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Abstract

Resting-state fMRI has been widely applied in clinical research. Brain networks 
constructed by functional connectivity can reveal alterations related to disease and 
treatment. One of the major concerns of brain network application under clinical 
situations is how to analyze groups of data to find the potential biomarkers that can 
aid in diagnosis. In this paper, we briefly review common methods to construct brain 
networks from resting-state fMRI data, including different ways of the node defini-
tion and edge calculation. We focus on using a brain atlas to define nodes and estimate 
edges by static and dynamic functional connectivity. The directed connectivity 
method is also mentioned. We then discuss the challenges and pitfalls when analyz-
ing groups of brain networks, including functional connectivity alterations, graph 
theory attributes analysis, and network-based statistics. Finally, we review the clinical 
application of resting-state fMRI in neurorehabilitation of spinal cord injury patients 
and stroke patients, the research on the mechanism and early diagnosis of neurode-
generative diseases, such as multiple system atrophy, as well as the research on brain 
functional network alteration of glioma patients.

Keywords: resting-state fMRI, brain networks, graph theory attributes, dynamic 
functional connectivity, network-based statistics, neurorehabilitation, multiple system 
atrophy, glioma

1. Introduction

Magnetic resonance imaging (MRI) is a multimodal technique that can noninva-
sively reflect the structure and function of the human brain. Structural MRI (sMRI), 
including longitudinal (spin-lattice) relaxation time T1-weighted and transverse 
(spin-spin) relaxation time T2-weighted imaging, has been applied to investigate the 
structural features of the brain. Based on the different relaxation times of different 
tissue, T1-weighted and T2-weighted images can be used to reflect the volume of grey 
matter, white matter, as well as lesions caused by infarction or hemorrhage. Diffusion 
MRI (dMRI), such as diffusion-weighted imaging (DWI) and diffusion tensor 
imaging (DTI), can be used to measure water diffusion along different directions 
and tract neural fiber counts and orientation. Functional MRI (fMRI) reflects neural 
activity during a period of time by measuring the relative amount of deoxygenated 
hemoglobin and oxygenated hemoglobin in the blood flow, which is also called 
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the blood-oxygen-level-dependent (BOLD) signal. The fMRI is becoming popular 
in clinical situations to investigate the functional alterations following disease or 
treatment.

The fMRI experiment can be categorized into task fMRI and resting-state fMRI 
(rs-fMRI). For task fMRI, subjects need to perform a specific task, such as finger tap-
ping or receive external stimulation like heat or sound during the scanning session. 
Resting-state fMRI, on the other hand, is collected when the subject lies still in the 
scanner, without doing any movement or thinking anything particular, and keeping 
awake at all time. Researchers focus on the spontaneous neural activity reflected 
by the BOLD signal under resting conditions. The correlation of signals related to 
spatially distinct regions is commonly defined as functional connectivity (FC) [1].

In the recent two decades, several methods have been developed to analyze functional 
connectivity in the resting state, including seed-based analysis, independent component 
analysis (ICA) [2], and resting-state network (RSN) method [3, 4]. The network method 
characterizes brain spontaneous activity as a graph, where nodes are defined as brain 
regions and edges are represented as connectivity between regions. There are different 
ways to calculate the connectivity, including static and dynamic functional connectivity 
and directed connectivity. Furthermore, features proposed in network science can be 
adopted to characterize the brain network topology, such as graph theory attributes [5].

Resting-state fMRI has been applied to clinical research and applications [6, 7]. In 
clinical situations, a common research paradigm is performing group comparison and 
searching for inter-group significant different features. Researchers are interested in 
whether a group of patients is significantly different from a group of healthy controls, 
or whether the same group of patients shows significant recovery after treatment. 
The identified significant different features may be the potential biomarker to aid in 
diagnosis as well as treatment. More importantly, the location of the significant dif-
ferent feature is of great interest, since each brain region has its unique function. As a 
result, this requires comparing groups of brain networks and other extracted network 
features. In clinical research, there are two key techniques of brain network analysis, 
the method of network construction and significant difference analysis of groups of 
brain networks.

In the following sections, we first describe how to construct brain networks from 
resting-state fMRI data, including different node definitions and a range of con-
nectivity measurements. Then, we present common group analysis methods of brain 
networks. The clinical application of brain network analysis is also reported. We also 
propose several future directions in brain network research and end the chapter with a 
conclusion.

2. Constructing brain networks

Unlike structural and diffusion MRI, the fMRI scanning captures the BOLD 
signal in a period of time that typically lasts for several minutes. The collected data 
are a time series, and the “sampling period” is called repetition time (TR). That is, 
whole-brain data are collected every TR seconds. Before constructing brain networks, 
the data need to be preprocessed to clean out non-neural artifacts, including physi-
ological signals like breath and heartbeat, head movements, and scanner noise. Then 
the nodes of the network are defined and connectivity between each pair of nodes is 
calculated. The whole data processing pipeline is shown in Figure 1.
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2.1 fMRI preprocessing

The preprocessing of fMRI data is necessary since there are non-neural noises in 
the signal. There are openly available toolboxes to carry out preprocessing, such as 
Statistical Parametric Mapping (SPM), FMRIB Software Library (FSL), and Data 
Processing Assistant for Resting-State fMRI (DPARSF)[8]. Common preprocessing 
procedures begin by removing the first 10 time points to let the subject be familiar 
with the scanning environment. Since the scanning of fMRI data within a repetition 
period (2s) is done in a slice-by-slice manner, the exact collection time of the first 
slice and the last slice has a time difference. To correct this difference, a procedure 
called slice timing correction needs to be performed. Then the head motion is 
corrected so that each voxel corresponds to the same brain location in the scanning 
series.

For group analysis, the data of different subjects need to be co-registered or 
normalized to the Montreal Neurological Institute (MNI) standard space. The data 
then undergoes smoothing using a Gaussian filter with a specified full-width-half-
maximum (FWHM) value. After that, the linear trend in the signal is removed and 
nuisance covariates, such as white matter, cerebral spinal fluid (CSF), and global 
signal, are regressed out. At last, the data are filtered to keep signals within 0.01-
0.08 Hz, since signals within this frequency range are reported to reflect spontane-
ous neural activities.

Although numerous preprocessing steps have been developed, there is still no 
consensus on the standard fMRI data preprocessing pipeline. The controversy is 
centered on the nuisance covariates regression, especially global signal regression 
(GSR)[9] and white matter signal regression [10]. Other researchers tried to optimize 
the preprocessing across multiple outcome measures [11], for low-frequency fluctua-
tion analysis [12] and specific patients, such as stroke patients [13]. We have also 
investigated how the choices of preprocessing parameters and steps influence statisti-
cal analysis results [14]. The preprocessing of fMRI data remains to be a complex but 
important research topic.

Figure 1. 
Resting-state fMRI data process pipeline.
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2.2 Node definition

The most basic node definition is the voxel in a 3D fMRI image. Each voxel within 
the brain can be treated as a node and the constructed voxel-based network cov-
ers the whole brain. However, since the spatial resolution of fMRI is relatively high 
(2mm–4mm), the number of voxels is rather large (around the magnitude of 100,000) 
and the constructed network requires huge computation power for further analysis. 
Researchers have proposed specialized methods, such as the Parallel Graph-theoretical 
Analysis (PAGANI) toolkit to accelerate the processing of voxel-based whole-brain 
networks [15].

