in the denoising output.

There are mainly two reasons for the residual noise. First, because of the strong noise in the

original dataset Xυ, the covariance matrix Ωxυ is much noise degraded, which leads to
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estimation bias of the PCA transformation matrix and therefore deteriorates the denoising

performance; second, the strong noise in the original dataset will also lead to LPG errors,

which therefore results in estimation bias of the covariance matrix Ωxυ
or Ωx. Consequently, it

is essential to further process the denoising output for a better image denoising. As the noise

has been much canceled in the first round of LPG-PCA denoising, the LPG correctness and the

estimation of Ωxυ
or Ωx can be much ameliorated with the denoised image. Consequently, the

LPG-PCA denoising procedure for the second round for enhancing the denoising results.

According to this figure, we remark that the visual quality is much ameliorated after the

second round of refinement. As shown in Figure 3, in the second round of LPG-PCA denoising

technique [25], the noise-level should be updated.

Figure 2. (a) Original image Cameraman, (b) corresponding noisy image (PSNR ¼ 22:1 dB), (c) denoised image after the

first round of the technique proposed in [25] (PSNR ¼ 29:8 dB), and (d) denoised image after the second round of the

proposed technique (PSNR ¼ 30:1 dB) [25].

Figure 3. Flowchart of the two-stage LPG-PCA denoising technique proposed in [25].
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Denote bybI, the denoised version of the noisy image in the first stage. ThebI can be expressed as

bI ¼ I þ υs (14)

where υs is the residual noise in the denoised image. The level estimation ofυs is denoted by

σs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E υ

2
s

� �q
and inputs it to the second round of LPG-PCA denoising algorithm. In [25], σs is

estimated based on the difference between Iυ andbI . Let

~I ¼ Iυ �bI ¼ υ� υs (15)

We have E ~I
2

h i
¼ E υ

2
� �

þ E υ
2
s

� �
� 2E υ � υs½ � ¼ σ

2 þ σ
2
s
� 2E υ � υs½ �. The υs can be seen as the

smoothed version of noise υ, and it mainly contains the low-frequency component of υ. Let

~υ ¼ υ� υs be their difference, and ~υ mainly contains the high-frequency component of υ.

There is E υ � υs½ � ¼ E ~υ � υs� þ E υ
2
s

� ��
. Generally, compared to E υ

2
s

� �
, E ~υ � υs�½ is much smaller,

and we can obtain the following approximation: E υ � υs½ � ≈E υ
2
s

� �
¼ σ

2
s
. Thus, from E ~I

2
h i

¼ σ
2þ

σ
2
s
� 2E υ � υsð Þ, we obtain

σ
2
s
≈ σ

2 � E ~I
2

h i
(16)

In practice, υs will include not only the residual noise but also the estimation error of noiseless

image I. Consequently, in the implementation [25], of Lei Zhang et al. let

σs ¼ Cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ
2 � E ~I

2
h ir

(17)

where Cs is a constant satisfying Cs < 1. In [25], Lei Zhang et al. found experimentally that

setting Cs around 0:35 can lead to satisfying denoising results for most of the testing images.

Figure 2d shows the denoised image (PSNR ¼ 30:1 dB) after the second round of the LPG-PCA

denoising technique [25]. Although the PSNR is not too much ameliorated on this image, we

can remark clearly that the visual quality is much ameliorated by efficiently eliminating the

residual noise obtained from the first round of denoising.

4. The proposed image denoising technique

As previously mentioned, in this chapter, a new image denoising technique is proposed. It

combines two denoising approaches. The first one is a dual-tree discrete wavelet (DT-DWT)-

based denoising method [12], and the second one is a two-stage image denoising by PCA with

LPG [25]. This proposed technique consists at the first step in applying the first denoising

approach [12] to the noisy image in order to obtain the first estimation of the clean image (the

Wavelet Theory and Its Applications244



cleaned image). Then, we estimate the level of noise corrupting the clean image. The cleaned

image, the noisy image, and the noise-level are used for applying the second approach which

is two-stage image denoising by PCA with LPG [25]. Figure 4 illustrates the block diagram of

the proposed technique.

