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1. Introduction 

Soil application of liquid cattle manure (LCM) (excrements plus urine, occasionally 

containing bedding material) can enhance plant growth and increase crop yield 

(Beauchamp, 1986; Culley et al., 1981; Evans et al., 1977; Kaffka & Kanneganti, 1996; 

Lithourgidis et al., 2007; Matsi et al., 2003; Motavalli et al., 1989; Sutton et al., 1986; Zhang et 

al., 2006; Zebarth et al., 1996). In most of the cases, crop yield increases are accompanied by 

increases in plant macronutrients concentration and/or uptake (Culley et al., 1981; 

Lithourgidis et al., 2007; Matsi et al., 2003; Motavalli et al., 1989; Sutton et al., 1986). 

The beneficial effect of LCM on crop growth, yield and macronutrients absorption is mainly 

due to the improvement of soil fertility with respect to macronutrients, especially N. In 

general, the amounts of readily available N in manures, mainly in the form of NH4-N, are 

lower than that of the inorganic fertilizers (Beauchamp, 1983; Jokela, 1992). However, LCM 

contains high amounts of immediately available N, due to its urine content. The quantity of 

this immediately available N can be almost half of the total N and this percentage is higher 

than that of the solid cattle manure (Beauchamp, 1986; Bechini & Marino, 2009; Sutton et al., 

1986). A significant amount of the ammoniacal N in LCM can be lost, as NH3 by 

volatilization, shortly after LCM application to soils (Beauchamp et al., 1982; de Jonge et al., 

2004; Pain et al., 1989; Pfluke et al., 2011a, 2011b; Webb et al., 2010). However, this depends 

on the properties of the LCM and soil, where manure is applied, and also on the rate, 

manner, timing of application and weather conditions and interactions among these factors 

(Beauchamp et al., 1982; Mannheim et al., 1995; Mattila et al., 2003; Pain et al., 1990; Reijs et 

al., 2007; Rochette et al., 2006; Sorensen, 1998; Thompson et al., 1990a, 1990b). Soil 

incorporation of LCM, mainly by using injection techniques, seems to reduce NH3 

volatilization drastically and such techniques are now applicable not only to arable soils but 

also to grasslands, no-tillage and forest systems (Maguire et al., 2011a, 2011b). Due to the 

high quantity of immediately available N, LCM can be as efficient as inorganic fertilizers in 

satisfying plant needs in respect to N, when it is applied at equivalent rates (Kaffka & 

Kanneganti, 1996; Lithourgidis et al., 2007; Matsi et al., 2003; Zhang et al., 2006). In addition 

to N, LCM can increase soil available P and K, upon its use as an organic fertilizer 
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(Beauchamp, 1983; Culley et al., 1981; Lithourgidis et al., 2007; Matsi et al., 2003; Pratt & 

Laag, 1981; Randall et al., 2000; Sutton et al., 1979, 1986; Zhang et al., 2006). 

Apart from macronutrients, LCM contains also micronutrients, essential for plant growth. 

Therefore, it can serve directly as a source of micronutrients, upon its use as basal dressing 

for crops, increasing micronutrients plant uptake and probably concentration (Brock et al., 

2006; Nikoli & Matsi, 2011). In addition, an indirect effect of LCM on the availability of the 

soil native micronutrients cannot be excluded. Application of the LCM to soil for a long 

period and/or at high rates can increase the soil organic matter especially the dissolved 

fraction (Antil et al., 2005a; Culley et al., 1981; Nikoli & Matsi, 2011), since a considerable 

part of the organic matter of manure (around 20 %) exists in its liquid phase (Japenga et al., 

1992). Consequently, soil application of LCM can enhance solubilization of metal 

micronutrients through their complexation with the dissolved organic matter and 

consequently increase availability to plants (Japenga et al., 1992). Also, after use of LCM as a 

fertilizer for many years and/or at high rates, a possible improvement of the soil structure, 

due to organic matter increase, cannot be excluded (Olesen et al., 1997; Mellek et al., 2010). 

Apart from the beneficial effects of using LCM as an organic fertilizer, certain adverse effects 

might be involved for plants, soils and the environment upon LCM application to soil; such 

as increasing salinity in the soil profile, NO3-N leaching to the underground water and P 

accumulation in the top soil (with its subsequent translocation to surface water reservoirs) 

(Beauchamp, 1983, 1986; Comfort et al., 1987; Culley et al., 1981; Daliparthy et al., 1994; 

Evans et al., 1977; Heathwaite et al., 1998; Lithourgidis et al., 2007; Motavalli et al., 1985; 

Phillips et al., 1981; Pratt & Laag, 1981; Sutton et al., 1979, 1986; Vellidis et al., 1996). These 

adverse effects are mainly connected to LCM application for long periods and/or at high 

rates and such applications should be avoided. In addition, in certain cases, micronutrient 

phytotoxicities, especially of Cu and Zn are possible; these phytotoxicities, however, are 

associated mainly with LCM enriched with solutions used for cattle hoof baths (Bolan et al., 

2003; Jokela et al., 2010; McBride & Spiers, 2001). 

The objectives of this chapter are to compile and evaluate existing research and knowledge 

concerning: a) composition of LCM and its application to soil, with emphasis on N, b) effect 

of LCM application on crop growth, yield and composition, c) beneficial effects of LCM 

application on soil properties, especially fertility, d) possible risks, of using LCM as a 

fertilizer, for plants, soils and the environment. In addition, the Greek experience with long-

term use of LCM as a fertilizer is discussed. 