On the other hand, the nodes of the brain network can be defined as regions in the 
brain. The preprocessed data of voxels within a region are averaged spatially as the 
signal related to this node. The region can be specified manually by drawing regions 
of interest (ROI). Independent component analysis (ICA) can also reveal the compo-
nent region but requires specifying parameters, such as the number of components. 
Both methods require human intervention and depend heavily on expert knowledge.

We proposed a fuzzy node definition method in Ref. [16] for tumor-brain, named 
“Spatial-Neighborhood and Functional-Correlation (SNFC)” based on fuzzy con-
nectedness. It is a self-adapting method where the network was divided into func-
tional connection and spatial adjacency. In the SNFC method, fuzzy connectedness 
between two voxels acts as a measurement to decide if they belong to the same node. 
Each voxel in the brain could be mapped into two feature spaces—structure feature 
space S  and correlation feature space C . Let 

,i ks  represent the spatial relationship 
between voxel iv  and voxel kv , acting as a judgment of the neighboring relationship. 

,i kc  is the correlation coefficient between the BOLD signal of iv  and kv . The features 
of structural space S  guarantee the principle of the spatial neighborhood and the 
features of correlation space C  ensure the principle of consistency. Fuzzy connected-
ness between two voxels could be defined as the following:

 
, , ,i k i k i kFC s c= ⋅  (1)

If >
,i kFC T , then iv  and kv  belong to the same node, where T  is the correlation 

threshold determining whether the correlation of two voxels is strong enough to be in 
the same node.

The nodes can also be defined using regions in the brain atlas to avoid the sub-
jective error caused by human intervention and enable automatic processing for 
large cohorts of data. The most known brain atlas is the Brodmann atlas, created 
by the German anatomist Korbinian Brodmann based on cytoarchitecture [17]. 
Another popular brain parcellation is the Automated Anatomical Labeling (AAL) 
atlas [18]. The AAL atlas focuses on brain structure and the finer partition of cer-
tain cortices was proposed in AAL2 [19] and AAL3 [20]. Apart from structure, the 
brain atlas derived from diffusion and functional data is getting more attention. 
The Brainnetome Atlas was proposed based on DTI data with fine-grained parcella-
tion [21]. Researchers also developed functional atlas, such as the Atlas of Intrinsic 
Connectivity of Homotopic Areas (AICHA) that considered the homolog of regions 
in both hemispheres [22]. The above-defined network is called a region-based whole-
brain network. We can also construct networks within a region. In this scenario, 
the voxels are defined as nodes, and the network only consists of voxels within a 
region. The constructed network is called a voxel-based local network, representing 
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the topology within certain regions. We proposed a multilevel brain network joint 
analysis method on voxel-based whole-brain networks, voxel-based local networks as 
well as region-based whole-brain networks (Figure 2) [23].

Node definition has a fundamental influence on the topology of the brain network. 
Different atlas parcels the cerebrum and cerebellum based on different information, 
and it plays a key role in linking physiological regions to abstract brain network nodes. 
However, similar to the preprocessing of fMRI data, there is no gold standard for the 
node definition. Several researches have been carried out to investigate the effect of 
node definition on network analysis [24], resting-state networks [25], and the topol-
ogy of both functional networks [26] and structural networks [27]. It is still an open 
question and needs more thorough research.

2.3 Static and dynamic functional connectivity

Edges in brain networks are represented by the connectivity between nodes. One 
of the most common connectivity measures is functional connectivity (FC). In 1995, 
Biswal et al firstly reported the correlation of intrinsic low-frequency BOLD signal 
fluctuation under resting-state and since then, multiple efforts have been devoted 
to FC analysis [1, 3]. Functional connectivity is commonly defined as the Pearson 
correlation between the BOLD signal of spatially distant regions. In recent years, 
researchers realized that FC ignores the dynamics of neural activity and developed 
dynamic functional connectivity (DFC) or Chronnectome [28–30]. The research on 
DFC is becoming popular and has attracted lots of attention.

Technically speaking, FC or static functional connectivity (SFC) is calculated 
using the whole time series, whereas DFC utilizes a sliding time window and the 
correlation of signals within the window is calculated. The window then moves from 
the beginning of the BOLD signal to the end, with a pre-defined step size. As a result, 
the connectivity shows dynamic fluctuations as the window slides, and each scanning 
session is associated with a series of brain networks, or a dynamic brain network. In 

Figure 2. 
Construction of multilevel functional brain networks.
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contrast, there is only one static network related to the scanning session. The network 
is usually represented by a graph adjacency matrix, which is a square symmetric 
matrix and the ( ),i j  value equals the connection of node i  to node j . For a dynamic 
network, there is a time axis along with the adjacency matrix.

There are two major parameters regarding DFC calculation—the window length 
and the sliding step size. With a longer window length, the dynamics of neural activ-
ity might be averaged out while a shorter window length can capture transient signal 
changes. The step size controls the temporal resolution of DFC. Normally it is speci-
fied as several TRs. We investigated the optimal window width by using the small-
world property as criteria [31]. Node degree distribution has exponential truncated 
power-law in the small-world network, and the normal human brain network shows 
a strong small-world property. The reasonable window width range was verified 
on both SNFC-based and voxel-based whole-brain networks. Results show that the 
smallest window width is 200 seconds and 260 seconds for normal subjects and brain 
tumor patients, respectively. Leonardi et al also studied the theory between window 
length and filter cut-off frequency during preprocessing [32]. Apart from the two 
window parameters, the shape of the sliding window is another concern. The rectan-
gular window is the simplest solution, but other choices such as tapered window exist. 
Mokhtari et al also proposed a modulated rectangular (mRect) window to reduce 
spectral modulations [33].

We also proposed a dynamic network analysis method for enlarging the training 
samples required by an unsupervised learning classification algorithm [34], such as 
a classical backpropagation neural network classifier containing a hidden layer. It 
reached the optimal accuracy of 100% for classifying glioma patients and normal 
subjects.

Despite controversies, DFC has been used to investigate diseases, such as 
schizophrenia [35], post-traumatic stress disorder (PTSD) [36], Parkinson’s Disease 
[37], and autism [38]. It has also been applied to lifespan studies [39] and cognitive 
research [40]. From either a methodological or application view, the research on DFC 
is still insufficient.

2.4 Directed connectivity

As the definition implies, both SFC and DFC contain no directional information. 
Effective connectivity (EC) can measure the directional influence of one region 
toward another area by calculating the causal relationships between time series. 
Commonly adopted EC estimation methods are structural equation modeling (SEM) 
[41], dynamic causal modeling (DCM) [42], and Granger causality analysis (GCA) 
[43, 44]. The computation cost becomes unacceptable for SEM and DCM as the 
number of nodes increases [43]. Several amendments have been proposed to reduce 
the computation requirement of DCM recently [45, 46], but the model complexity is 
still challenging for clinical applications. We proposed a method based on convergent 
cross-mapping (CCM) that can reflect the interactions between regions in a dynamic, 
nonlinear, and deterministic way, which is not covered by GCA [47]. The method 
overview, together with the extended network-based statistic, is shown in Figure 3.

