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1. Introduction 

These days it is recognised that for bilateral hearing loss there is generally benefit in fitting 
two hearing aids, one for each ear (see Byrne, 1980 and Feuerstein, 1992 for clinical studies, 
see Byrne et al., 1992, Durlach et al., 1981, and Zurek, 1981 for laboratory studies). Bilateral 
fitting is now standard practice for children with bilateral loss and as of 2005 bilateral 
fittings account for approximately 75% of all fittings (Libby, 2007). Nonetheless, it is only 
within the last half-decade that it has become possible to transfer audio signals between 
bilaterally-fitted hearing aids (Moore, 2007). This is primarily attributed to the technological 
advances in integrated circuit design, longer lasting batteries and also wireless inter-
communication between the two hearing aids, e.g., using near-field magnetic induction 
(NFMI) communication. The possibility to exchange audio signals between bilaterally-fitted 
aids opens the door to new types of binaural signal processing algorithms to assist hearing-
impaired listeners separate sounds of interest from background noise.  In this chapter, we 
consider whether or not the manipulation of near-field distance cues may provide a viable 
binaural signal processing algorithm for hearing aids. More specifically, this chapter 
describes three experiments that explore the spatial unmasking of speech based on near-
field distance cues. 
In a typical cocktail party setting, listeners are faced with the challenging task of extracting 
information by sifting through a mixture of multiple talkers overlapping in frequency and 
time. This challenge arises as a result of interference in the form of energetic masking, where 
sounds are rendered inaudible due to frequency overlap, and informational masking, where 
sounds from different sources are confused with one another (Bronkhorst, 2000; Brungart et 
al., 2001; Kidd et al., 2008). Despite this, listeners are reasonably adept at parsing complex 
mixtures and attending to separate auditory events. 
One factor that influences speech intelligibility in mixtures is perceived spatial location. 

Many studies have established that sounds originating from separate locations are easier 

to distinguish than sounds which are co-located (Hirsh, 1950; Bronkhorst and Plomp, 

1988; Ebata, 2003). Separating sounds in space can result in an increase in the signal-to-

noise ratio at one ear (the ‘better ear’). Moreover, sounds that are spatially separated give 

rise to differences in binaural cues (interaural time and level differences, ITDs/ILDs) that 

can improve audibility by reducing energetic masking (Durlach and Colburn, 1978; 
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Zurek, 1993). Perceived differences in location can also be used as a basis for perceptual 

streaming, and this has been shown to be a particularly important factor in the 

segregation of talkers with similar voice characteristics, resulting in a significant 

reduction of informational masking (Kidd et al., 1998; Freyman et al., 1999; Arbogast et al., 

2002; Drennan et al., 2003).  

While many studies have established the role of spatial cues in the unmasking of speech 

mixtures, the majority of these have focused on sources at a fixed, relatively far distance, 

with spatial separation in the azimuthal plane. Very few studies have examined the 

perception of speech mixtures in the acoustic ‘near field’, defined as the region less than one 

meter from the listener’s head. Unlike in the far field, spatial cues at the two ears vary 

substantially as a function of distance in the near field (Brungart and Rabinowitz, 1999). 

Listeners can use these cues to estimate the distance of sources in the immediate vicinity 

(Brungart et al., 1999). A primary distance cue is overall intensity, with near sounds being 

louder than far sounds. In addition, ILDs increase dramatically with decreasing distance in 

both high and low frequency regions. Most notably, low-frequency ILDs, which are 

negligible in the far field, can be as large as 20 dB in the near field (Brungart, 1999; Brungart 

and Rabinowitz, 1999). In contrast, ITDs in the near field are independent of distance and 

remain relatively constant. This study investigated whether the increased ILD cues that 

occur at different distances in this region can provide a basis for improving speech 

segregation. Understanding the effect of distance cues on speech segregation will also 

enable a more complete picture of how spatial perception influences behaviour in cocktail 

party settings. 