2. Liquid cattle manure composition and application to soil, with  
emphasis on N 

Liquid cattle manure composition depends on certain factors, such as the number and age of 

animals, the ration fed to animals, the inclusion of bedding material and cleaning water, the 

duration and conditions of storage and the kind of treatment prior to soil application 

(Marino et al., 2008; Reijs et al., 2007; Sorensen, 1998). Selected cases of LCM composition, 

reported in the literature, are presented in Table 1. Among the elements contained in LCM, 

N is of major concern, in respect of using the LCM as an organic fertilizer efficiently, 

without causing adverse effects to the environment. 
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Weight 
basis 

pH† Dry matter‡ Total-N NH4-N Total-P Total-K Reference 

  g kg-1  

wet 7.1-7.8 57-92 3.3-4.0 1.6-1.8 (Amon et al., 2006) 

wet 6.7-6.8 49-60 2.3-2.7 (Angers et al., 2006) 

wet  60-78 2.4-3.1 0.4-0.6 1.6-2.4 (Beauchamp, 1983) 

wet  68-71 2.6-3.8 1.5-2.0 (Beauchamp, 1986) 

dry  49-117 26-75 9-37 (Bechini & Marino, 2009) 

wet 6.4-7.5 18-80 1.9-3.3 0.88-1.8 0.07-0.82 (Bittman et al., 2011) 

dry 7.2±0.1 30±4.8 8.0 ± 0.1 32 ± 0.5 (Briceno et al., 2008) 

dry 8.1 135 4.9 4.5 1.6 (Brock et al., 2006) 

dry  38 16 3 (Burger & Venterea, 2008) 

wet  98-101 3.0-3.4 1.4-1.6 1.2-1.4 2.5-3.0 (Carter et al., 2010) 

wet 7.2-7.2 20-63 1.4-6.1 (Chadwick & Pain, 1997) 

wet  111±15 4.1±0.5 (Chadwick et al., 2000a) 

wet 5.7-7.0 60-110 2.6-3.2 0.93-1.6 0.39-0.53 2.0-3.1 (Comfort et al., 1987) 

dry  88 29 7 24 (Culley et al., 1981) 

dry 7.5±0.2 70 ± 4 53±0.8 25 ± 2 (de Jonge et al., 2004) 

dry 7.6-8.1 104-107 73-79 41-56 23-40 13-59 (Evans et al., 1977) 

wet 7.0-7.7 36-85 2.1-3.2 1.3-1.6 (Hansen et al., 2003) 

dry 6.1-9.1 35-229 12-40 3.5-46 4.1-18 (He et al., 2004) 

dry  190-239 21-29 6.7-13 (Jokela, 1992) 

dry  71-88 49-53 19-22 9.5-11 36-48 (Kaffka & Kanneganti, 1996) 

dry  4.3-31 3.7-8.4 45-17 (Lund et al., 1975) 

wet 7.5±0.3 95 ± 32 3.8±1.0 1.5 ± 0.5 0.65±0.24 2.6 ± 0.8 (Marino et al., 2008) 

wet 7.8-7.8 77-83 3.0-3.1 1.2-1.3 0.65-0.71 2.2-2.8 (Matsi et al., 2003) 

wet 7.3-7.9 108-136 2.7-3.9 1.3-1.6 0.3-0.4 2.6-4.5 (Misselbrook et al., 1995) 

wet 7.0-7.4 26-48 1.8-4.4 0.70-1.2 (Misselbrook et al., 1996) 

dry 6.8-8.0 11-92 6.0-15 (Misselbrook et al., 2002) 

wet  71-80 3.2-3.4 (Pain et al., 1986) 

dry 7.6 103 46 27 12 60 (Pain et al., 1989) 

wet 7.1-8.4 2.3-3.7 1.1-1.8 (Pain et al., 1990) 

wet 6.2-6.6 56-62 2.9-3.4 1.7-2.4 (Paul & Beauchamp, 1993) 

dry  82-131 33-78 13-48 (Reijs et al., 2007) 

dry 7.2 101 31 7.1 (Siddique & Robinson, 2003) 

wet 7.4-8.0 69-74 3.4-3.5 1.9-2.3 (Sorensen, 2004) 

wet 4.9-6.5 64-91 2.4-3.5 0.6-1.7 0.4-0.7 1.7-3.5 (Sutton et al., 1979) 

wet  45±19 1.8±0.6 0.7 ± 0.4 0.5±0.1 1.4±0.4 (Sutton et al., 1986) 

wet 7.5-8.3 64-65 2.6-3.7 1.1-1.5 (Thompson et al., 1990a) 

wet 8.3-8.4 65-86 3.2-3.9 1.4-1.8 (Thompson et al., 1990b) 

wet  24-110 1.5-4.6 0.23-1.7 (Unwin et al., 1986) 

wet  80-162 2.8-5.6 0.72-2.4 (Whitehead et al., 1989) 

dry  35-72 55-61 11-14 (Withers et al., 2001) 

wet  1.2 0.6 2.3 (Zhang et al., 2006) 

† pH was measured directly in LCM or in a suspension with water. 
‡ In all cases dry matter is expressed on wet weight basis. 

Table 1. Some properties of liquid cattle manures (LCM), reported in the literature, with 
emphasis on the plant macronutrient concentrations (Values represent: mean values, mean 
values and their standard deviations, or ranges of mean values). 
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Liquid cattle manure contains high amounts of immediately plant available N, in the form 

of NH4+ (Bechini & Marino, 2009; Sorensen, 2004) as it is shown in Table 1, due to its urine 

content. For example, Bechini & Marino (2009) and Sorensen (2004) found that NH4-N 

content of the LCMs studied ranged from 33 to 55 % and 50 to 60 % of the total N, 

respectively usually, LCM contains higher levels of immediately plant available N than the 

solid cattle manure (Beauchamp, 1986; Sutton et al., 1986). Beauchamp (1986) found that on 

average the NH4-N was 53 % of the total N in LCM and 9 % in solid beef cattle manure. 

However, a high amount of this NH4-N can be lost through NH3 volatilization or 

immobilized after LCM addition to soil (Burger & Venterea, 2008; Pain et al., 1990; Sorensen 

& Jensen, 1995). The organically bound N in LCM is expected to mineralize slowly and 

provide less plant available N than solid cattle manure (Burger & Venterea, 2008). Chadwick 

et al. (2000a) reported that from fifty manures analyzed, in order to characterize their N 

fractions and assess their potential organic N supply, the percentage of N mineralized was 

the lowest for a dairy cow slurry (< 2 %), whereas for a beef cattle manure was about 6 %. 