CCM was originally developed to detect causality in complex ecosystems [48]. 
It acts as a complement to GCA as CCM assumes the system to be deterministic and 
dynamical, while GCA works for a stochastic system and requires separability. In 
GCA, if removing X decreases the predictability of Y, it can be deduced that X causes 
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Y, and in a brain network scenario, there is a directed connection from X to Y. On 
the other hand, in deterministic dynamic systems where CCM was developed, we 
can measure how well Y can estimate X to determine the causal relationship from 
X to Y, which then determines the directed connectivity strength from X to Y. The 
procedure of estimating X using Y is called cross-mapping. CCM is also applicable 
under situations where separability is not guaranteed. GCA, on the other hand, may 
produce erroneous results [49]. As for the brain, it is a dynamic system whose func-
tional organization is poorly understood [50]. Utilizing CCM to estimate directed 
connectivity between regions could facilitate the investigation of brain activity as well 
as enable novel clinical applications.

3. Analyzing group differences in brain networks

After brain network construction, for each scanning of each subject, the prepro-
cessed fMRI data were converted to a brain network represented by a graph adjacency 
matrix. The next question is how to find the difference between groups of brain net-
works. Here we summarize two popular methods to further analyze brain networks.

3.1 Significance analysis

The most basic method is analyzing functional connectivity directly. Specifically, 
suppose we are comparing two groups of networks. Each connectivity value is 
extracted from every network, forming two sets of values. Statistical hypothesis test-
ing can be adopted to decide whether this connection shows a significant difference as 

Figure 3. 
CCM-based directed connectivity estimation and extended network-based statistic method.
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well as which group is higher. After performing a comparison on every connection in 
the network, the group difference network consisting of significant different connec-
tions is obtained. All edges with a significant difference were stored in a network for 
further discussion. We can also select several regions based on prior knowledge, such 
as the sensorimotor area or visual area, to further filter the set of significant different 
connections.

Another method is calculating graph theory attributes. Graph theory characterizes 
the topology of the network by nodal and global attributes. Common node level graph 
theory attributes are betweenness centrality, clustering coefficient, local efficiency, 
modularity, and weighted degree, while the network level graph theory attributes 
include global efficiency and characteristic path length. Small-worldness is also a 
common index used in brain network analysis. For multilevel brain networks, we 
define intra-region features as the attributes calculated at voxel-based local networks, 
and the attributes calculated at region-based whole-brain networks are called inter-
region features. We can calculate the global feature of the voxel-based local network 
(intra-region features), and the nodal feature of the region-based whole-brain 
network (inter-region features). As a result, for each graph attribute, we obtain a 
feature vector whose length equals the number of nodes in the network, representing 
the whole-brain network feature.

After obtaining feature vectors of graph theory attributes, we can perform a 
statistical comparison on each region similar to FC analysis. The feature at each region 
is extracted, forming two sets of values; and statistical testing is used to find signifi-
cant regions or significant different features. Moreover, the clinical relevance of the 
features can be evaluated by assessing the correlation of features and clinical scores, 
which produces features with significant correlation. The intersection of significant 
different and significant correlated features is selected for further discussion and 
following analysis.

We also investigated methods to analyze dynamic graph theory attributes [51]. For 
dynamic brain networks, at each sliding window location, the obtained brain network 
is static, and graph theory attributes can be calculated. As the window slides, graph 
theory attributes at each window location are estimated, forming the dynamic graph 
theory attributes of the dynamic network. To combine static and dynamic attributes 
together with clinical scores, we proposed an analysis framework [51]. The strength 
and stability of dynamic graph attributes were calculated. We found significant dif-
ferent and correlated features for both static and dynamic networks, as well as their 
intersection. The resulting features were further analyzed using receiver-operating 
curves (ROC) to test their ability in classification.

A controversy regarding the above analysis method is the multiple comparison 
problem. For each single statistical comparison with a 0.05 significance level, there is a 
0.05 chance of obtaining a false positive. However, when performing multiple statisti-
cal comparisons at the same time, the chance of getting at least one false positive would 
become higher as the number of comparisons increases. To tackle this problem, correc-
tion methods, such as Bonferroni correction and false discovery rate (FDR) correction, 
were proposed. The basic idea behind these correction methods is to decrease the single 
comparison significance level according to the number of comparisons. However, 
since the amount of comparison is related to the number of nodes in the network, and 
certain features show high within group variance, directly applying correction might 
result in no significant result. We argue that statistical comparison can be seen as a fea-
ture selection procedure. The significant or selected features are then fed into the next 
module, such as a classifier. During feature selection, we should keep as much useful 
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information as possible. The uncorrected significant features are preliminary scanning 
results and taking the intersection of significant different and correlated features fur-
ther select clinically relevant information. Searching for intersected significant features 
might be an alternative method to multiple comparison correction.

3.2 Network-based statistics

For brain networks, to overcome the multiple comparison issue, network-based 
statistics (NBS) was proposed, enabling direct comparison of groups of brain 
networks [52]. NBS assumes that the effect or the group difference forms a certain 
structure instead of distributed single connections. The edge-wise comparison is per-
formed first and the links are thresholded according to the test statistics or p-values 
obtained from the edge-wise comparison, producing a binarized difference network. 
It then searches for structures or connected components in the binarized difference 
network. The size of the component, defined as the number of edges or nodes, is used 
to determine if the component is significant by a permutation test, where group labels 
of samples are randomly shuffled and the same procedure is performed to search 
for the maximum component size. The permutation is repeated 5000 times and the 
empirical distribution of the component size is obtained. An empirical p-value can be 
assigned to the original connected component by calculating the ratio of the number 
of permutations, where the maximal size is larger than the original size, to the total 
permutation number.

Compared with edge-wise comparison and direct edge-wise correction, NBS 
provides higher statistical power at the cost of coarser spatial resolution in detecting 
differences [52]. In other words, NBS can only declare the connected component as a 
whole to be significant. It draws no conclusion on the significance of each single con-
nection within the component. However, the original NBS only works for symmetric 
adjacency matrices, which corresponds to functional connectivity.

Based on directed connectivity, we proposed the extended-NBS (e-NBS) to search 
for altered connected components in groups of directed networks [47]. The method 
overview is shown in Figure 3. We search for strongly connected components (SCC) 
and weakly connected components (WCC) with and without direction information. 
A classical depth-first search algorithm was adopted when searching for SCCs and 
WCCs. The edge-wise p-value was utilized to filter for candidate connections and 
construct a difference network. Since there is no consensus on how to choose the 
pre-defined p-value threshold, we changed it within a certain range to test method 
performance. Specifically, an edge is kept if the p-value is less than the pre-define 

Figure 4. 
Two-step connected component. The first level node is directly connected to the ROI in the binarized difference 
network, while the second level node is connected with the first-level node.
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p-value threshold. For edge-wise comparison, we also tried to use two-sample t-test 
and the non-parametric Mann-Whitney test. The e-NBS method, together with the 
CCM-based directed connection estimation method, was verified using a dataset of 
spinal cord injury patients and healthy controls.

Moreover, we note that given the framework of e-NBS, one can define connected 
components that suit research needs. For example, in a study of motor function 
alteration following spinal cord injury, researchers are interested in connections 
related to sensorimotor areas and visual regions. The connected component can 
be defined as significant different connections related to these regions of interest. 
Furthermore, we can define two-step connected components that comprise connec-
tions directly related to the ROIs in the binarized difference network, and connections 
related to regions (first level nodes) that connect with ROIs (Figure 4). Either way, 
the permutation test in e-NBS makes it possible to draw conclusion on the significance 
of the defined component.