Two previous studies have shown that spatial separation of sources in the near field can 

lead to benefits in speech intelligibility. Shinn-Cunningham et al. (2001) showed that 

separating speech and noise in the near field could lead to improvements in speech 

reception thresholds. When one sound was fixed at one meter and the other was moved in 

closer to the listener, an improved target to masker ratio (TMR) occurred at one ear.  In 

this case, masking was energetic and performance benefits were well-predicted by 

improvements in audibility. A study by Brungart and Simpson (2002) showed that 

separation of two talkers in distance improved accuracy in a speech segregation task. 

After controlling for better ear effects they found that there was an additional perceptual 

benefit, particularly when talkers were acoustically similar (the same sex). This suggests 

that distance cues in the near field may provide a basis for release from informational 

masking. 
The primary aim of the current study was to further investigate the effects of near field 
distance cues on speech segregation. The first experiment was an extension of the study by 
Brungart and Simpson (2002). The aim was to measure the benefit of separating two 
competing talkers in distance, where one was fixed at one meter and the other was moved 
closer to the head. While Brungart and Simpson examined only the case where the two 
talkers were equal in level (0-dB TMR) and most easily confused, the current study aimed to 
discover whether this benefit generalized to a larger range of TMR values. Experiment 2 was 
identical to Experiment 1, but assessed whether low-frequency (< 2 kHz) spatial cues alone 
could produce the effects seen in Experiment 1. Experiment 3 investigated the effect of 
moving a mixture of three talkers (separated in azimuth) closer to the head. It was predicted 
that this manipulation, which effectively exaggerates the spatial cues, would offer improved 
segregation of the competing talkers.   
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2. General methods  

2.1 Subjects 

Eight subjects (six males and two females, aged between 20 and 32) participated in the 

experiments. Only one subject had previous experience with auditory experiments 

involving similar stimuli.  

2.2 Virtual auditory space 

Individualized head-related transfer functions for the generation of virtual spatialized 

stimuli were recorded in an anechoic chamber, and details of the procedure can be found 

elsewhere (Pralong and Carlile, 1994, 1996). In brief, a movable loudspeaker (VIFA-

D26TG-35) presented Golay codes from 393 locations on a sphere of radius 1 m around 

the subject’s head. Binaural impulse responses were collected using a blocked-ear 

approach, with microphones (Sennheiser KE 4-211-2) placed in the subject’s ear canals. 

Recordings were digitized at a sampling rate of 80 kHz, and converted to directional 

transfer functions (DTFs) by removing location-independent components. The DTFs were 

bandpass filtered between 300 Hz and 16 kHz, the range in which the measurement 

system is reliable, but then the energy below 300 Hz was interpolated based on the 

spherical head model (below) so that fundamental frequency energy in the speech stimuli 

would not be filtered out. 

A distance variation function (DVF) as described by Kan et al. (2009) was used to convert the 

far-field DTFs (1-m distance) to near-field DTFs (0.25- and 0.12-m distances). The DVF 

approximates the frequency-dependent change in DTF magnitude as a function of distance. 

It is based on the rigid sphere model of acoustic scattering developed by Rabinowitz et al. 

(1993) and experimentally verified by Duda and Martens (1998). According to this model, 

the head can be approximated as a rigid sphere of radius a with ears toward the back of the 

head at 110° from the mid-sagittal plane. If a sinusoidal point source of sound of frequency 

‘ω’ is presented at distance ‘r’ and angle θ from the centre of the head, the sound pressure ‘p’ 

at the ear can be expressed as: 
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where hm is the spherical Hankel function, k is the wave number, and Pm is the Legendre 

polynomial. DVFs were applied to each subject’s individualized DTFs. The head radius, a, 

for each subject was determined using Kuhn’s (1977) equation:  
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where c is the speed of sound in air, θ is the angle of incidence to the head, and ITD is the 

ITD measured from a pair of DTFs using cross-correlation. Individualized DTFs modified 

with the DVF in this way were recently verified psychophysically for their ability to give 

rise to accurate near-field localization estimates (Kan et al., 2009). Fig. 1 shows a set of 

example DVF gain functions (to be applied to 1-m DTFs) as a function of frequency and 

distance for three azimuthal locations that were used in the study.   
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Fig. 1. The DVF for three locations and two near-field distances. The gain in dB is relative to 

the 1-m far-field case for each azimuth, and is shown for the left and right ears. Shown also 

is the induced ILD, which increases with increasing laterality (-90°>-50°>0°) and decreasing 

distance (0.12 m>0.25 m>1 m). 