According to this figure, the first step of the proposed image denoising technique consists

in applying the first denoising approach based on DT-DWT [12] to the noisy image, Ib, in

order to obtain a first estimate of the clean image, Id, and then estimates the noise-level, υ,

from Ib. The noisy images Ib, Id, and υ constitute the inputs of the second image denoising

system proposed in [25, 27]. The output of this system and the overall proposed one are

the final denoised image, Id1. In the image denoising system (LPG-PCA denoising) pro-

posed in [25, 27], Lei Zhang et al. have used the clean image, I, and the noise-level, υ, as

the inputs of this system [27]. However, only the noisy image, Ib, is available, and for this

raison, we have used in our proposed technique the denoising approach based on DT-

DWT [12] in order to obtain a cleaned image, Id, which is then used as a clean image, I.

This clean image is one important input of the denoising system proposed by Lei Zhang

et al. [27]. In the following two subsections, we will be interested in the first image

denoising approach based on DT-DWT [12] and the technique of noise-level estimation

proposed in [28, 29], from the noisy image, Ib.

5. The Hilbert transform

The Hilbert transform of a signal corresponds in Fourier plane to a filter with complex

gain, �i sign γð Þ [30]. This is corresponding to an impulse response vp 1
π t

� �

where vp is the

principal value in Cauchy sense [30]. The analytic signal is then constructed as follows:

Figure 4. The block diagram of the proposed image denoising technique.

Wavelets and LPG-PCA for Image Denoising
http://dx.doi.org/10.5772/intechopen.74453

245



z tð Þ ¼ x tð Þ þ iH x tð Þf g ¼ x tð Þ þ
i

π
vp

ð

þ∞

�∞

x sð Þ

t� s
ds (18)

This analytic signal has only positive frequencies. The Hilbert transform of a real signal is

also real. Instead of considering the Hilbert transform of the wavelet (which is defined

through the associated filters), we can consider the Hilbert transform of the signal, and the

analysis is performed with initial wavelet because we have f ;Hψa, t

D E

¼ Hf ;ψa, t

D E

[30].

The latter equality is justified by the fact that the Hilbert transform is considered as a

linear filter [30]. Therefore, we have the following scheme: let X nð Þ be the signal to be

analyzed with real wavelet by using the Mallat algorithm in order to obtain the wavelet

coefficients, d1 j; kð Þ. Then, we analyze HX nð Þ with the same wavelet, and we obtain the

coefficients d2 j; kð Þ. Then, we construct the complex coefficients: dcomplex ¼ d1 j; kð Þ þ i d2 j; kð Þ.

As follows, the magnitude of those coefficients is named Hilbert magnitude. The draw-

backs of this method are as follows: The support of the Hilbert transform of a wavelet

having a compact support is infinite. There is a computing disadvantage because the cost

of two wavelet transforms plus the Hilbert Transform. Theoretically speaking, it is possi-

ble to limit the drawback of the support of the Hilbert transform of the wavelet by using

an approximate of the Hilbert transform. However, this approximation cannot be opti-

mized for all scales [30]. One solution of this problem has been proposed by Kingsbury:

the dual tree [30].

6. Dual-tree complex wavelet transform

The dual tree complex wavelet (DT-CWT) permits to make signal analysis by using two

different trees of DWT, with filters selected in such manner to obtain approximately a signal

decomposition using analytic wavelet [30]. Figure 5 shows a tree of DT-CWT, using two

different filter banks: h1 and g1 are high-pass filters of the first and second trees, and h0 and g0
are low-pass filters of the same two trees [30]. The first tree gives the coefficients of the real

part, dr(j,k), and the second tree gives those of the imaginary part, di(j,k). After that, we

construct the complex coefficients dcomplex(j,k) = dr(j,k) + i di(j,k). The magnitude of those

coefficients is named dual-tree magnitude [30].