4. Clinical applications

The resting-state fMRI has been applied to clinical research and applications, 
mainly investigating pathophysiological mechanisms and searching for sensitive bio-
markers for early diagnosis [6, 7]. The prognosis predictability of rs-fMRI is intrigu-
ing as well [53–55]. In glioma research, resting-state fMRI has also shown potential in 
diagnosis and treatment planning. Here we introduce three examples of applications 
and related works.

4.1 Neurorehabilitation

It has been shown that changes in both brain function and structure occur fol-
lowing central nervous lesions, such as spinal cord injury [56] and cerebral stroke 
[57]. According to the theory of neuroplasticity, the brain function continues to 
change during rehabilitation, and it is the theoretical and physiological basis for 
individualized neurorehabilitation as well as assistive rehabilitation technologies, 
such as transcranial direct current stimulation (tDCS) [58–60] and brain-computer 
interfaces (BCI) [61, 62]. We performed a study on spinal cord injury patients and 
investigated the alteration of grey matter volume extracted from structural MRI and 
functional connectivity related to the sensorimotor area, combining clinical assess-
ments [63]. We found that that the alteration of anatomical structure features and the 
brain network connectivity in the sensorimotor area were non-concomitant following 
spinal cord injury, and the functional connectivity within the sensorimotor area had a 
significant correlation with clinical sensory scores, indicating the potential of FC as a 
prediction biomarker.

Another issue related to neurorehabilitation is the automated objective evaluation of 
rehabilitation progress. Traditionally, patient recovery is assessed by clinical measure-
ments, which can only reflect behavioral improvements and might include subjective 
bias. We proposed a distance-based rehabilitation evaluation method that takes resting-
state fMRI data of patients and healthy controls as input (Figure 5) [64]. We hypoth-
esize that the sample point distribution of patients and healthy controls in the feature 
space is dichotomous. A support vector machine (SVM) classifier was first trained using 
significantly different functional connectivity of healthy controls and the first scanning 
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session of patients. The distance of the patient sample points to the separating hyper-
plane was calculated and used to evaluate patient recovery. If the patient recovered, the 
sample point of the patient would move toward healthy controls and the distance would 
decrease. The method was verified using both group level and individual longitudinal 
data, and the distance evaluation was consistent with clinical measurements.

On the other hand, a stroke could lead to certain movement disabilities. Motor-
related brain function alteration after stroke and during recovery is of great interest. 
Brain-Computer Interface (BCI) systems are helpful in motor recovery, possibly by 
stimulating neuroplasticity following brain activity [65]. The brain network reorgani-
zation of stroke patients after BCI training is of great significance. We conducted an 
experiment to investigate the functional changes after BCI training and their relations 
to clinical scores [66]. Functional connectivity was calculated using data collected 
before and after training and we searched for significant increased FC in groups with 
and without BCI training. The correlation between FC and clinical scores was also 
calculated. We found increased FC between certain cerebral and subcortical regions 
and the inter-hemisphere FC was positively correlated with motor scores.

4.2 Multiple system atrophy

Multiple system atrophy (MSA) is a neurodegenerative disease typically char-
acterized by parkinsonism, cerebellar ataxia syndrome, and autonomic nervous 
dysfunction [67]. It is further divided into two subtypes, MSA with predominant 
parkinsonism (MSA-P) and MSA with predominant cerebellar ataxia (MSA-C) [67]. 
Previous studies mainly investigated the structural abnormalities related to MSA 
patients and compared subtypes of MSA with Parkinson’s Disease (PD) as well as 
healthy controls [68–71]. The functional alteration induced by MSA is also studied 
by calculating regional homogeneity (ReHo) [72], the amplitude of low-frequency 
fluctuations (ALFF) [73], as well as functional and effective connectivity [74, 75].

The dynamic functional features of MSA-C patients not thoroughly investigated 
before. We conducted an experiment on MSA-C patients and proposed a method to 

Figure 5. 
Method overview of the distance-based rehabilitation evaluation framework.
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combine static and dynamic functional connectivity features, as well as clinical scores 
(Figure 6) [51]. The static and dynamic brain networks were constructed using meth-
ods described in section 2.3 and static and dynamic graph theory attributes were calcu-
lated. Statistical comparisons and correlation analysis were carried out and significant 
different and correlated features were found. The significant regions mainly covered 
the cerebellum and certain cerebral areas, which is consistent with prior knowledge. 
The dynamic features showed the highest area under the curve (AUC) value during 
receiver-operating characteristic (ROC) analysis, indicating the potential of dynamic 
features in disease diagnosis.

Apart from structural and functional analysis, multimodal research on MSA 
is getting more attention. We also tried to combine structural, diffusion, tractog-
raphy, and functional features extracted from T1, DTI, and fMRI to search for 
sensitive biomarkers for MSA-C patient diagnosis (Figure 7) [76]. The T1 data were 
processed to produce grey matter and white matter probability maps. We per-
formed tractography on DTI data and counted the number of tracts crossing each 
brain region. The fraction anisotropy (FA) and mean diffusivity (MD) maps were 
also obtained. For rs-fMRI, we calculated functional connectivity and constructed 
brain networks. The extended network-based statistics for the undirected network 
were adopted to search for significant different connected components between the 
two groups. By using the AAL atlas, feature maps extracted from different modali-
ties were converted to feature vectors and networks. After that, significant analysis 
was performed with false discovery rate correction and we identified significant 
different features, mainly distributed in cerebellar and certain cerebral regions. The 
correlation of these features with clinical scores was also tested. We also searched 
for sensitive biomarkers in disease diagnosis by applying a nested leave-one-out 
cross-validation framework and evaluated classification performance using the 
significant features of each region with a support vector machine (SVM) classifier, 
as shown in Figure 7. The identified biomarkers were mainly cerebellar regions. 
Different modalities contain complementary information. Merging multimodal 

Figure 6. 
The coalition analysis of rs-fMRI data combining static, dynamic functional connectivity as well as clinical 
information.
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data and clinical variables together can further reveal the neurological alteration 
related to the disease as well as increase the accuracy, robustness, and generaliza-
tion of the disease diagnosis algorithm.

4.3 Glioma

Glioma stems from the canceration of neurogliocyte and is the most common 
tumor in the human brain [77]. It has an intensive impact on the structure of the 
brain and further on the corresponding physiological functions. Different locations 
of the glioma will result in different functional alterations and prognosis outcomes. 
For a high-level glioma, it is highly likely to relapse even after being excised in 
a surgery [78]. As a result, it is necessary to analyze the brain function changes 
according to the location and volume of glioma for both diagnosis and treatment. 
We proposed a framework of multilevel functional network analysis to find the 
functional network characteristics of glioma patients [79]. The multilevel network 
consists of a hemisphere functional network, glioma voxel local network, and glioma 
region local network, as illustrated in Figure 8. The hemisphere functional network 
was constructed based on regions from a single hemisphere in the AAL atlas exclud-
ing cerebellar parcellation (Figure 9). The glioma voxel local network is constructed 
at the voxel level in the region of glioma that is extracted by a tumor segmentation 
method. And glioma region local network is also constructed at the voxel level, but 
within each atlas region containing the glioma. A ratio, defined as the number of 
voxels in an AAL area that belongs to the segmented glioma region over the total 
voxel number of the area, is used as the threshold for selecting areas containing the 
glioma in the AAL atlas.