2.3 Speech stimuli 

The speech stimuli used for this study were taken from the Coordinate Response Measure 
(CRM) corpus (Bolia et al., 2000). Each sentence is comprised of a call sign, color and 
number, spoken in the form “Ready (call sign) go to (color) (number) now”. There are a total 
of 8 possible call signs (“arrow”, “baron”, “eagle”, “hopper”, “laker”, “ringo”, “tiger” and 
“charlie”), 4 possible colors (“red”, “blue”, ”green” and  “white”) and 8 possible numbers 
(1-8). In total, there are 256 possible phrases, which are spoken by a total of 8 different 
talkers (4 male and 4 female), giving 2048 distinct phrases in the corpus. 
In each experimental trial, the sentences were randomly selected without replacement and 
were chosen such that each sentence in a mixture had a unique talker, call sign, number 
and color. The same gender was used for each talker in a given trial. The call sign 

www.intechopen.com



 
Spatial Unmasking of Speech Based on Near-Field Distance Cues 

 

7 

“Charlie” was always assigned to the target. Sentences were normalized to the same RMS 
level and resampled from 40 kHz to 48 kHz for playback. The target sentence was then 
adjusted to achieve the desired TMR before all sentences were filtered through the 
relevant DTFs (also resampled to 48 kHz) and digitally added. There was no 
normalization of the stimulus level after the DTF filtering, thus the stimulus level would 
increase when presented nearer to the head. The stimuli were presented at a comfortable 
listening level that corresponded to a sensation level of approximately 40 dB for a source 
directly ahead at a distance of 1 m.  
Experiments were conducted in a small audiometric booth. Stimuli were presented via an 

RME soundcard (48 kHz sampling rate) and delivered using insert earphones (Etymotic 

Research ER-11). Subjects were seated in front of an LCD monitor, and registered their 

responses (a color and number combination for the target stimulus) by clicking with a 

mouse on a custom-made graphical user interface.  

2.4 Analysis of results 

The listener responses were scored as correct if both the color and number were reported 

correctly, and percent correct scores (over the 40 repetitions) were plotted as a function of 

TMR to give raw psychometric functions for each spatial configuration. However, a nominal 

TMR at the source gives rise to different TMRs at the listener’s ears for different spatial 

configurations (according to the DVF). Thus, a normalization stage was applied to the data 

to factor out these changes in TMR at the ear. Of particular interest was whether there was 

still a perceptual benefit of the distance manipulations after taking into account any 

energetic advantages. 

The RMS levels of the target and maskers at each ear were calculated during the 

experiment for each individual subject under the different spatial configurations. These 

values were then averaged and used to determine the TMR at the better ear for each 

condition. This better-ear TMR represented a consistent shift from the nominal TMR, and 

thus the psychometric functions could be re-plotted as a function of better-ear TMR by a 

simple shift along the TMR axis. The average normalization shifts for each condition are 

shown in Tables 1 and 2. A single mean value was appropriate (rather than individual 

normalization values for each listener) because the values varied very little (range across 

listeners < 1dB).  

The perceptual benefit of separating/moving sources in the near field was defined as the 

remaining benefit (in percentage points) after taking into account energetic effects. To 

calculate these benefits, the normalized psychometric functions for the reference 

conditions were subtracted from the normalized psychometric functions for the various 

near-field conditions. Values were interpolated using a linear approximation where 

required. 