Nitrogen in LCM is subjected to certain changes during the storage, i.e. mineralization, 

microbial immobilization, NH3 volatilization, nitrification and denitrification (Whitehead & 

Raistrick, 1993a). During storage, N transformations depend on the properties of the LCM, 

such as dry matter content, C/N ratio and pH, the inclusion of bedding material in the LCM 

and the period and conditions of storage (Amon et al., 2006; Sorensen, 1998; Whitehead & 

Raistrick, 1993a). Nitrogen losses consist mainly of emissions of NH3 and N2O. In order to 

reduce N gases but also other gases emissions, Amon et al. (2006) evaluated different 

treatments of dairy cattle slurry during storage, such as slurry separation, anaerobic 

digestion, slurry aeration and straw cover, in comparison to no treatment. They reported 

that the anaerobic digestion of the slurry during storage reduced greenhouse gasses 

emissions, without increasing NH3 emissions compared to the untreated slurry, whereas all 

other slurry treatments increased NH3 emissions. The acidification of cattle slurry to pH 5 

and the addition of nitrification inhibitors have also been suggested for the reduction of N 

losses, prior to slurry application to soil (Pain et al., 1990). 

After LCM application to soil, its N can be subjected to the same changes just mentioned, but 

also to others after its mineralization, i.e. retention to clay minerals in exchangeable form, 

fixation by clay, uptake by plants, leaching (Bechini & Marino, 2009). Nitrogen losses after soil 

application of LCM consist of N2O and NH3 emissions and NO3- leaching. However, the main 

losses of LCM N seemed to occur through NH3 volatilization (Carter et al., 2010), which is 

expected to be higher in LCM than in solid cattle manure, because of the higher urine and 

consequently urea content of the former (Whitehead & Raistrick, 1993b). Ammonia 

volatilization usually occurs within a short period, after LCM surface application to soil, 

ranging from a few hours to a few days, with the greatest NH3 emissions occurring within a 

few hours after application (Beauchamp et al., 1982; de Jonge et al., 2004; Pain et al., 1989; 

Pfluke et al., 2011a, 2011b; Webb et al., 2010). At this stage, N transformations and losses 

depend not only on the properties, storage conditions and treatments during storage of the 

LCM, but also depend on soil characteristics, the rate, manner and timing of LCM application 

to soils, the weather conditions and the interactions of these factors (Beauchamp et al., 1982; 

Mannheim et al., 1995; Mattila et al., 2003; Pain et al., 1990; Reijs et al., 2007; Rochette et al., 

2006; Sorensen, 1998; Thompson et al., 1990a, 1990b). 
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Among the properties of the LCM, that most affects N transformations, after application to 

soils, is the C/N ratio. Slurries with a low C/N ratio are expected to promote N 

mineralization, whereas slurries with high C/N ratios are expected to promote N 

immobilization (Chadwick et al., 2000a). Also, Whitehead et al. (1989) reported that the 

water-insoluble material of cattle slurries immobilized N that would otherwise have been 

plant available from the whole slurries and/or the soil. This was attributed to the higher 

C/N ratio of the water-insoluble fraction of the cattle slurries compared to the whole 

slurries. In addition, they concluded that the fine particle size fractions of the water-

insoluble material of the slurries had the greatest effect on N mineralization-immobilization. 

Another property that affects NH3 volatilization from LCM applied on the soil surface is the 

dry matter content of the LCM (Braschkat et al., 1997; Dell et al., 2011; Misselbrook et al., 

2005). It seems that as the dry matter content of LCM increases the viscosity of the material 

also increases. The result is that smaller amounts of NH4+ in LCM can infiltrate and be 

retained by soil components and in this way be preserved from loss, through NH3 

volatilization (Braschkat et al., 1997). The strong effect of dry matter content on NH3 losses 

after LCM addition to soils was also reported for grasslands and arable soils by Pain et al. 

(1989) and Sommer & Olesen (1991). Finally, Thompson et al. (1990b) found an inverse 

relationship between cattle slurry application rate and the proportion of NH4-N volatilized, 

after cattle slurry applied to grassland. 

Soil properties, that affect LCM N transformations, after its soil application, seem to be pH, 
texture and water regime, along with land use, cultivation practices and weather conditions. 
Ammonia volatilization is expected to be reduced after LCM application to acid soils 
compared to calcareous soils (Bechini & Marino, 2009). Thompson et al. (1990a) reported 
that the total loss of NH4-N, through NH3 volatilization, from cattle slurry applied to 
grassland was approximately 1.5 times that from slurry applied to bare soil. Sommer & 
Ersboll (1994) reported that harrowing the soil before cattle slurry application reduced NH3 
volatilization, whereas de Jonge et al. (2004) found no significant effect. Bechini & Marino 
(2009) reported that nitrification and NO3- production was extremely rapid after LCM 
application on unsaturated soils, regardless of soil texture. Loro et al. (1997) and Lowrance 
et al. (1998) reported that denitrification and N2O production after soil application of LCM 
was positively correlated with the soil water content and the cumulative production of N2O 
was found to be higher for the solid than the liquid cattle manure (Loro et al., 1997). 
Rochette et al. (2008) found no differences between LCM and solid cattle manure in respect 
to N2O emissions and reported that the N2O emissions were affected by soil texture in 
conjunction to weather conditions. Soil texture also may influence the LCM NH4-N 
immobilization; it was found that the net immobilization of N due to soil application of 
cattle slurry was increased with increasing soil clay content (Sorensen & Jensen, 1995). In 
addition, the same soil property along with the weather conditions seems to strongly affect 
LCM decomposition after its application to soil (Bechini & Marino, 2009; Rochette et al., 
2006). Also after LCM application to soil, NH3 volatilization tends to be increased with 
temperature and pH and suppressed temporarily by rainfall (Beauchamp et al., 1982; 
Sommer & Olesen, 1991) and N2O emissions were found to be lower in the dry than in wet 
season (Chadwick et al., 2000b). 

In order to reduce NH3 emissions, but also nutrient losses in runoff, and increase N 
utilization by plants after LCM addition to soils, soil incorporation of the LCM is needed 
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and for this purpose various application (mainly injection) techniques are proposed in the 
literature. Numerous researchers (Beauchamp, 1983; Beauchamp et al., 1982; Carter et al, 
2010; Dell et al., 2011; Hansen et al., 2003; Maguire et al., 2011a, 2011b; Mannheim et al., 
1995; Mattila & Joki-Tokola, 2003; Mattila et al., 2003; Misselbrook et al., 2002; Pfluke et al., 
2011a, 2011b; Powell et al., 2011; Ross et al., 1979; Webb et al., 2005, 2010) agree that soil 
incorporation of LCM as soon as possible after its application or LCM surface banding or 
injection are preferable than the conventional surface broadcast application, for arable land 
but also for grassland, no-tillage and forage systems, although in the latter cases, using 
injection techniques, there is the possibility of grass sward damage and soil disturbance 
(Mattila et al., 2003). However, Laws et al. (2002) reported that shallow disc injection and, in 
particular, trailing shoe application of cattle slurry to grassland improved silage quality and 
reduced herbage contamination, without damaging it (except of the case of LCM injection 
on tall swards) compared with the conventional surface broadcasting. They suggested that 
shallow injection should be used on short swards wherever is possible, preferably after 
cutting, whereas slurry can be applied by trailing shoes on taller swards. In addition, 
Maguire et al. (2011a, 2011b) reported many techniques that facilitate the incorporation of 
liquid manures into the soil with restricted or minor soil disturbance, such as shallow disk 
injection, chisel injection, aeration infiltration and pressure injection. 