This Q-shift dual-tree complex wavelet transform (Figure 5) is in 1D. Synthesis of the

filters adapted to this structure has been performed by many research works. Particularly,

Kingsbury [30] proposed some filters named Q-shift. In [30], some filters are employed,

and their utilization is equivalent to the signal analysis by wavelets illustrated in Figure 6.

We can see in this figure that the wavelet corresponding to the imaginary part tree is very near

to the Hilbert transform of the wavelet corresponding to the real part tree [30]. Finally, the

utilization of this structure requires an operation of prefiltering; it means that the filters used in

the first step are not the same as those used in the next step. The advantages of this method

compared to the simple Hilbert transform (Section 5) are [30]:
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• A lower computation cost ( Two DWT),

• An approximate of the Hilbert transform, is optimized for each scale,

• The possibility of an exact reconstruction is preserved.

Figure 5. Dual tree of real filters for the Q-shift DT-CWT, giving real and imaginary parts of complex coefficients from

tree (a) and tree (b), respectively [30].

Figure 6. Q-shift wavelet obtained with filters Antonini [30].
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The principal drawback of the DT-CWT is the non-possibility of the use of the well-known

wavelets of the DWT (Daubechies wavelet, Spline, etc.) and therefore the non-possibility to

choose the number of vanishing moments (all the Q-shift filter gives wavelets with two

vanishing moments).

6.1. 2D DT-CWT

To explain how the DT-CWT produces oriented wavelets, consider the 2D wavelet ψ x; yð Þ ¼

ψ xð Þ � ψ yð Þ associated with the row-column implementation of the wavelet transform, where

ψ xð Þ is a complex wavelet (approximately analytic) and is expressed as follows [31]:

ψ xð Þ ¼ ψh xð Þ þ i ψg xð Þ: (19)

Therefore, we obtain the following expression of ψ x; yð Þ:

ψ x; yð Þ ¼ ψh xð Þ þ iψg xð Þ
h i

ψh yð Þ þ iψg yð Þ
h i

¼ ψh xð Þψh yð Þ � ψg xð Þψg yð Þþ

i ψg xð Þψh yð Þ þ ψh xð Þψg yð Þ
h i

(20)

The following idealized diagram (Figure 7) illustrates the Fourier spectrum support of this

complex wavelet [31].

Since the (approximately) 1D wavelet spectrum is supported on just one side of the frequency

axis, the complex 2D wavelet (ψ x; yð Þ) spectrum is supported in just one quadrant of the 2D

frequency plane. That is why the complex 2D wavelet, ψ x; yð Þ, is oriented. If the real part of this

complex wavelet is taken, then the sum of two separable wavelets is obtained:

Real Part ψ x; yð Þf g ¼ ψh xð Þψh yð Þ � ψg xð Þψg yð Þ: (21)

Since the real function spectrum should be symmetric with respect to the origin, then the

spectrum of this real wavelet is supported in two quadrants of the 2D frequency plane (Figure 8).

Unlike the real separable wavelet, the support of the spectrum of this real wavelet has not the

checkerboard artefact and consequently this real wavelet (illustrated in the second panel of

Figure 11), is oriented at �45 ∘ . It is deserving mentioning that this construction is depending

on ψ xð Þ ¼ ψh xð Þ þ iψg xð Þ being (approximately) analytic or equivalently on ψg xð Þ being

Figure 7. Idealized diagram illustrating the Fourier spectrum support of the complex wavelet, ψ x; yð Þ ¼ ψ xð Þ � ψ yð Þ [31].
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approximately the Hilbert transform of ψh xð Þ (ψg xð Þ ≈H ψh xð Þ
� �

). Note that ψh xð Þψh yð Þ is the

sub-band HH of a separable 2D real wavelet transform implemented employing the filters

h0 nð Þ
0
;h1 nð Þ

n o

. The term ψg xð Þψg yð Þ is also the sub-band HH which is obtained from the

application of a real separable wavelet transform. The latter is implemented by employing the

filters g0 nð Þ
0
;g1 nð Þ

n o

. To have a real 2D wavelet oriented at þ45 ∘ , we consider now the complex

2D wavelet ψ2 x; yð Þ ¼ ψ xð Þψ yð Þwhere ψ yð Þ is the complex conjugate of ψ yð Þ and, as previ-

ously mentioned, ψ xð Þ is approximately the analytic wavelet, ψh xð Þ þ iψg xð Þ. Therefore, we

have

ψ2 x; yð Þ ¼ ψh xð Þ þ iψg xð Þ
h i

ψh yð Þ � iψg yð Þ
h i

¼ ψh xð Þψh yð Þ þ ψg xð Þψg yð Þ þ i ψg xð Þψh yð Þ þ ψh xð Þψg yð Þ
h i (22)

The support in the 2D frequency plane of this complex wavelet spectrum is illustrated in

Figure 9.

As above, the spectrum of the complex wavelet, ψ2 x; yð Þ, is supported in just one quad-

rant of the 2D frequency plane. If the real part of this complex wavelet is taken, then we

have

Real Part ψ2 x; yð Þ
� �

¼ ψh xð Þψh yð Þ þ ψg xð Þψg yð Þ: (23)

The spectrum of which is supported in two quadrants of the 2D frequency plane as illustrated

in Figure 10.

Again, neither the wavelet nor the spectrum of this real wavelet has the spectrum of the

checkerboard artifact. This real 2D wavelet is oriented at þ45 ∘ as illustrated in the fifth panel

of Figure 11. To have four more oriented real 2D wavelets, one can repeat this procedure on

Figure 8. Idealized diagram illustrating the support of spectrum of this real wavelet, Real Part ψ x; yð Þf g [31].

Figure 9. The idealized diagram in 2D frequency plane of the spectrum of this complex wavelet [31].
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the complex wavelets expressed as follows: ϕ xð Þψ yð Þ, ψ xð Þϕ yð Þ, ϕ xð Þ ψ
⇀

yð Þ, and ψ xð Þϕ yð Þ
where we have

ψ xð Þ ¼ ψh xð Þ þ iψg xð Þ (24)

ϕ xð Þ ¼ ϕh xð Þ þ i ϕg xð Þ (25)

By taking the real part of each of these wavelets, one can obtain four real oriented 2D wavelets.

Moreover, the two already obtained in Eqs. (21) and (23). Precisely, we have six wavelets

expressed as follows:

ψi x; yð Þ ¼ 1
ffiffiffi

2
p ψ1, i x; yð Þ � ψ2, i x; yð Þ

	 


(26)

ψiþ3 x; yð Þ ¼ 1
ffiffiffi

2
p ψ1, i x; yð Þ þ ψ2, i x; yð Þ

	 


(27)

For i ¼ 1, 2, 3, the two separable 2-D wavelet bases are expressed as follow:

Figure 10. Idealized diagram in 2D frequency plane of the spectrum Real Part ψ2 x; yð Þ
� �

[31].

Figure 11. Typical wavelets associated with the real oriented 2D dual-tree wavelet transform. Top row illustrates the

wavelets in the space domain: bottom row illustrates the (idealized) support of the Fourier spectrum of each wavelet in 2D

frequency plane. The absence of the checkerboard phenomenon is observed in both frequency and spatial domains.
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ψ1,1 x; yð Þ ¼ ϕh xð Þψh yð Þh,ψ2,1 x; yð Þ ¼ ϕg xð Þψg yð Þg, (28)

ψ1,2 x; yð Þ ¼ ψh xð Þϕh yð Þh,ψ2,2 x; yð Þ ¼ ψg xð Þϕg yð Þg, (29)

ψ1,3 x; yð Þ ¼ ψh xð Þψh yð Þh,ψ2,3 x; yð Þ ¼ ψg xð Þψg yð Þg, (30)

The normalization factor 1=
ffiffiffi

2
p

is used only so that the sum/difference operation constitutes

an orthonormal operation. In Figure 11 the six real oriented wavelets derived from a pair of

typical wavelets satisfying ψg xð Þ ≈H ψh xð Þ
� �

are illustrated. Compared to separable wave-

lets, these six non-separable wavelets succeed in isolating different orientations. Each of

these six wavelets are aligned with a specific direction. Moreover, no checkerboard effect

appears. In addition, they cover more distinct orientations than the separable wavelets

obtained from the application of DWT. Moreover, since the sum/difference operation is

orthonormal, the wavelet set is obtained from integer translates and dyadic dilations from a

frame [31].