3. Experiment 1  

3.1 Experimental conditions 

The spatial configurations used in Experiment 1 were essentially the same as those used by 
Brungart and Simpson (2002). One target and one masker talker were simulated at -90° 

                                                 
1 Note that the ER-1 earphones reintroduce the ear-canal resonance that is removed by the DTF. 
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azimuth, directly to the left of the listener. This region was expected to be particularly 
important in the study of near field perception due to the large ILDs that occur. As 
illustrated in Fig. 2, there were a total of five different target or masker distances. One talker 
was always fixed at 1 m while the other was moved closer to the listener in the near field. In 
some conditions, the masker was fixed at 1 m while the target was presented at 0.25 m or 
0.12 m from the head. Conversely, in other conditions, the target was fixed at 1 m while the 
masker was presented at 0.25 m or 0.12 m from the head. In the co-located condition, both 
talkers were located at 1 m. Five different TMR values were tested for each spatial 
configuration (see Table 1), resulting in a total of 25 unique conditions. Two 20-trial blocks 
for each condition were completed by each listener resulting in a total of 2x20x25=1000 trials 
per listener. The spatial configuration and TMR were kept constant within a block, but the 
ordering of the blocks was randomized. 
 

 

Fig. 2. The five spatial configurations used in Experiments 1 and 2. In one condition, both 

the target (T) and masker (M) were co-located at 1 m. In “target closer” conditions, the 

masker was fixed at 1 m while the target was located at 0.25 m or 0.12 m. In “masker closer” 

conditions, the target was fixed at 1 m while the masker was located at 0.25 m or 0.12 m. 

 

Configuration TMRs tested (dB) Normalization shift (dB) 

Target 1 m/Masker 1 m [-30 -20 -10 0 10] 0 

Target 0.25 m/Masker 1 m [-40 -30 -20 -10 0] +14 

Target 0.12 m/Masker 1 m [-40 -30 -20 -10 0] +27 

Target 1 m/Masker 0.25 m [-20 -10 0 10 20] -9 

Target 1 m/Masker 0.12 m [-20 -10 0 10 20] -13 

Table 1. The range of TMR values tested and normalization shifts for each spatial 

configuration in Experiments 1 and 2. The normalization shifts are the differences in the 

TMR at the better ear that resulted from variations in target or masker distance (relative to 

the co-located configuration). 
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3.2 Results 
3.2.1 Masker fixed at 1 m and target near 

The left column of Fig. 3 shows results (pooled across the eight listeners) from the 
conditions in which the masker was fixed at 1 m and the target was moved into the near 
field. Performance improved (Fig. 3, top left) when the target talker was moved closer 
(0.12 m>0.25 m>1 m). This trend was observed across all TMRs. Scores also increased  
with TMR as expected. A two-way repeated-measures ANOVA on the arcsine-
transformed data2 confirmed that there was a significant main effect of both target 
distance (F2,14=266.5, p<.01) and TMR (F3,21=58.2, p<.01). There was also a significant 
interaction (F6,42=147.9, p<.01), implying that the effect of target distance differed 
depending on the TMR.  
When the psychometric functions were re-plotted as a function of better-ear TMR, they 
looked almost identical (Fig. 3, middle left), except at 0-dB TMR. At this point, the co-located 
performance shows a characteristic plateau that is absent in the separated conditions, and 
this appears to drive the separation of the functions in this region. Fig. 3 (bottom left) shows 
the difference (in percentage points) between the separated conditions and the co-located 
condition as a function of TMR. The advantage is positive for the TMR range between -10 
and 10 dB. T-tests confirmed that at 0-dB TMR, the advantages were significant for both the 
0.25-m target (mean 23 percentage points, t7=7.49, p<.01) and the 0.12-m target (mean 26 
percentage points, t7=8.29, p<.01). 

3.2.2 Target fixed at 1 m and masker near 

The right column of Fig. 3 shows results from the opposite conditions in which the target 
was fixed at 1 m and the masker was moved into the near field. The raw data (Fig. 3, top 
right) show that performance decreased as the masker was moved closer to the listener 
(1 m>0.25 m>0.12 m) for negative TMRs. However at higher TMRs, scores approached 
100% for all distances. A two-way repeated-measures ANOVA on the arcsine-transformed 
data confirmed that there was a significant main effect of masker distance (F2,14=37.4, 
p<.01) and TMR (F3,21= 58.2, p<.01). The interaction did not reach significance (F6,42=12.9, 
p=0.07). 
When the psychometric functions were re-plotted as a function of better-ear TMR, there was 

a reversal in their ranking. Once the energetic disadvantage of moving a masker closer was 

compensated for, mean performance was slightly better when the masker was separated 

from the target compared to the co-located case. The benefit plots in Fig. 3 (bottom right) 

show that the spatial advantage was positive at all TMRs, but was particularly pronounced 

at 0-dB TMR. The advantage at 0-dB TMR was significant for both the 0.25-m masker (mean 

26 percentage points, t7= 7.71, p<.01) and the 0.12-m masker (mean 34 percentage points, 

t7=8.44, p<.01). Again this benefit peaks in the region where the psychometric function for 

the co-located case is relatively flat. 