Certain cases of increasing N2O emissions (Comfort et al., 1990; Dell et al., 2011; Flessa & 

Beese, 2000; Thompson et al., 1987; Webb et al., 2010) due to the use of reduced-NH3 

emission application techniques (mainly injection) are reported in the literature. However, 

such increases are probably not inevitable and N2O emissions can be reduced by slurry 

injection to such depths that will increase the diffusion path to soil surface sufficiently, 

leading to the emission of most nitrified N as N2 (Webb et al., 2010). Furthermore, Powell et 

al. (2011) and Pfluke et al. (2011b) reported that injection of dairy slurry reduced not only 

NH3 emissions but also NO3- leaching compared to surface broadcast application or surface 

broadcast application followed by partial incorporation of the slurry. On the other hand, it is 

reported that soil incorporation of LCM can promote LCM NH4-N immobilization 

compared to surface banding (Sorensen, 2004). 

A general rule that could be followed in order to reduce the overall N losses from LCM 

applied to soil and to increase plant efficiency utilization of LCM N, is the application of the 

LCM as close as possible to the period of maximum crop uptake (Bechini & Marino, 2009).  

3. Effect of liquid cattle manure application on growth, yield and composition 
of crops 

The beneficial effect of using LCM as an organic fertilizer on the yield of various crops has 

been proven by means of field experiments. Selected experiments are presented in Table 2 

and discussed in this section. As one can see from Table 2, there is a large variety of LCM 

application rates, even within the same crop. This could be attributed to differences in 

composition of the cattle slurries used, but also to the different application approaches 

regarding the expected amount of LCM N that would be available for plant uptake during 

the growing season. 

Generally, the application rates of the LCM are chosen on the basis of its N content. 
However, for reasons mentioned in the previous section, it is difficult to determine precisely 
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the amount of the initial available NH4-N of the LCM that will be lost from the soil or 
immobilized, or the percentage of the initial organically bound N of the LCM that will be 
mineralized and become available for plant uptake, or even the extent of the LCM influence 
on the transformations of the soil native N, during the growing season. Because crop 
availability of N in LCM is expected to be lower than that from inorganic fertilizers 
(Beauchamp, 1983; Jokela, 1992), greater LCM N rates were applied in comparison to N 
inorganic fertilizers (Beauchamp, 1983; Evans et al., 1977; Sutton et al., 1986; Zebarth et al., 
1996). Such LCM application rates resulted in increased crop yields at levels similar to the 
inorganic fertilizers. However, the same was evident when LCM was applied at rates 
equivalent to the recommended inorganic N fertilization for crops, based on LCM total N 
content (Kaffka & Kanneganti, 1996; Lithourgidis et al., 2007; Matsi et al., 2003; Zhang et al., 
2006). In addition, there are cases of applying cattle slurry at rates equivalent to the 
recommended inorganic N fertilizers, based on LCM initial plant available N content (Patni 
& Culley, 1989; Randall et al., 2000), or on this plus the expected amount of organically 
bound N that would be mineralized during the growing season (Beauchamp, 1986; Griffin et 
al., 2002). In both cases, the obtained crop yields, N uptake and recovery, as well as other 
plant parameters gave lower and more variable responses compared to inorganic fertilizers. 

Increased crop yields upon LCM application to soil are usually accompanied by increases in 
plant uptake of macronutrients. Many researchers reported that N, P and K uptake of 
different plant species were increased, upon repeated annual applications of LCM for 
certain years, at levels similar or higher than the inorganic fertilization (Culley et al., 1981; 
Lithourgidis et al., 2007; Matsi et al., 2003; Motavalli et al., 1989). However, Motavalli et al. 
(1989) reported that although the N, P and K uptake by corn plants was increased with 
increasing application rate of injected dairy cow slurry, at levels similar to inorganic N, P 
and K fertilization, crop recoveries of fertilizer N, P and K were generally higher than those 
of slurry total N, P and K. In addition, Paul & Beauchamp (1993) found that N recovery by 
the harvested portion of the corn (grain + stover) was higher for urea than for LCM 
treatments. This was attributable to several possible causes, including: a) lower availability 
of organically bound nutrients in LCM, b) higher quantities of nutrients applied with the 
LCM, c) differences in nutrient placement and d) greater loss of nutrients from the LCM 
treatments (Motavalli et al., 1989). 

The beneficial effect of LCM application to soil on macronutrient concentrations in plant 
tissues is not apparent (Evans et al., 1977; Lithourgidis et al., 2007; Matsi et al., 2003; Parsons 
et al., 2007; Sutton et al., 1986). Sutton et al. (1979, 1986) reported that LCM did not 
consistently increase corn leaf N and P and Matsi et al. (2003) reported that N, P and K in the 
aboveground biomass of wheat remained unchanged upon LCM or inorganic fertilization 
application, whereas Evans et al. (1977) found that LCM, relative to the unfertilized and 
inorganic fertilized treatments, increased the N, P and K concentrations in corn ear leaves, 
grain and stover. The same was reported by Lithourgidis et al. (2007) for the three 
macronutrients in the aboveground biomass of corn at the R3 growth stage. This was 
probably due to the different application period and rates of LCM. 