7. The technique of Noise-level estimation

In many image processing applications, the noise-level is an important parameter. For exam-

ple, the performance of an image denoising technique can be much degraded due to the poor

noise-level estimation. The most available denoising techniques simply supposed that the

noise-level is known that largely prevents them from practical employment. Furthermore,

even with the given true noise-level, those denoising techniques still cannot achieve the best

performance, precisely for scenes with rich texture. Xinhao Liu et al. [28, 29] have proposed a

technique of patch-based noise-level estimation, and they suggested that the noise-level

parameter should be tuned according to the complexity of the scene. Their approach [28, 29]

includes the process of selecting low-rank patches without high-frequency components from a

single noisy image. Then, the noise-level was estimated from the selected patches employing

principal component analysis. Because the exact noise-level does not always provide the best

performance for non-blind denoising. Experiments prove that both the stability and precision

are superior to the state-of-the-art noise-level estimation technique for different noise-levels

and scenes.

8. Evaluation criteria

In this section, we will evaluate the three techniques which are the proposed image denoising

techniques: the first image denoising approach based on DT-CWT [12] and the second

denoising approach and the two-stage image denoising by principal component analysis with

local pixel grouping [25]. This evaluation is based on the computation of PSNR and SSIM

which are detailed in [32].
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9. Results and discussion

In this work, we have applied the proposed image denoising technique, the first image denoising

technique based on DT-CWT [12] and the second denoising technique and the two-stage image

denoising by principal component analysis with local pixel grouping [25], on a number of digital

images such as “House,” “Lena,” and “Cameraman.” These images are degraded by additive

white noise with different values of noise-level, σ. PSNR and SSIM values obtained from the

application of the three mentioned techniques on the noisy images are listed in Table 1.

Technique The first image

denoising

technique based

on DT-DWT [12]

Two-stage image denoising

by principal component

analysis with local pixel

grouping [25]: first stage

Two-stage image denoising

by principal component

analysis with local pixel

grouping [25]: second stage

The proposed

technique

House (σ = 10) 34.7138 (0.8778) 35.4 (0.9003) 35.6 (0.9012) 36.1223 (0.9130)

House (σ = 20) 31.6671 (0.8253) 31.8 (0.8084) 32.5 (0.8471) 33.0828 (0.8677)

House (σ = 30) 29.8494 (0.7877) 29.3 (0.7225) 30.4 (0.8185) 31.2095 (0.8393)

House (σ = 40) 28.5744 (0.8084) 27.3(0.6243) 28.9 (0.7902) 29.7344 (0.8084)

Lena (σ = 10) 33.6767(0.9170) 33.6 (0.9218) 33.7 (0.9243) 34.0765 (0.9271)

Lena (σ = 20) 30.0002 (0.8539) 29.5 (0.8346) 29.7 (0.8605) 30.5415 (0.8765)

Lena (σ = 30) 27.9859 (0.8016) 27.1 (0.7441) 27.6 (0.8066) 28.3595 (0.8292)

Lena (σ = 40) 26.6364 (0.7585) 25.4 (0.6597) 26.0 (0.7578) 26.8566 (0.7882)

Cameraman (σ = 10) 32.7481 (0.8989) 33.9 (0.9261) 34.1 (0.9356) 33.6141 (0.9241)

Cameraman (σ = 20) 28.9990 (0.8175) 29.8 (0.8320) 30.1 (0.8902) 29.7184 (0.8575)

Cameraman (σ = 30) 27.1022 (0.7641) 27.3 (0.7395) 27.8(0.8558) 27.8174 (0.8151)

Cameraman (σ = 40) 25.7866 (0.7241) 25.5 (0.6393) 26.2 (0.8211) 26.4954 (0.7826)