The filled symbols in the middle and bottom rows of Fig. 3 show data from Brungart and 

Simpson (2002) under the analogous conditions of their study. Mean scores are higher 

overall in the current study (Fig. 3, middle row), however the benefit of separating talkers in 

distance is roughly the same across studies (Fig. 3, bottom row). 

                                                 
2 The arcsine transformation converts binomially distributed data to an approximately normal 
distribution that is more suitable for statistical analysis (Studebaker, 1985). 
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Fig. 3. Mean performance data averaged across all 8 subjects (error bars show standard 
errors of the means) in Experiment 1. The left panel displays the raw (top) and normalized 
(middle) data for the conditions where the masker was fixed at 1 m and the target was 
moved closer to the listener. The right panel displays the raw (top) and normalized (middle) 
data for the conditions where the target was fixed at 1 m and the masker was moved in 
closer to the listener. The bottom panels display the benefits of separation in distance, 
expressed as a difference in percentage points relative to the co-located case. The results 
obtained by Brungart and Simpson (2002) at 0-dB TMR are indicated by the black symbols. 
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3.3 Discussion 

For a target and masker talker located at a fixed azimuth, target identification improved 
when the target was moved increasingly nearer to the head (relative to the case where both 
talkers were co-located at 1 m), but got worse when the masker moved closer. This basic 
pattern of results was likely driven by energetic effects: the closer source dominates the 
mixture and this either increases or reduces the effective TMR at the better ear depending on 
which source is moved.  
The remaining benefit of spatial separation after the TMR changes were accounted for was 
restricted to a better-ear TMR region around 0 dB. This region is approximately where the 
psychometric function for the co-located case shows a clear plateau, which is no longer 
present in the separated cases. This plateau has been described previously (Egan et al., 1954; 
Dirks and Bower, 1969; Brungart et al., 2001), and is thought to represent the fact that 
listeners have the most difficulty segregating two co-located talkers when they are equal in 
level (0-dB TMR), but with differences in level listeners can attend to either the quieter or 
the louder talker. Apparently the perception of separation in distance also alleviates the 
particular difficulty of equal-level talkers, by providing a dimension along which to focus 
attention selectively. This finding adds to a growing body of evidence indicating that spatial 
differences can aid perceptual grouping and selective attention. Interestingly, the effect does 
not appear to be “all or nothing”; larger separations in distance gave rise to larger 
perceptual benefits. The lack of a spatial benefit at other TMRs, especially at highly negative 
TMRs, suggests that the main problem was audibility and not confusion between the target 
and the masker. Consistent with this idea, in the co-located condition, masker errors made 
up a larger proportion of the total errors as the TMR approached 0 dB. In Experiment 1, the 
proportion of masker errors was 38%, 45%, 62%, and 93% at -30, -20, -10, and 0-dB TMR.  
Listeners in Experiment 1 performed around 10-20 percentage points better than Brungart 
and Simpson’s (2002) listeners for the same stimulus configurations. This may be simply due 
to differences in the cohort of listeners, but there are two methodological factors that may 
have also played a role. Firstly, their study used HRTFs measured from an acoustic 
mannequin as opposed to individualized filters and thus the spatial percept may have been 
less realistic and thus less perceptually potent. Secondly, while the two studies used the 
same type of stimuli, Brungart and Simpson used a low-pass filtered version (upper cut-off 
of 8 kHz) and we used a broadband version (upper cut-off of 16 kHz). Despite the difference 
in overall scores, the mean benefit (in percentage points) obtained by separating talkers in 
distance was equivalent across the two studies. 