The beneficial effect of soil application of the LCM on micronutrient concentrations in plant 
tissues and uptake by plant species is ambiguous. In any case, increases of these plant 
parameters are expected after repeated annual applications of LCM to soil for many years 
and/or at high rates (Evans et al., 1977; Nikoli & Matsi, 2011). 
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LCM application rates Plant species Years Reference 

67-269 kg ha-1 yr-1 as N
70-560 kg ha-1 yr-1 as N 

Corn (Zea mays L.) 
3
3 

(Beauchamp, 1983) 

100-600 kg ha-1 yr-1 as N Corn 3 (Beauchamp, 1986) 

200-400 kg ha-1 yr-1 as N 
Tall fescue 

(Festuca arundinacea Schreber) 
6 (Bittman et al., 2011) 

25-50 m3 ha-1,  
3-4 times per yr 

Orchardgrass (Dactylis glomerata L.)
Reed canarygrass  

(Phalaris arundinacea L.)

2 
2 

(Carter et al., 2010) 

53-138 Mg ha-1 yr-1 Corn 3 (Comfort et al., 1987) 
224-879 kg ha-1 yr-1 as N Corn 5 (Culley et al., 1981) 

94-199 m3 ha-1 yr-1 Potato (Solanum tuberosum L.) 3 (Curless et al., 2005) 
112 & 336 kg ha-1 yr-1 as 

N 
Alfalfa (Medicago sativa L.) 2 (Daliparthy et al., 1994) 

224 metric tons ha-1 yr-1 Corn 2 (Evans et al., 1977) 
84 & 56 kg ha-1 as N Mixed forage species 6 (Griffin et al., 2002) 
240 kg ha-1 yr-1 as N Corn 3 (Jokela, 1992) 

150-450 kg ha-1 yr-1 as N Orchardgrass 2 (Kaffka & Kanneganti, 1996) 
80 Mg ha-1 yr-1 Corn 4 (Lithourgidis et al., 2007) 

45-135 metric tons ha-1 yr-

1 
Coastal bermudagrass 
(Cynodon dactylon L.) 

3 (Lund et al., 1975) 

100-300 kg ha-1 yr-1 as N Corn 3 
(McGonigle & Beauchamp, 

2004) 
40 Mg ha-1 yr-1 Winter wheat (Triticum aestivum L.) 4 (Matsi et al., 2003) 

33-62 Mg ha-1 yr-1 

Meadow fescue (Festuca pratensis 
Huds), timothy [Phleum pretense 

(L.) Trabud] 
Timothy 

3 
 
3 

(Mattila et al., 2003) 

53-138 Mg ha-1 yr-1 Corn 2 (Motavalli et al., 1989) 

60 kg ha-1 yr-1 as N 
Rye grass (Lolium perenne L.), 

white clover (Trifolium repens L.) 
2 (Misselbrook et al., 1996) 

80-160 kg ha-1 yr-1 as N Herbage 
3 

(27 sites)
(Pain et al., 1986) 

32.1-64.3 Mg ha-1 
Corn, wheat, soybean 
[Glysine max (L.) Merr] 

2 (Parsons et al., 2007) 

90 Mg ha-1 yr-1 Corn 3 (Patni & Culley, 1989) 
100-300 kg ha-1 yr-1 as N Corn 3 (Paul & Beauchamp, 1993) 

75 m3 ha-1 yr-1 
Oat (Avena sativa L.), corn, winter 

rye (Secale cereale L.) 
4 (Powell et al., 2011) 

21 & 42 metric tons ha-1

yr-1 
Barley (Hordeum vulgare L.), 

sudangrass (Sorghum sudanese L.)
4 (Pratt & Laag, 1981) 

154-224 kg ha-1 yr-1 as N Corn 4 (Randall et al., 2000) 

112-336 Mg ha-1 yr-1 
Corn

Alfalfa, orchardgrass 
3
2 

(Sutton et al., 1979) 

112-336 Mg ha-1 yr-1 Corn 6 (Sutton et al., 1986) 

75 m3 ha-1 Rye grass 
3 

(7 trials)
(Unwin et al., 1986) 

175-525 kg ha-1 yr-1 as N Corn 2 (Zebarth et al., 1996) 

100 & 200 kg ha-1 as N 
Smooth bromegrass 

(Bromus inermis Leyss) 
Oat 

3 
3 

(Zhang et al., 2006) 

Table 2. Field experiments: liquid cattle manure (LCM) application rates, the plant species 
studied and the duration of the experiment. 
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Because of the higher levels of the readily available N in LCM than in solid cattle manure 
(Beauchamp, 1986; Sutton et al., 1986), LCM seems to a be more effective organic fertilizer 
than solid cattle manure, when applied at equivalent N rates (Beauchamp, 1986; Kaffka & 
Kanneganti, 1996; Lund et al. 1975; Paul & Beauchamp, 1993; Zhang et al., 2006). Beauchamp 
(1986) reported that crop yield responses were higher in the LCM than the solid cattle 
manure treatments and the same is reported by Lund et al. (1975), Kaffka & Kanneganti 
(1996) and Zhang et al. (2006). In addition, Kaffka & Kanneganti (1996) found that N uptake 
by plants grown in plots that had received LCM was higher than the plots that had received 
solid cattle manure and Paul & Beauchamp (1993) found that N recovery by the harvested 
portion of the corn (grain + stover) was higher for LCM than for solid beef manure 
treatments. However, Evans et al. (1977) found that upon both manures application, crop 
yields increased significantly compared to control, at levels similar to the inorganic 
fertilization, and this could be attributed to the heavy application rates of both manures but 
also to the different application rates. Also, Evans et al. (1977) reported a residual beneficial 
effect of both manures on crop yield for two years, whereas Zhang et al. (2006) reported the 
same effect but only for LCM, although the opposite was expected, since solid cattle manure 
contains more organically bound N than LCM, which could be available for plant uptake 
after its mineralization for a longer period. In addition, Sutton et al. (1986) found that corn 
yields were increased the following year, after LCM application for five years at high rates. 
Surprisingly, Beauchamp (1987) reported that corn response to residual N from animal 
manures, including LCM and solid beef manure, after two years from application, was 
lower than that obtained for urea, the first year following the two years of application. 
However, the second year, following the two years of application, there was only a small 
response to residual N from any of the sources, organic or inorganic. 

4. Effect of liquid cattle manure application on soil properties 

The beneficial effect of LCM on crop yields has been connected to the improvement of soil 

fertility mainly, after LCM application to soils. In addition, a possible improvement of soil 

physical properties, through the increase of soil organic matter due to LCM application, cannot 

be excluded in the cases of long term and/or heavy applications. However, there are certain 

risks involved for plants, soils and the environment following LCM application to soils, such 

phytotoxicity of micronutrients, nutrient losses from soil by leaching and/or in the runoff and 

increase of soil salinity to unacceptable levels. All these aspects are discussed in this section.  