Monarch (σ = 10) 32.9907 (0.9369) 34.0 (0.9522) 34.2 (0.9594) 34.0698 (0.9553)

Monarch (σ = 20) 29.1114 (0.8811) 29.6 (0.8859) 30.0 (0.9202) 30.0384 (0.9145)

Monarch (σ = 30) 27.0058 (0.8346) 27.0 (0.8071) 27.4 (0.8769) 27.7209 (0.8735)

Monarch (σ = 40) 25.5973 (0.7950) 25.2 (0.7267) 25.9 (0.8378) 26.0832 (0.8293)

Peppers (σ = 10) 33.4942 (0.9056) 33.4 (0.8909) 33.3 (0.8943) 33.7904 (0.9189)

Peppers (σ = 20) 29.8124 (0.8424) 29.9 (0.8177) 30.1 (0.8413) 30.5252 (0.8743)

Peppers (σ = 30) 27.7810 (0.7924) 27.5 (0.7332) 27.9 (0.7973) 28.4765 (0.8356)

Peppers (σ = 40) 26.4045 (0.7507) 25.9 (0.6447) 26.7(0.7648) 26.9883 (0.8013)

Paint (σ = 10) 32.5488 (0.9165) 33.5 (0.9280) 33.6 (0.9311) 33.3567 (0.9276)

Paint (σ = 20) 28.5980 (0.8416) 26.8 (0.7467) 29.5 (0.8683) 29.4699 (0.8648)

Paint (σ = 30) 26.6067 (0.7817) 26.8 (0.7467) 27.2 (0.8088) 27.2540 (0.8077)

Paint (σ = 40) 25.2968 (0.7330) 25.0 (0.6590) 25.6 (0.7569) 25.6389 (0.7560)

Table 1. PSNR (dB) and SSIM results of the denoised images for the different techniques.
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Figure 12. (a) Clean image (Cameraman.tif), (b) Noisy image with, (c) The denoised image by the proposed technique

(the first stage) and denoised image by the proposed technique (the second stage).

Figure 13. (a) Clean image (Monarch.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the

first stage) and denoised image by the proposed technique (the second stage).
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Figure 14. (a) Clean image (Lena.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the first

stage) and denoised image by the proposed technique (the second stage).

Figure 15. (a) Clean image (Peppers.tif), (b) Noisy image with, (c) The denoised image by the proposed technique (the

first stage) and denoised image by the proposed technique (the second stage).
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These obtained results (Table 1) show clearly that the proposed technique outperforms the

denoising technique based on DT-CWT proposed in [12] and the denoising approach based on

LPG-PCA [25]. Figures 12–15 show four examples of image denoising using the proposed

technique.

These figures show that the noise corrupting the original images is sufficiently suppressed.

Moreover, the proposed technique permits to obtain denoised images with good perceptual

quality. In each of these figures, the image (c) is obtained after the first denoising stage in the

proposed technique. In this image (c), some noise is still existing, whereas it is considerably

reduced into the image (d) obtained after the second denoising step. In the following subsec-

tion, we will give the results obtained by applying the proposed technique, the LPG-PCA-

based denoising technique [25, 27] and the DT-DWT-based denoising one to a number of

grayscale images. Those results are in terms of SNR and MSE and are listed in Table 2.

Technique The first image denoising

technique based on DT-DWT

[12]

Two-stage image denoising by

principal component analysis

with local pixel grouping [25]

The proposed technique

House (σ = 10) SNR = 78.00, MSE = 21.96 SNR = 79.41, MSE = 15.88 SNR = 79.44, MSE = 15.75

House (σ = 20) SNR = 74.95, MSE = 44.29 SNR = 76.37, MSE = 31.97 SNR = 76.38, MSE = 31.92

House (σ = 30) SNR = 73.14, MSE = 67.31 SNR = 74.50, MSE = 49.21 SNR = 74.50, MSE = 49.21

House (σ = 40) SNR = 71.86, MSE = 90.28 SNR = 73.02, MSE = 69.16 SNR = 73.02, MSE = 69.14