4. Experiment 2  

4.1 Experimental conditions 

Experiment 2 was identical to Experiment 1 and used the same set of spatial configurations 
and TMRs (Fig. 2 and Table 1). The only difference was that the stimuli were all low-pass 
filtered (before RMS level equalization) at 2 kHz using an equiripple FIR filter with a 
stopband at 2.5 kHz that is 50 dB down from the passband. 

4.2 Results 
4.2.1 Masker fixed at 1 m and target near 

The left column of Fig. 4 shows results from the conditions in which the masker was fixed at 
1 m and the target was moved into the near field for the low-pass filtered stimuli of 
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Experiment 2. The raw data followed a similar trend to that observed in Experiment 1 (Fig. 
4, top left). As the target was moved closer to the listener, performance improved, with best 
performance in the 0.12-m target case. A two-way repeated-measures ANOVA on the 
arcsine-transformed data revealed that there was a significant effect of target distance 
(F2,14=332.9, p<.01) and TMR (F3,21=120.6, p<.01) and a significant interaction (F6,42=5.1, 
p<.05). 
When the psychometric functions were plotted as a function of better-ear TMR, the results 
for all three distances were very similar (Fig. 4, middle left). After taking into account level 
changes with distance, there appears to be only a minor additional perceptual benefit of 
separating the low-pass filtered target and masker in distance. Fig. 4 (bottom left) shows 
that the advantage of separating the target from the masker was positive only for the small 
TMR range between -5 and +5 dB. The advantages across TMR were also smaller than those 
observed in Experiment 1. However, the advantages were still significant for both the 0.25-
m target (mean 13 percentage points, t7=4.20, p<.01) and the 0.12-m target (mean 17 
percentage points, t7=4.88, p<.01).  
A three-way ANOVA with factors of bandwidth, distance, and TMR was conducted 
 to compare performance in Experiments 1 and 2 in the target-near configuration 
(compare Fig. 3 and Fig. 4, top left). The main effect of bandwidth was significant 
(F1,7=8.9, p<.05), indicating that performance was poorer for low-passed stimuli than  
for broadband stimuli overall. A separate two-way ANOVA on the benefits at 0 dB 
(compare Fig. 3 and Fig. 4, bottom left) found a significant main effect of distance 
(F1,7=14.5, p<.01) but no significant effect of bandwidth (F1,7=3.7, p=.10) and no interaction 
(F1,7=0.7, p=.44). 

4.2.2 Target fixed at 1 m and masker near 

For the opposite configuration, where the masker was moved in closer (Fig. 4, right column), 

results were similar to those in Experiment 1. Listeners were less accurate at identifying  

the target when the masker was moved closer (Fig. 4, top right). A two-way repeated-

measures ANOVA on the arcsine-transformed data revealed a significant effect of target 

distance (F2,14=76.4, p<.01) and TMR (F3,21=260.2, p<.01) and a significant interaction 

(F6,42=5.1, p<.01). 

Normalization of the curves based on better-ear TMR (Fig. 4, middle right) resulted in a 

reversal of the result, showing that there was indeed a perceptual benefit once the 

energetic disadvantage of a near masker was accounted for. Normalized scores  

were higher for maskers at 0.12 m and 0.25 m relative to 1 m, particularly around 0-dB 

TMR. This is reinforced by the benefit plots (Fig. 4, bottom right) which show that there 

was a positive advantage across all TMRs. Again, the largest advantage was observed at 

0-dB TMR and was statistically significant for both the 0.25-m masker (mean 24 

percentage points, t7=7.31, p<.01) and the 0.12-m masker (mean 32 percentage points, 

t7=7.51, p<.01). 