Figure 7. 
The multimodal MRI feature fusion framework and the nested leave-one-out cross-validation procedure. GMV: 
grey matter volume; WMV: white matter volume; FA: fractional anisotropy; MD: mean diffusivity; NBS: 
network-based statistics; LOOCV: leave-one-out cross-validation.
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Network features, including connectivity strength, characteristic path length, 
average nodal betweenness centrality, and average nodal clustering coefficient, were 
calculated for all networks. The network connectivity strength was defined as the 
average z-scores of all edges. Network characteristic path length equals the average of 
shortest paths between each pair of nodes in the network. Nodal attributes, including 
betweenness centrality and clustering coefficients, are calculated at each node within 
the network and averaged as network features. For hemisphere functional networks, 
both static and dynamic functional connectivity were investigated. Since the period 
of the BOLD signal induced by the hemodynamic response of neuronal activity is 
about 20s [80], during the reconstruction of dynamic networks, a sliding window 
with a length of 50s and a step size of 10s was selected. Each glioma patient received 
functional scanning lasting for 460s. As a result, the sliding time window extracted 
46 sub-signals with a length of 50s and constructed dynamic brain networks with 
46-time slices.

In this study, 38 patients with tumors in one side of the brain were enrolled. We 
constructed 38 positive and 38 negative hemisphere functional networks. Among 
these patients, 15 subjects had glioma area segmentation. Moreover, 15 healthy sub-
jects were collected as the control group. The local network analysis was performed on 
15 patients with segmentation and 15 healthy controls. We used the two-sample t-test 
to evaluate the significant difference of each feature between hemisphere functional 

Figure 8. 
A framework of multilevel functional network analysis for finding the functional network characteristics of 
glioma patients.

Figure 9. 
The process of the construction of the hemisphere functional networks is based on the AAL atlas of a glioma 
patient. The green dots stand for the nodes of the functional network. The yellow line segments represent the 
weighted edges whose thickness reflects the weight. The colored area shows the tumor region and different colors 
reflect the possibility of whether a voxel belongs to the tumor.



15

Resting-State Brain Network Analysis Methods and Applications
DOI: http://dx.doi.org/10.5772/intechopen.104827

networks constructed on the healthy side and the glioma side. The glioma voxel local 
networks and glioma region local networks were constructed at the same location of 
glioma segmentation in data collected from healthy controls as well. Statistical com-
parison was performed to compare network features of glioma voxel local networks 
and glioma region local networks from patients and healthy controls. There were 41 
glioma region local networks constructed from 15 patients, and for comparison, 41 
local networks were estimated from healthy controls.

We also investigated the classification performance using hemisphere functional 
networks. Given that the sample size is small (38 networks with glioma and 38 
networks with healthy tissue), linear support vector machine (SVM) was chosen as 
the classifier. Static and dynamic network features were extracted and aligned into a 
feature vector of dimensions 4 and 184 ( ×46 4 ) as the input to the classifier, and the 
leave-one-out cross-validation method is employed to evaluate the performance. The 
results showed that both dynamic and static features can distinguish the normal and 
abnormal networks. In addition, dynamic features obtained 100% accuracy in our 
dataset, while static features showed 71.5% accuracy.

Results revealed by the multilevel functional network analysis method showed 
that the existence of glioma changed certain features of the normal functional 
networks. Our work finds that glioma weakened the connection strength of the global 
and local functional networks. Moreover, it decreased the clustering degree of the 
nodes in both local functional networks, indicating that glioma may destruct the non-
randomness and the small-world property of brain networks.

Previous studies have already investigated how glioma alters functional connectiv-
ity [80–83]. We find that glioma attenuates the connectivity of functional networks, 
which is in accordance with previous studies. Moreover, we also involved network 
features other than connectivity. Our study emphasized the characteristic features, 
such as betweenness centrality, clustering coefficient, and characteristic path length, 
which were not covered by previous research.

5. Future directions

Despite progress in recent years, there are lots of work to be done in developing 
new methods for constructing and analyzing brain networks, as well as performing 
group and individualized analysis. In this section, we propose some possible direc-
tions in the field of brain network research.

Network science has been used to analyze brain networks and advanced methods 
need to be developed to characterize the topological features of brain networks. The 
algebraic topological data analysis (TDA) method provides a new way to analyze the 
interactions between a set of nodes instead of bilateral connections. TDA could act as 
a complement to graph theoretical analysis in describing the topology characteristic of 
brain networks. More advanced network theory concepts, such as algebraic topology, 
have also been introduced to the analysis of brain networks [5]. Moreover, artificial neu-
ral networks and deep learning methods have been shown to be powerful in analyzing 
graph data. On the one hand, before network construction, models, such as Recurrent 
Neural Network (RNN) and Transformer, that were originally proposed to process 
sequential data, such as natural language and voice, can be applied to analyze the BOLD 
time series, both with and without preprocessing. Since the network perspective mainly 
models the inter-relationships between signals of spatially distinct regions, applying 
deep learning models directly to the time series could possibly extract information 
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complementary to statistical dependency, as described by functional connectivity. 
On the other hand, after constructing brain networks using functional connectivity, 
directed connectivity, or DTI fiber tracking, Graph Neural Network (GNN) or Graph 
Convolutional Network (GCN) could be utilized to merge these multimodal networks 
and combine both edge-wise features (connections) and nodal features, such as graph 
theory attributes. GNN was proposed to directly analyze graphs that can model rela-
tionships between nodes and perform inference on node, edge, or graph level. Applying 
GNN to brain networks, especially multilevel static and dynamic brain networks, could 
possibly extract useful features and enable multimodal information fusion.

On the application side, multiple group comparison methods have been developed. 
However, for clinical application, individualized diagnosis and treatment are crucial. 
How to transform conclusions derived from group research into individual situa-
tions is a challenging question. We define “healthy templates” as a set of methods 
to delineate characteristics of a healthy population. The healthy templates describe 
the distribution of features of healthy people and need to be built for each feature 
extracted from different modalities. In its most basic form, the healthy template can 
be a value range given a specific feature. Subjects whose feature value falls within this 
value range would be considered to be normal, similar to the interpretation of a blood 
test result. Open-source datasets are valuable resources in the construction of healthy 
templates. However, the site effect of MRI data is a crucial issue and multi-site data 
harmonization techniques need to be adopted when combining data from different 
scanning locations. Several methods have been proposed for harmonization but their 
utility remains to be tested [84, 85]. With low variance healthy templates, individual-
ized precise treatment planning and prognosis prediction would become possible.

6. Conclusion

The human brain is modeled as a functionally inter-connected network. Resting-
state functional magnetic resonance imaging enables observing brain spontaneous 
activity in vivo. In this chapter, we reviewed the process of rs-fMRI data as well 
as group analysis methods. Different node definitions and edge estimation were 
discussed during the network construction stage. Nodes can be defined at the voxel 
level or with the help of a brain atlas. Lesions, such as glioma segmentation result, 
can also guide node definition. Edges are estimated in static, dynamic as well as 
directed scenarios. We presented two major methods to compare groups of brain 
networks data, significance analysis, and network-based statistics. Combined with 
the brain atlas, whole-brain networks are characterized by graph theory attributes 
developed in network science. Network-based statistics enables the direct com-
parison of groups of brain networks. We also discussed the clinical application of 
rs-fMRI data analysis in neurorehabilitation, multiple system atrophy, and glioma 
patients. At last, future research directions are discussed, with an emphasis on net-
work science, novel deep learning models, and individualized clinical applications.