Lena (σ = 10) SNR = 74.67, MSE = 27.88 SNR = 75.28, MSE = 24.17 SNR = 75.28, MSE = 24.19

Lena (σ = 20) SNR = 70.99, MSE = 65.02 SNR = 71.53, MSE = 57.40 SNR = 71.55, MSE = 57.19

Lena (σ = 30) SNR = 68.97, MSE = 103.39 SNR = 69.35, MSE = 94.87 SNR = 69.37, MSE = 94.36

Lena (σ = 40) SNR = 67.62, MSE = 141.07 SNR = 67.85, MSE = 134.09 SNR = 67.87, MSE = 133.35

Cameraman (σ = 10) SNR = 75.33, MSE = 34.53 SNR = 76.19, MSE = 28.29 SNR = 76.23, MSE = 28.06

Cameraman (σ = 20) SNR = 71.58, MSE = 81.88 SNR = 72.30, MSE = 69.38 SNR = 72.33, MSE = 68.80

Cameraman (σ = 30) SNR = 69.68, MSE = 126.72 SNR = 70.39, MSE = 107.48 SNR = 70.45, MSE = 106.00

Cameraman (σ = 40) SNR = 68.36, MSE = 171.56 SNR = 69.07, MSE = 145.72 SNR = 69.14, MSE = 143.51

Monarch (σ = 10) SNR = 74.94, MSE = 32.65 SNR = 76.02, MSE = 25.47 SNR = 76.01, MSE = 25.55

Monarch (σ = 20) SNR = 71.06, MSE = 79.78 SNR = 71.99, MSE = 64.45 SNR = 71.98, MSE = 64.53

Monarch (σ = 30) SNR = 68.96, MSE = 129.56 SNR = 69.67, MSE = 109.89 SNR = 69.68, MSE = 109.62

Monarch (σ = 40) SNR = 67.55, MSE = 179.20 SNR = 68.01, MSE = 161.05 SNR = 68.03, MSE = 160.25

Peppers (σ = 10) SNR = 76.07, MSE = 29.08 SNR = 76.65, MSE = 25.43 SNR = 76.63, MSE = 25.56

Peppers (σ = 20) SNR = 72.39, MSE = 67.89 SNR = 73.10, MSE = 57.61 SNR = 73.12, MSE = 57.43

Peppers (σ = 30) SNR = 70.36, MSE = 108.38 SNR = 71.05, MSE = 92.34 SNR = 71.07, MSE = 92.02

Peppers (σ = 40) SNR = 68.98, MSE = 148.80 SNR = 69.57, MSE = 130.09 SNR = 69.58, MSE = 129.58

Table 2. SNR (dB) and MSE results of the denoised images for the different techniques.
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Those results show that the proposed technique outperforms the two other techniques (the

LPG-PCA-based denoising technique [25, 27] and the DT-DWT-based denoising one [12]). In

fact the proposed techniques are the highest values of SNR and lowest values of MSE.

10. Conclusion

In this chapter, a new image denoising technique is proposed. It combines two denoising

approaches. The first one is a dual-tree discrete wavelet transform (DT-DWT)-based denoising

technique, and the second one is a two-stage image denoising by principal component analysis

with local pixel grouping (LPG-PCA). The first step of this proposed technique consists in

applying the first approach to the noisy image in order to obtain a first estimate of the clean

image. Then, we estimate the level of noise corrupting the original image. This estimation is

performed by using a method of noise estimation from noisy images. The third step of the

proposed technique consists in using this first clean image estimation, the noisy image, and

this noise-level estimate as inputs of the second image denoising system (LPG-PCA-based

image denoising) in order to obtain the final estimation of the clean image. A comparative

study is performed between the proposed image denoising technique and two others

denoising approaches where the first is based on DT-DWT and the second is based on LPG-

PCA. This study is based on PSNR and SSIM computations, and the obtained results show that

the proposed technique outperforms the two other denoising approaches. We also computed

SNR (Signal to Noise Ratio) and MSE (Mean Square Error) and the obtained results also show

that the proposed technique outperforms the others techniques.
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