A three-way ANOVA comparing the results from Experiments 1 and 2 in the masker-near 

configuration (compare Fig. 3 and Fig. 4, top right) revealed that performance was poorer 

for low-passed stimuli than for broadband stimuli overall (F1,7=11.7, p<.05). A two-way 

ANOVA conducted on the benefits at 0 dB (compare Fig. 3 and Fig. 4, bottom right) found a 

significant main effect of distance (F1,7=11.1, p<.05), but no significant effect of bandwidth 

(F1,7=0.2, p=.66) and no interaction (F1,7=0.6, p=.47). 

www.intechopen.com



 
Spatial Unmasking of Speech Based on Near-Field Distance Cues 

 

13 

 

Fig. 4. Mean performance data averaged across all 8 subjects (error bars show standard 
errors of the means) in Experiment 2. The left panel displays the raw (top) and normalized 
(middle) data for the conditions where the masker was fixed at 1 m and the target was 
moved closer to the listener. The right panel displays the raw (top) and normalized (middle) 
data for the conditions where the target was fixed at 1 m and the masker was moved in 
closer to the listener. The bottom panels display the benefits of separation in distance, 
expressed as a difference in percentage points relative to the co-located case. 
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4.3 Discussion 

The results from Experiment 2 in which the speech stimuli were low-pass filtered at 2 kHz 

were largely similar to those from Experiment 1. Performance across conditions was 

generally poorer, consistent with a more difficult segregation task, and subjects reported 

that voices appeared muffled and were more difficult to distinguish from each other in this 

condition. However, the perceptual benefit of separating talkers in distance condition was 

for broadband and low-pass filtered stimuli. This demonstrates that the low-frequency ILDs 

that are unique to this near field region of space are sufficient to provide a benefit for speech 

segregation. 

5. Experiment 3  

5.1 Experimental conditions 

In Experiment 3, three talkers were used, and they were separated in azimuth at -50°, 0°, 

and 50° as illustrated in Fig. 5. For a given block, the distance of all talkers was set to either 1 

m, 0.25 m or 0.12 m from the listener’s head. Six different TMR values were tested for each 

spatial configuration (see Table 2), resulting in 18 unique conditions. The location of the 

target within the three-talker array was varied randomly within each block, such that half 

the trials had the target in the central position and the other half had the target in one of the 

side positions. Two 40-trial blocks were completed per condition by each listener resulting 

in a total of 2x40x18=1440 trials per listener. The distance and TMR were kept constant 

within a block, but the order of blocks was randomized. 

 

 

Fig. 5. The spatial configurations used in Experiment 3. Three talkers were spatially 

separated in azimuth at -50°, 0° and 50°and were either all located at 1 m, 0.25 m or 0.12 m 

from the listener’s head. The location of the target talker was randomly varied (left, middle, 

right). 
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Configuration  

(target position/distance of mixture)
TMRs tested (dB) Normalization shift (dB) 

Central target 1 m [-20 -15 -10 -5 0 5] -3 

 0.25 m [-20 -15 -10 -5 0 5] -5 

 0.12 m [-20 -15 -10 -5 0 5] -8 

Lateral target 1 m [-20 -15 -10 -5 0 5] 0 

 0.25 m [-20 -15 -10 -5 0 5] +3 

 0.12 m [-20 -15 -10 -5 0 5] +6 

Table 2. The range of TMR values tested and normalization values for each spatial 

configuration in Experiment 3. The normalization shifts are the differences in TMR at the 

better ear that resulted from variations in distance and configuration. 

5.2 Results 

5.2.1 Centrally positioned target 

When the target was directly in front of the listener, with a masker on either side at ±50° 

azimuth, moving the whole mixture closer to the head had very little effect on raw 

performance scores (Fig. 6, top left). A two-way repeated-measures ANOVA on the arcsine-

transformed data, however, showed that the effect of distance was statistically significant 

(F2,14=7.7, p<.01), as was as the effect of TMR (F5,35=159.4, p<.01). The interaction did not 

reach significance (F10,70=1.4, p=0.2).  

When the psychometric functions were re-plotted as a function of better-ear TMR, the 

distance effects were more pronounced (Fig. 6, middle left). This normalization compensates 

for the fact that the lateral maskers increase more in level than the central target when the 

mixture approaches the head. Mean performance was better for most TMRs when the 

mixture was moved into the near field. Fig. 6 (bottom left) shows the difference (in 

percentage points) between the near field conditions and the 1-m case, illustrating the 

advantage of moving sources closer to the head. The mean benefits were significant at all 

TMRs for both distances (p<.05). 