Upon the use of LCM as an organic fertilizer for crops, soil availability of the plant 
macronutrients N, P and K is expected to be increased and maintained at desirable levels, 
when LCM is applied at optimal rates (Beauchamp, 1983; Culley et al., 1981; Lithourgidis et 
al., 2007; Matsi et al., 2003; Pratt & Laag, 1981; Randall et al., 2000; Sutton et al., 1979, 1986; 
Zhang et al., 2006). On the other hand, there are certain risks of plant macronutrients 
accumulation in the soil and their subsequent losses to the underground water or to surface 
water reservoirs (Misselbrook, et al., 1995; Soupir et al., 2006). These risks are more 
pronounced in the case of LCM application at high rates and/or for a long period. Such 
risks are mainly the NO3- loss below the root zone due to leaching and P accumulation in the 
top soil and its subsequent loss in the runoff (Culley et al., 1981; Evans et al., 1977; Pratt & 
Laag, 1981; Sutton et al., 1979, 1986; Vellidis et al., 1996), although also NO3- loss in the 
runoff and P leaching cannot be excluded. However, it is uncertain if these risks are greater 
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in the case of LCM application than when applying inorganic fertilizers (Beauchamp, 1983, 
1986; Comfort et al., 1987; Daliparthy et al., 1994; Heathwaite et al., 1998; Lithourgidis et al., 
2007; Motavalli et al., 1985, Phillips et al., 1981; Randall et al., 2000). 

In addition to gaseous N losses following LCM application to soils, reported in the second 
section of this chapter, N can be lost as NH4-N associated with suspended soil particles in 
the runoff (Smith et al., 2001a), but the main loss is through NO3- leaching. The LCM N (the 
inorganic NH4-N or the organically bound N, after its mineralization) can be readily 
transformed to NO3-N, which is highly soluble and thus it is susceptible to leaching. Indeed, 
many researchers found elevated concentrations of NO3- in the soil profile upon LCM 
application. However, these increased concentrations were at similar or lower levels than 
those caused by the inorganic fertilizers, especially urea, applied at rates equivalent or even 
lower than the LCM N (Beauchamp, 1983, 1986; Comfort et al., 1987; Daliparthy et al., 1994; 
Jokela, 1992; Lithourgidis et al., 2007; Motavalli et al., 1985; Phillips et al., 1981; Randall et al., 
2000). For example, Phillips et al. (1981) reported that NO3-N concentration in the tile-drain 
effluent from silage corn receiving LCM at a rate of 897 kg N ha-1 was no greater than that 
from 134 kg N ha-1 applied as inorganic fertilizer. Beauchamp (1983) found that 560 kg N ha-

1 as LCM resulted in less soil NO3-N than 208 kg N ha-1 as urea and Beauchamp (1986) 
reported that application of LCM at a rate of 600 kg N ha-1 did not increase soil NO3-N levels 
above those from urea or the lower LCM application rates. 

As far as P concerns, the major problem seems to be P build-up in the plow layer and loss in 
the runoff following LCM application to soil (Smith et al., 2001b; Soupir et al., 2006), because 
usually P is strongly associated to soil particles or exist in the form of insoluble substances in 
the soil and thus it moves down the soil profile with difficulty. However, the P leaching 
cannot be excluded (Pratt & Laag, 1981; Tarkalson & Leytem, 2009), since appreciable 
amounts of water soluble P can be found in the LCM (Kleinman et al., 2005). Again, P 
accumulation in the upper soil layer was found after LCM applications for many years 
and/or at high rates (Culley et al, 1981; Pratt & Laag, 1981; Sutton et al., 1986). Furthermore, 
it is questionable if the risk of P build-up following soil LCM application is greater than that 
from inorganic fertilizers (Withers et al., 2001). Phosphorus in LCM treated soils was found 
to be less available than in soils treated with triple superphosphate (Withers et al., 2001); 
however, Siddique & Robinson (2003) and Tarkalson & Leytem (2009) reported that P 
availability and mobility in LCM treated soils were higher than in soils treated with 
potassium di-hydrogen phosphate or mono-ammonium phosphate, respectively. 

The effect of soil application of the LCM on the availability of plant micronutrients has not 
been investigated adequately in the literature, probably because this effect is inconsistent, 
even after repeated LCM applications for many years. However, the concentration of soil 
available micronutrients is likely to be increased after long-term repeated applications of 
LCM (Brock et al., 2006; Nikoli & Matsi, 2011). In certain cases, the risk of Cu and Zn 
phytotoxicities is possible upon soil application of enriched LCM with metals. The causes of 
such enrichments are the use of Cu and Zn feed additives to cattle and mainly the addition 
of hoof treatment solutions containing CuSO4 or ZnSO4 to the manure storage (Bolan et al., 
2003; Jokela et al., 2010; McBride & Spiers, 2001). In order to clarify this risk, Brock et al. 
(2006) studied the accumulation, depth distribution and bioavailability of Cu and Zn in 109 
fields, amended with LCM for 5 to 40 years. They found increased soil total Cu and Zn 
concentrations in the plow layer, but Cu and Zn soil available concentrations were low and 
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the same was evident for Cu and Zn concentrations in the leachates collected from soil cores 
(0-50 cm). They concluded that there was no evidence that Cu and Zn accumulation in the 
plow layer had reached toxicity thresholds, even after 40 years of LCM application. 