Acknowledgements

This work was supported by a grant from the Tsinghua University Initiative 
Scientific Research Program (No. 20131089382) and the National Natural Science 
Foundation of China (No. 61171002, 60372023). We would like to thank Zexuan Hao 



Resting-State Brain Network Analysis Methods and Applications
DOI: http://dx.doi.org/10.5772/intechopen.104827

17

Author details

Yunxiang Ge and Weibei Dou*
Department of Electronic Engineering, Beijing National Research Center for 
Information Science and Technology (BNRist), Tsinghua University, Beijing, China

*Address all correspondence to: douwb@tsinghua.edu.cn

and Ziliang Zhang from the Department of Electronic Engineering, Beijing National 
Research Center for Information Science and Technology (BNRist), Tsinghua 
University for useful advice during the experiment and manuscript development.

Conflict of interest

The authors declare no conflict of interest.

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 



Neurophysiology

18

[1] Biswal B, Zerrin Yetkin F, 
Haughton VM, Hyde JS. Functional 
connectivity in the motor cortex of 
resting human brain using echo-planar 
mri. Magnetic Resonance in Medicine. 
1995;34(4):537-541

[2] Calhoun VD, Liu J, Adalı T. A 
review of group ICA for fMRI data and 
ICA for joint inference of imaging, 
genetic, and ERP data. NeuroImage. 
2009;45(1):S163-S172

[3] van den Heuvel MP, Hulshoff 
Pol HE. Exploring the brain network: 
A review on resting-state fMRI 
functional connectivity. European 
Neuropsychopharmacology. 
2010;20(8):519-534

[4] Rosazza C, Minati L. Resting-state 
brain networks: Literature review and 
clinical applications. Neurological 
Sciences. 2011;32(5):773-785

[5] Bassett DS, Sporns O. Network 
neuroscience. Nature Neuroscience. 
2017;20(3):353-364

[6] Fox M, Greicius M. Clinical 
applications of resting state functional 
connectivity. Frontiers in Systems 
Neuroscience. 2010;4(19)

[7] Lee MH, Smyser CD, Shimony JS. 
Resting-State fMRI: A Review of Methods 
and Clinical Applications. American 
Journal of Neuroradiology. 
2013;34(10):1866-1872

[8] Yan C, Zang Y. DPARSF: A MATLAB 
toolbox for" pipeline" data analysis of 
resting-state fMRI. Frontiers in Systems 
Neuroscience. 2010;4(13)

[9] Murphy K, Fox MD. Towards a 
consensus regarding global signal 

regression for resting state functional 
connectivity MRI. NeuroImage. 
2017;154:169-173

[10] Grajauskas LA, Frizzell T, Song X, 
Darcy R. White matter fMRI activation 
cannot be treated as a nuisance regressor: 
Overcoming a historical blind spot. 
Frontiers in Neuroscience. 2019;13(1024)

[11] Shirer WR, Jiang H, Price CM, Ng B, 
Greicius MD. Optimization of rs-fMRI 
Pre-processing for Enhanced Signal-
Noise Separation, Test-Retest Reliability, 
and Group Discrimination. NeuroImage. 
2015;117:67-79

[12] Woletz M, Hoffmann A, Tik M, 
Sladky R, Lanzenberger R, Robinson S, 
et al. Beware detrending: Optimal 
preprocessing pipeline for low-frequency 
fluctuation analysis. Human Brain 
Mapping. 2019;40(5):1571-1582

[13] Yourganov G, Fridriksson J, Stark B, 
Rorden C. Removal of artifacts from 
resting-state fMRI data in stroke. 
NeuroImage: Clinical. 2018;17:297-305

[14] Ge Y, Pan Y, Dou W. Analysis of 
BOLD fMRI signal preprocessing 
pipeline on different datasets while 
reducing false positive rates. BIBE 
2018; International Conference on 
Biological Information and Biomedical 
Engineering; 2018

[15] Du H, Xia M, Zhao K, Liao X, 
Yang H, Wang Y, et al. PAGANI Toolkit: 
Parallel graph-theoretical analysis 
package for brain network big 
data. Human Brain Mapping. 
2018;39(5):1869-1885

[16] Wang X. Brain Function Analysis 
Method for Glioma Patient by Using 
Information Combination of MRI and 

References



Resting-State Brain Network Analysis Methods and Applications
DOI: http://dx.doi.org/10.5772/intechopen.104827

19

fMRI Signal. Beijing, China: Tsinghua 
University; 2014

[17] Brodmann K. Vergleichende 
Lokalisationslehre der Grosshirnrinde in 
ihren Prinzipien dargestellt auf Grund 
des Zellenbaues. Barth; 1909

[18] Tzourio-Mazoyer N, Landeau B, 
Papathanassiou D, Crivello F, Etard O, 
Delcroix N, et al. Automated anatomical 
labeling of activations in SPM using a 
macroscopic anatomical parcellation 
of the MNI MRI single-subject brain. 
NeuroImage. 2002;15(1):273-289

[19] Rolls ET, Joliot M, Tzourio- 
Mazoyer N. Implementation of a new 
parcellation of the orbitofrontal cortex in 
the automated anatomical labeling atlas. 
NeuroImage. 2015;122:1-5

[20] Rolls ET, Huang C-C, Lin C-P, 
Feng J, Joliot M. Automated anatomical 
labelling atlas 3. NeuroImage. 
2020;206:116189

[21] Fan L, Li H, Zhuo J, Zhang Y, Wang J, 
Chen L, et al. The human brainnetome 
atlas: A new brain atlas based on 
connectional architecture. Cerebral 
Cortex. 2016;26(8):3508-3526

[22] Joliot M, Jobard G, Naveau M, 
Delcroix N, Petit L, Zago L, et al. AICHA: 
An atlas of intrinsic connectivity of 
homotopic areas. Journal of Neuroscience 
Methods. 2015;254:46-59

[23] Luo H, Dou W, Pan Y, Wang Y, 
Mu Y, Li Y, et al. Joint analysis of multi-
level functional brain networks. 2016 
9th International Congress on Image 
and Signal Processing. BioMedical 
Engineering and Informatics (CISP-
BMEI). Oct. 2016;2016:15-17

[24] Gong Y, Wu H, Li J, Wang N, Liu H, 
Tang X. Multi-granularity whole-brain 
segmentation based functional network 

analysis using resting-state fMRI. 
Frontiers in Neuroscience. 2018;12(942)

[25] Doucet GE, Lee WH, Frangou S. 
Evaluation of the spatial variability in 
the major resting-state networks across 
human brain functional atlases. Human 
Brain Mapping. 2019;40(15):4577-4587

[26] Wang J, Wang L, Zang Y, Yang H, 
Tang H, Gong Q , et al. Parcellation-
dependent small-world brain 
functional networks: A resting-state 
fMRI study. Human Brain Mapping. 
2009;30(5):1511-1523

[27] Wu Z, Xu D, Potter T, Zhang Y, 
TAsDNI. Effects of brain parcellation 
on the characterization of topological 
deterioration in Alzheimer’s disease. 
Frontiers in Aging Neuroscience. 
2019;11(113)