5.2.2 Laterally positioned target 

Raw results for the condition in which the target was located to the side of the three-talker 

mixture are shown in Fig. 6 (top right). Performance was better when the mixture was closer 

to the listener (0.12 m>0.25 m>1 m) particularly for low TMRs (below -5 dB). At higher 

TMRs, performance for all three distances appears to converge. Performance generally 

increased with increasing TMR but reached a plateau at around 80%. A two-way repeated-

measures ANOVA on the arcsine-transformed data confirmed that there was a main effect 

of both distance (F2,14=24.5, p<.01) and TMR (F5,35=104.4, p<.01) and a significant interaction 

(F10,70=17.4, p<.01). 

When the psychometric functions were normalized to account for level changes at the better 

ear, the distinction between the different distances was reduced. An advantage of the near 

field mixtures over the 1-m mixture was found only at low TMRs (Fig. 6, middle right).  
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Fig. 6. Mean performance data averaged across all 8 subjects (error bars show standard 
errors of the means) in Experiment 3. The left panel displays the raw (top) and normalized 
(middle) data for the conditions where the target was located in the middle of three talkers. 
The right panel displays the raw (top) and normalized (middle) data for the conditions 
where the target was located to one side. The bottom panels display the benefits of 
decreasing the distance of the mixture, expressed as a difference in percentage points 
relative to the 1-m case. 
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At higher TMRs, the curves in fact reversed in order. These effects are reiterated in the 

benefit plots (Fig. 6, bottom right). The advantage was positive at negative TMRs but 

negative at positive TMRs. The mean benefits were significant at -15-dB TMR (t7=4.30, 

p<.01) for the 0.25-m condition and at -10-dB TMR (t7=2.78, p<.05) for the 0.12-m condition. 

A significant disadvantage was observed at 5-dB TMR for both distances (p<.05). 

5.3 Discussion 

Experiment 3 investigated the effect of moving a mixture of three talkers (separated in 

azimuth) closer to the head. Given that this manipulation essentially exaggerates the 

spatial differences between the competing sources, we were interested in whether it might 

improve segregation of the mixture. The manipulation had different effects depending on 

the location of the target. When the target was located in the middle, raw performance 

improved only very slightly with distance. However, this improvement occurred despite 

a decrease in TMR at the ear (both ears are equivalent given the symmetry) in this 

configuration (Table 2). In other words, performance improved despite an energetic 

disadvantage when the mixture was moved closer. Normalized performance thus 

revealed a perceptual benefit. When the target was located to the side, moving the 

mixture closer provided increases in better-ear TMR, and raw performance reflected this, 

but even after normalization there was a perceptual benefit of moving the mixture in 

closer. We attribute these benefits to an exaggeration of the spatial cues for the sources to 

the side, giving rise to a greater perceptual distance between the sources. It is not clear to 

us why this benefit was biased towards the lower TMRs in both cases, although the  

drop in benefit for high TMRs appears to be related to the flattening of the psychometric 

functions at high TMRs at the near field distances. It is possible that performance  

reaches a limit here due to the distracting effect of having three loud sources close to the 

head.   

6. Conclusions  

The results from these experiments provide insights into how the increase in ILDs that 

occurs in the auditory near field can influence the segregation of mixtures of speech. Spatial 

separation of competing sources in distance, as well as reducing the distance of an entire 

mixture of sources, led to improvements in terms of the intelligibility of a target source. 

These improvements were in some cases partly explained by changes in level that increased 

audibility, but in other cases occurred despite decreases in target audibility. The remaining 

benefits were attributed to salient spatial cues that aided perceptual streaming and lead to a 

release from informational masking. 

In terms of binaural hearing-aids with the capability of exchanging audio signals, the 

experimental findings described here with normally-hearing listeners indicate that there 

may be value in investigating binaural signal processing algorithms that apply near-field 

sound transformations to sounds that are clearly lateralized. In other words, when the ITD 

or ILD cues strongly indicate a lateralized sound is present, a near-field sound 

transformation can be applied which artificially brings the sound perceptually closer to the 

head. We anticipate further experiments conducted with hearing-impaired listeners to 

investigate the value of such a binaural hearing-aid algorithm.  
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