Increases of soil total organic C and N resulting from cattle manures application to soils are 

mainly connected to the addition of solid cattle manure (Chang et al., 1991; Eghball, 2002) 

than LCM, due to the higher dry matter content of the former in comparison to the latter 

(Sutton et al., 1986). Consequently, since LCM contains low amounts of dry matter and thus 

low amounts of organic matter, the beneficial effect of LCM application on soil total organic 

C and N becomes apparent after many years of continuous application and/or at high rates 

(Antil et al., 2005a, 2005b; Culley et al., 1981; Nikoli & Matsi, 2011). Culley et al. (1981) found 

that soil total organic C increased significantly upon LCM application at high rates, for 5 

years. Nikoli & Matsi (2011) reported that soil total and dissolved organic C increased 

significantly after nine years of LCM addition to soil, at rates equivalent to the 

recommended inorganic fertilization for crops. At that time, no significant increase of soil 

total N was evident. Significant increases of both total organic C and N in the top soil were 

also reported, after addition of cattle slurry in fallow and cropped plots, for 28 and 38 years, 

respectively (Antil et al., 2005a, 2005b). On the other hand, Mellek et al. (2010) observed a 

tendency for increases in soil total organic C due to LCM application to a no-tillage soil for 

only two years and Briceno et al. (2008) reported that LCM application at rates of 100-300 m3 

ha-1 to a soil with high initial content of organic matter, although it did not increase total 

organic C, resulted in increased dissolved organic C immediately after addition. Angers et 

al. (2006), who studied the dynamics of soil dissolved organic C following application of 

LCM to a loamy and a clay soil, reported that their results were inconsistent and the overall, 

temporal variations in soil dissolved organic C content were large and greater than the 

fluctuations directly attributable to LCM addition. 

The impact of LCM application on soil physical properties has not been adequately 
investigated in the literature. However, because improved soil properties are strongly 
connected to increased soil organic matter content, in addition to other soil properties that 
also influence soil structure, the improvement of soil physical properties due to LCM 
application is expected after long-term continuous applications of LCM and/or at high 
rates. Olesen et al. (1997) reported that water holding capacity of two soils differed in 
texture increased after addition of LCM at rates of 15-20 % and Mellek et al. (2010) found 
that application of LCM in a no-tillage soil for two years improved soil structure by 
changing physical properties, such as bulk density, macroporosity, aggregates mean weight 
diameter, saturated hydraulic conductivity and water infiltration rate. 

Although the beneficial effect of LCM application on soil properties is adequately 

established in the literature, there are cases of questioning this effect. Jokela et al. (2009) 

reported that LCM application to soil at a rate of 110 m3 ha-1 yr-1, for four years did not 

improve soil quality. This was attributed to removal of the large particle-size solids from the 

LCM prior its use to the field, as well as to the fact that the experimental field was in no-

tillage production with various crop rotations and had received periodic application of 

manure for twenty years before the experiment. 

The risk of increased soil salinity at unacceptable levels and consequently the risk of 
possible plant injury are possible after repeated heavy applications of LCM (Culley et al., 
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1981; Evans et al., 1977; Sutton et al., 1979, 1986). However, it is uncertain if this risk is 
greater than that due to the use of inorganic fertilizers. Evans et al. (1977) and Sutton et al. 
(1979) reported that soil salinity increased significantly, upon application of LCM at rates up 
to 336 metric tons ha-1 yr-1, but remained at levels below the critical limit, even at the highest 
application rate. Lithourgidis et al. (2007) found increased salinity in the soil profile after 
eight years of LCM application to soil, at rates equivalent to the recommended inorganic 
fertilization for crops, but at levels acceptable for most crops and similar to the levels caused 
by the inorganic fertilization. Pratt et al. (1977), who studied salts leaching as a function of 
application rates of solid and liquid cattle manures and irrigation systems, reported that 
large amounts of K, Ca and Mg were accumulated in the soil, but there was a net loss of Na. 
The percentage of leached cations coming from manures declined as the application rate of 
manures increased. They suggested that, under most irrigation systems, addition of 
manures to fine-textured soils can result in a reduction of salts leaching to underground 
water compared to coarse-textured soils, due to their lower infiltration rate. 

As far as the soil pH concerns, LCM application to soils at high rates or at rates equivalent to 
the recommended inorganic fertilization for crops for many years is not expected to affect it 
(Briceno et al., 2008; Nikoli & Matsi, 2011). Briceno et al. (2008) reported that soil pH increased 
immediately on addition of LCM at high rates to soils but returned to values similar to control 
and Nikoli & Matsi (2011) found that soil pH remained unchanged after nine annual 
applications of LCM, at rates equivalent to the recommended inorganic fertilization for crops. 

5. The Greek experience of using liquid cattle manure as a fertilizer 

The effect of LCM application to soil on wheat and corn and soil properties was studied in 
comparison to commercial inorganic fertilizers (both applied at equivalent N-P 
recommended rates), by means of a field experiment, in Northern Greece (Dordas et al., 
2008; Lithourgidis et al., 2007; Matsi et al., 2003; Nikoli & Matsi, 2011).  

The experiment was established in a field of the Farm of Aristotle University of Thessaloniki 
(22o, 59’, 6.17’’ north latitude and 40o, 32’, 9.32’’ east longitude), the fall of 1996. Field soil 
was a calcareous loam (Typic Xerorthent) (Matsi et al., 2003) and cultivated with winter 
wheat for four years, remained uncultivated for one year and then cultivated with corn until 
2011. The size of the experimental plots was 60 m2 and the experimental design was 
completely randomized blocks with six replications. 

The fertilization treatments (Lithourgidis et al, 2007; Matsi et al., 2003) were established in 

the same plots each year and were a) Soil incorporation of LCM, before sowing; b) 
application of the recommended for each crop N-P inorganic fertilization, as a single basal 
dressing, before sowing; c) application of the recommended for each crop N-P inorganic 
fertilization, but with split application of the N inorganic fertilizer, half of the amount as 
basal dressing before sowing and the other half at a specific growth stage of the crop (at 
tillering for wheat, broadcast and at the V8 growth stage for corn, as side dressing); d) no 
organic or inorganic fertilization (control). 

The LCM was collected in an open tank, occasionally agitated during storage and diluted 
with water to obtain density of almost 1 g mL-1 prior its use for the field experiments. 
Analysis of the LCM composition was performed for three consecutive years prior to 1996 
and repeated during the first two years of the wheat experiment. The results showed that 
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LCM properties were almost constant over the years, in respect to pH, dry matter content 
and N and P concentrations. Potassium concentrations were affected by the ration 
composition (unpublished data). Consequently, the mean values of total N and P contents of 
manure (Matsi et al., 2003)(Table 1) were taken as the basis for LCM application rates, for 
both experiments with wheat and corn and LCM was applied at 40 and 80 Mg ha-1 yr-1 (wet 
weight basis), for wheat and corn, respectively. The recommended N-P inorganic 
fertilization consisted of 120 kg N ha-1 yr-1 and 26 kg P ha-1 yr-1, for wheat and of 260 kg N 
ha-1 yr-1 and 57 kg P ha-1 yr-1, for corn (with single or split application of the N fertilizer). 
Fertilizers (inorganic or LCM) were applied a few days before wheat or corn sowing and 
incorporated into the soil as soon as possible (Lithourgidis et al, 2007; Matsi et al., 2003). 