[28] Allen EA, Damaraju E, Plis SM, 
Erhardt EB, Eichele T, Calhoun VD. 
Tracking whole-brain connectivity 
dynamics in the resting state. Cerebral 
Cortex. 2014;24(3):663-676

[29] Sakoğlu Ü, Pearlson GD, Kiehl KA, 
Wang YM, Michael AM, Calhoun VD. 
A method for evaluating dynamic 
functional network connectivity 
and task-modulation: Application to 
schizophrenia. Magnetic Resonance 
Materials in Physics, Biology and 
Medicine. 2010;23(5):351-366

[30] Calhoun Vince D, Miller R, 
Pearlson G, Adalı T. The cronnectome: 
Time-varying connectivity networks as 
the next frontier in fMRI data discovery. 
Neuron. 2014;84(2):262-274

[31] Wang Z, Zhang X, Dou W, Zhang M, 
Chen H, Lu M, et al. Best window width 
determination and glioma analysis 
application of dynamic brain network 
measure on resting-state functional 
magnetic resonance imaging. Journal of 



Neurophysiology

20

Medical Imaging and Health Informatics. 
2016;6(7):1735-1740

[32] Leonardi N, Van De Ville D. On 
spurious and real fluctuations of 
dynamic functional connectivity during 
rest. NeuroImage. 2015;104:430-436

[33] Mokhtari F, Akhlaghi MI, 
Simpson SL, Wu G, Laurienti PJ. Sliding 
window correlation analysis: 
Modulating window shape for dynamic 
brain connectivity in resting state. 
NeuroImage. 2019;189:655-666

[34] Zhang W, Wang Z, Dou W, Wang X, 
Lu M, Zhang M, et al. Dynamic features 
extraction method of resting-state 
BOLD-fMRI signal and its application to 
brain data classification between normal 
and glioma. 2014 12th International 
Conference on Signal Processing (ICSP); 
2014

[35] Rashid B, Damaraju E, Pearlson GD, 
Calhoun VD. Dynamic connectivity 
states estimated from resting 
fMRI Identify differences among 
Schizophrenia, bipolar disorder, and 
healthy control subjects. Frontiers in 
Human Neuroscience. 2014;8(897)

[36] Yuan H, Phillips R, Wong CK, 
Zotev V, Misaki M, Wurfel B, et al. 
Tracking resting state connectivity 
dynamics in veterans with PTSD. 
NeuroImage: Clinical. 2018;19:260-270

[37] Zhu H, Huang J, Deng L, He N, 
Cheng L, Shu P, et al. Abnormal dynamic 
functional connectivity associated with 
subcortical networks in Parkinson’s 
disease: A temporal variability perspective. 
Frontiers in Neuroscience. 2019;13(80)

[38] Aggarwal P, Gupta A. Multivariate 
graph learning for detecting aberrant 
connectivity of dynamic brain networks 
in autism. Medical Image Analysis. 
2019;56:11-25

[39] Xia Y, Chen Q , Shi L, Li M, Gong W, 
Chen H, et al. Tracking the dynamic 
functional connectivity structure 
of the human brain across the adult 
lifespan. Human Brain Mapping. 
2019;40(3):717-728

[40] Liu J, Liao X, Xia M, 
He Y. Chronnectome fingerprinting: 
Identifying individuals and predicting 
higher cognitive functions using dynamic 
brain connectivity patterns. Human 
Brain Mapping. 2018;39(2):902-915

[41] Mclntosh A, Gonzalez-Lima F. 
Structural equation modeling and 
its application to network analysis in 
functional brain imaging. Human Brain 
Mapping. 1994;2(1-2):2-22

[42] Friston KJ, Harrison L, Penny W. 
Dynamic causal modelling. NeuroImage. 
2003;19(4):1273-1302

[43] Deshpande G, LaConte S, James GA, 
Peltier S, Hu X. Multivariate Granger 
causality analysis of fMRI data. Human 
Brain Mapping. 2009;30(4):1361-1373

[44] Granger CWJ. Investigating causal 
relations by econometric models and 
cross-spectral methods. Econometrica. 
1969;37(3):424-438

[45] Razi A, Seghier ML, Zhou Y, 
McColgan P, Zeidman P, Park H-J, et 
al. Large-scale DCMs for resting-state 
fMRI. Network Neuroscience. 
2017;1(3):222-241

[46] Friston KJ, Kahan J, Biswal B, 
Razi A. A DCM for resting state fMRI. 
NeuroImage. 2014;94:396-407

[47] Ge Y, Yang Z, Feng Y, Pan Y, Dou W. 
Extended network-based statistics for 
measuring altered directed connectivity 
components in the human brain. 2021 
IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM); 
2021



Resting-State Brain Network Analysis Methods and Applications
DOI: http://dx.doi.org/10.5772/intechopen.104827

21

[48] Sugihara G, May R, Ye H, Hsieh C-H, 
Deyle E, Fogarty M, et al. Detecting 
causality in complex ecosystems. Science. 
2012;338(6106):496-500

[49] Duggento A, Guerrisi M, Toschi N. 
Echo state network models for nonlinear 
Granger causality. Philosophical 
Transactions of the Royal Society A: 
Mathematical, Physical and Engineering 
Sciences. 2021;379(2212):20200256

[50] Korhonen O, Zanin M, 
Papo D. Principles and open questions 
in functional brain network 
reconstruction. Human Brain Mapping. 
2021;42(11):3680-3711

[51] Zheng W, Ge Y, Ren S, Ran W, 
Zhang X, Tian W, et al. Abnormal static 
and dynamic functional connectivity 
of resting-state fMRI in multiple 
system atrophy. Aging (Albany NY). 
2020;12(16):16341-16356

[52] Zalesky A, Fornito A, Bullmore ET. 
Network-based statistic: Identifying 
differences in brain networks. 
NeuroImage. 2010;53(4):1197-1207

[53] Arbabshirani MR, Plis S, Sui J, 
Calhoun VD. Single subject prediction 
of brain disorders in neuroimaging: 
Promises and pitfalls. NeuroImage. 
2017;145:137-165

[54] Kim B, Winstein C. Can neurological 
biomarkers of brain impairment be used 
to predict poststroke motor recovery? A 
systematic review. Neurorehabilitation 
and Neural Repair. 2017;31(1):3-24

[55] Stinear CM, Ward NS. How useful is 
imaging in predicting outcomes in stroke 
rehabilitation? International Journal of 
Stroke. 2013;8(1):33-37

[56] Solstrand Dahlberg L, Becerra L, 
Borsook D, Linnman C. Brain changes 
after spinal cord injury, a quantitative 

meta-analysis and review. Neuroscience 
& Biobehavioral Reviews. 2018;90: 
272-293

[57] Thiel A, Vahdat S. Structural and 
resting-state brain connectivity of 
motor networks after stroke. Stroke. 
2015;46(1):296-301

[58] Chen JL, Schlaug G. Increased 
resting state connectivity between 
ipsilesional motor cortex and 
contralesional premotor cortex after 
transcranial direct current stimulation 
with physical therapy. Scientific Reports. 
2016;6(1):23271

[59] Allman C, Amadi U, Winkler AM,  
Wilkins L, Filippini N, Kischka U,  
et al. Ipsilesional anodal tDCS 
enhances the functional benefits of 
rehabilitation in patients after stroke. 
Science Translational Medicine. 
2016;8(330):330re1-re1

[60] Caeyenberghs K, Clemente A,  
Imms P, Egan G, Hocking DR, 
Leemans A, et al. Evidence for training-
dependent structural neuroplasticity in 
brain-injured patients: A critical review. 
Neurorehabilitation and Neural Repair. 
2018;32(2):99-114

[61] Athanasiou A, Klados MA, 
Pandria N, Foroglou N, Kavazidi KR, 
Polyzoidis K, et al. A systematic review 
of investigations into functional brain 
connectivity following spinal cord injury. 
Frontiers in Human Neuroscience. 
2017;11(517)

[62] Hu M, Ji F, Lu Z, Huang W,  
Khosrowabadi R, Zhao L, et al. 
Differential amplitude of low-frequency 
fluctuations in brain networks after 
BCI training with and without tDCS in 
stroke. 2018 40th Annual International 
Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC); 
2018



Neurophysiology

22

[63] Pan Y, Dou W-B, Wang Y-H, Luo 
H-W, Ge Y-X, Yan S-Y, et al. Non-
concomitant cortical structural and 
functional alterations in sensorimotor 
areas following incomplete spinal cord 
injury. Neural Regeneration Research. 
2017;12(12):2059-2066

[64] Ge Y, Pan Y, Wu Q , Dou W. A 
distance-based neurorehabilitation 
evaluation method using linear SVM 
and resting-state fMRI. Frontiers in 
Neurology. 2019;10(1105)

[65] Song J, Nair VA, Young BM, 
Walton LM, Nigogosyan Z, Remsik A, 
et al. DTI measures track and predict 
motor function outcomes in stroke 
rehabilitation utilizing BCI technology. 
Frontiers in Human Neuroscience. 
2015;9(195)

[66] Wu Q , Yue Z, Ge Y, Ma D, Yin H, 
Zhao H, et al. Brain functional networks 
study of subacute stroke patients 
with upper limb dysfunction after 
comprehensive rehabilitation including 
BCI training. Frontiers in Neurology. 
2020;10(1419)

[67] Gilman S, Wenning GK, Low PA, 
Brooks DJ, Mathias CJ, Trojanowski JQ , 
et al. Second consensus statement on the 
diagnosis of multiple system atrophy. 
Neurology. 2008;71(9):670-676

[68] Huppertz H-J, Möller L,  
Südmeyer M, Hilker R,  
Hattingen E, Egger K, et al. 
Differentiation of neurodegenerative 
parkinsonian syndromes by volumetric 
magnetic resonance imaging 
analysis and support vector machine 
classification. Movement Disorders. 
2016;31(10):1506-1517

[69] Planetta PJ, Kurani AS, Shukla P, 
Prodoehl J, Corcos DM, Comella CL, et al. 
Distinct functional and macrostructural 
brain changes in Parkinson's disease and 

multiple system atrophy. Human Brain 
Mapping. 2015;36(3):1165-1179

[70] Pellecchia MT, Barone P, Mollica C, 
Salvatore E, Ianniciello M, Longo K, et al. 
Diffusion-weighted imaging in multiple 
system atrophy: A comparison between 
clinical subtypes. Movement Disorders. 
2009;24(5):689-696

[71] Chen B, Fan G, Sun W, 
Shang X, Shi S, Wang S, et al. Usefulness 
of diffusion-tensor MRI in the diagnosis 
of Parkinson variant of multiple 
system atrophy and Parkinson's 
disease: A valuable tool to differentiate 
between them? Clinical Radiology. 
2017;72(7):610-615

[72] You H, Wang J, Wang H, Zang Y-F, 
Zheng F-L, Meng C-L, et al. Altered 
regional homogeneity in motor cortices 
in patients with multiple system atrophy. 
Neuroscience Letters. 2011;502(1):18-23

[73] Wang N, Edmiston EK, 
Luo X, Yang H, Chang M, Wang F, et al. 
Comparing abnormalities of amplitude 
of low-frequency fluctuations in 
multiple system atrophy and idiopathic 
Parkinson's disease measured with 
resting-state fMRI. Psychiatry Research: 
Neuroimaging. 2017;269:73-81

[74] Yao Q , Zhu D, Li F, Xiao C, Lin X, 
Huang Q , et al. Altered functional and 
causal connectivity of cerebello-cortical 
circuits between multiple system atrophy 
(Parkinsonian Type) and Parkinson’s 
disease. Frontiers in Aging Neuroscience. 
2017;9(266)

[75] Ren S, Zhang H, Zheng W, Liu M, 
Gao F, Wang Z, et al. Altered functional 
connectivity of cerebello-cortical circuit 
in multiple system atrophy (Cerebellar-
Type). Frontiers in Neuroscience. 
2019;12(996)

[76] Ge Y, Zheng W, Li Y, Dou W, Ren S, 
Chen Z, et al. Altered Brain Volume, 



Resting-State Brain Network Analysis Methods and Applications
DOI: http://dx.doi.org/10.5772/intechopen.104827

23

Microstructure Metrics and Functional 
Connectivity Features in Multiple 
System Atrophy. Frontiers in Aging 
Neuroscience. 2022;14:799251. DOI: 
10.3389/fnagi.2022.799251

[77] Mamelak AN, Jacoby DB. Targeted 
delivery of antitumoral therapy to glioma 
and other malignancies with synthetic 
chlorotoxin (TM-601). Expert Opinion 
on Drug Delivery. 2007;4(2):175-186

[78] Wong ET, Brem S. Taming 
glioblastoma: Targeting angiogenesis. 
Journal of Clinical Oncology. 
2007;25(30):4705-4706

[79] Li Y. Multi-level Functional Network 
Characteristic Analysis for Glioma 
Patients Based on fMRI Information. 
Beijing, China: Tsinghua University;  
2015

[80] Constable RT. Challenges in 
fMRI and its limitations. In: Faro SH, 
Mohamed FB, editors. Functional 
MRI: Basic Principles and Clinical 
Applications. New York, NY: Springer 
New York; 2006. pp. 75-98

[81] Manglore S, Bharath R, Panda R, 
George L, Thamodharan A, Gupta A. 
Utility of resting fMRI and connectivity 
in patients with brain tumor. Neurology 
India. 2013;61(2):144-151

[82] Esposito R, Mattei PA, 
Briganti C, Romani GL, Tartaro A, 
Caulo M. Modifications of default-
mode network connectivity in patients 
with cerebral glioma. PLOS ONE. 
2012;7(7):e40231

[83] Harris RJ, Bookheimer SY, 
Cloughesy TF, Kim HJ, Pope WB, Lai A, 
et al. Altered functional connectivity 
of the default mode network in diffuse 
gliomas measured with pseudo-resting 
state fMRI. Journal of Neuro-Oncology. 
2014;116(2):373-379

[84] Fortin J-P, Parker D, Tunç B, 
Watanabe T, Elliott MA, Ruparel K, et al. 
Harmonization of multi-site diffusion 
tensor imaging data. NeuroImage. 
2017;161:149-170

[85] Fortin J-P, Cullen N, Sheline YI, 
Taylor WD, Aselcioglu I, Cook PA,  
et al. Harmonization of cortical thickness 
measurements across scanners and sites. 
NeuroImage. 2018;167:104-120