Each year, plant samples were collected at two specific growth stages of the crops and 
analyzed for nutrients; the first growth stage was the heading and the R3 growth stage, for 
wheat and corn, respectively and the second growth stage was the harvest for both crops. In 
addition, samples from the soil surface or deeper layers were collected and analyzed 
(Lithourgidis et al, 2007; Matsi et al., 2003; Nikoli & Matsi, 2011). 

The results of the 4-yr (1996-2000) field experiment with winter wheat (Matsi et al., 2003) 
showed that application of the LCM to soil did not affect seed germination and N, P and K 
concentrations in plant tissues. However, upon LCM addition to soil, aboveground biomass 
of wheat, grain yield and plant uptake of the three macronutrients increased significantly 
compared to control, at levels similar to the inorganic fertilization. Similar increases were 
obtained for the available NO3-N, P and K concentrations in the surface soil layer. After four 
years of LCM application to soil, there was no evidence of N, P and K build-up in soil, 
whereas soil salinity, organic C and total N levels remained unchanged.  

The same beneficial effects of the LCM, as for wheat, were evident for corn in the first four 
years (2002-2005) of the corn experiment (Lithourgidis et al, 2007). Moreover, concentrations of 
the macronutrients N, P and K in the aboveground corn biomass, at the R3 growth stage 
increased significantly relative to control, at levels similar or higher that the inorganic 
fertilization treatments, in the years 2004 and 2005. As far as the soil properties, combining the 
results of the first four years corn experiment with those of the wheat experiment showed that, 
annual LCM application for eight years maintained the amounts of the available NO3-N, P and 
K in the surface soil layer, at desirable levels, each year of the application period. Upon LCM 
addition to soil, available NO3-N in the soil profile (0-90 cm) increased significantly compared 
to control, at levels similar to the commercial fertilizers. The same was evident for soil salinity, 
but in all cases salinity levels were acceptable for most crops. After eight years of annual LCM 
application to soil, soil organic C and total N remained unchanged. 

During the same period (2002-2005), Dordas et al. (2008) measured dry matter accumulation 
and partitioning at silking and harvest, yield components, morphological characteristics, 
chlorophyll content and N uptake and partitioning and calculated N remobilization and use 
efficiency in corn. They reported that upon LCM application to soil, all properties increased 
significantly compared to control and were at levels similar to the inorganic fertilization 
treatments, in the years 2004 and 2005. 

The beneficial effect of soil application of LCM on the availability of micronutrients was 
apparent after seven years of repeated LCM applications (Nikoli & Matsi, 2011). Although, 
the Cu, Zn, Fe, Mn and B concentrations in corn aboveground biomass, collected at the R3 
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growth stage, were not affected by fertilization, the uptake of micronutrients by corn grown 
on manured plots increased significantly compared to control and were at levels similar to 
inorganic fertilizer treatments, in the years 2005 and 2006. In addition, by 2007, i.e. after nine 
years of LCM addition to soil, the soil available micronutrients increased significantly and 
this increase was accompanied by increases in soil total and dissolved organic C. 

Measurements of the plant and soil parameters performed after 2007 revealed that the 
beneficial impact of soil application of LCM on macro- and micronutrient concentrations in 
corn aboveground biomass, plant uptake and soil availability and on soil total and dissolved 
organic C was persistent (unpublished data). Also soil total N was increased, upon soil LCM 
application of LCM, but the C/N ratio remained unchanged (unpublished data). In 
addition, in 2009, i.e. eleven years of repeated annual LCM additions to soil, available NO3-
N and salinity in the soil profile (0-90 cm) were found to be significantly increased 
compared to control, but at levels similar or lower than the commercial fertilizers. In all 
cases, soil salinity levels were acceptable for most crops (unpublished data). 

6. Conclusions 

The use of liquid cattle manure (LCM) as an organic fertilizer for crops is based on the fact 
that LCM is a valuable source of plant nutrients, especially of N; since it contains high 
amounts of readily plant available NH4-N, due of its urine content. Large percentages of this 
ammoniacal N can be lost during the storage of the LCM, but especially after LCM 
application to soils through NH3 volatilization. For this reason, soil incorporation of the 
LCM is suggested as soon as possible after land application or even at the moment of 
application. For this purpose, many techniques and equipment have been developed 
recently for use on arable soils but also in grassland, no-tillage and forest systems. 

The application rates of LCM to soil, which are based usually on its N content, can be variable, 
depending on the expected LCM N that will be available for plant uptake during the growing 
season. The quantification of LCM N transformations and losses after LCM application to soils 
seems to be a black box, even today. The problem is complex, since in addition to LCM 
properties, soil properties along with the weather conditions regulate these transformations 
and losses. When the LCM is applied to soils at rates higher than the recommended (in respect 
to N) inorganic fertilization rates for crops, it can enhance crop growth, yield and 
macronutrients uptake and maintain soil fertility at desirable levels. However, the same has 
been proven for soil application of the LCM at rates equivalent to the recommended inorganic 
fertilizers rates for crops, based on the total N content of the LCM.  

The beneficial effect of soil application of the LCM on micronutrients availability in soil and 
plant uptake can become apparent only after a long-term continuous use of LCM as a fertilizer. 
The same is true and for its effect on soil organic matter and physical properties. This is 
probably the reason for the few relevant studies on these topics in the scientific literature. 

The risk of increased soil salinity, NO3- leaching and P build-up in the top soil at 
unacceptable levels due to LCM application are connected mainly to repeated heavy 
application rates, which should be avoided anyway. However, in any case it is uncertain if 
this risk is greater from LCM than from inorganic fertilizers use. The risk of Cu and Zn 
phytotoxicites is connected to the use of LCM enriched with these metals, but again this fact 
has not been adequately established. 
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Overall, it can be concluded that soil incorporation of liquid cattle manure (LCM) at rates 
equivalent to the recommended inorganic fertilization rates for crops can enhance crop 
growth, yield and nutrient uptake and maintain soil fertility at desirable levels, without 
causing adverse effects to plants, soils and the environment. 
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