
Gettysburg College Open Educational Resources

7-22-2016

Implementing a One Address CPU in Logisim
Charles W. Kann
Gettysburg College

Follow this and additional works at: http://cupola.gettysburg.edu/oer

Share feedback about the accessibility of this item.

This open access book is brought to you by The Cupola: Scholarship at Gettysburg College. It has been accepted for inclusion by an
authorized administrator of The Cupola. For more information, please contact cupola@gettysburg.edu.

Kann, Charles W., "Implementing a One Address CPU in Logisim" (2016). Gettysburg College Open Educational Resources. 3.
http://cupola.gettysburg.edu/oer/3

http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Foer%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cupola.gettysburg.edu/?utm_source=cupola.gettysburg.edu%2Foer%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cupola.gettysburg.edu/oer?utm_source=cupola.gettysburg.edu%2Foer%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cupola.gettysburg.edu/oer?utm_source=cupola.gettysburg.edu%2Foer%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.google.com/a/bepress.com/forms/d/1h9eEcpBPj5POs5oO6Y5A0blXRmZqykoonyYiZUNyEq8/viewform
http://cupola.gettysburg.edu/oer/3?utm_source=cupola.gettysburg.edu%2Foer%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cupola@gettysburg.edu

Implementing a One Address CPU in Logisim

Description

Most computer users have an incorrect, but useful, cognitive metaphor for computers in which the user says
(or types or clicks) something and a mystical, almost intelligent or magical, behavior happens. It is not a
stretch to describe computer users as believing computers follow the laws of magic, where some magic
incantation is entered, and the computer responds with an expected, but magical, behavior.

This magic computer does not actually exist. In reality computer are machines, and every action a computer
performs reduces to a set of mechanical operations. In fact the first complete definition of a working computer
was a mechanical machine designed by Charles Babbage in 1834, and would have run on steam power.

Probably the biggest success of Computer Science (CS) in the 20th century was the development of
abstractions that hide the mechanical nature of computers. The fact that average people use computers
without ever considering that they are mechanistic is a triumph of CS designers.

This purpose of this monograph is to break the abstract understanding of a computer, and to explain a
computer’s behavior in completely in mechanistic terms. It will deal specifically with the Central Processing
Unit (CPU) of the computer, as this is where the magic happens. All other parts of a computer can be seen as
just providing information for the CPU to operate on.

This monograph will deal with a specific type of CPU, a one-address CPU, and will explain this CPU using
only standard gates, specifically AND, OR, NOT, NAND and XOR gates, and 4 basic Integrated Circuits
(ICs), the Decoder, Multiplexer, Adder, and Flip Flop. All of these gates and components can be described as
mechanical transformations of input data to output data, and the overall CPU can then be seen as a
mechanical device.

Keywords

Digital Circuits, System Architecture, Computer Organization, Integrated Circuits, Computer Logic, Central
Processing Unit (CPU), Processor Architecture, Multiplexer, Decoder, Arithmetic Logic Unit, Register File,
Flip-Flop, Memory, Memory Latch, Adder, Full Adder, Half Adder, State Computer, State Machine, Mod 4
Counter, 7400, 7400 Series, Digital Circuit Lab Manual, Electronic Circuits, Electronic Projects, Digital
Circuit Projects, Computer Science Online, Online Laboratory Manual, Laboratory Manual

Comments

The zip file included with this entry should have all materials for the text, including the assembler, Logisim
circuits, programs, and figures. As new materials are developed, they may be available as beta releases at
http://chuckkann.com.

Please send me an email at ckann@gettysburg.edu if you use this book as a textbook in a class.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

This book is available at The Cupola: Scholarship at Gettysburg College: http://cupola.gettysburg.edu/oer/3

http://chuckkann.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://cupola.gettysburg.edu/oer/3?utm_source=cupola.gettysburg.edu%2Foer%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

Implementing a One-

Address CPU in

Logisim
Vol 1: Implementing CPUs in Logisim Series

The monograph implements a simple one-address CPU using Logisim. A working , programmable one-

address CPU is created and explained, including the assembly language used for the CPU, an assembler

to translate the assembly language into machine code, and how the CPU uses the machine code to

implement the program.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 1

© Charles W. Kann III

 277 E. Lincoln Ave.

 Gettysburg, Pa

All rights reserved.

This book is licensed under the Creative Commons Attribution 4.0 License

Last Update: Sunday, November 06, 2016

A set of problems for the computer in this text is being developed, and if you would like them email me

at ckann@gettysburg.edu

This book is available for free download from: http://chuckkann.com/books/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

Other books by Charles Kann

Kann, Charles W., "Digital Circuit Projects: An Overview of Digital Circuits Through Implementing

Integrated Circuits - Second Edition" (2014). Gettysburg College Open Educational Resources. Book 1.

http://cupola.gettysburg.edu/oer/1

Kann, Charles W., "Introduction to MIPS Assembly Language Programming" (2015). Gettysburg College

Open Educational Resources. Book 2.

http://cupola.gettysburg.edu/oer/2

http://cupola.gettysburg.edu/oer/1
http://cupola.gettysburg.edu/oer/2

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 3

Forward

The purpose of the monographs in this series is to help students and others interested in CS to

understand the mechanical nature of the most important part of a computer, the CPU. This series is

intended to be used by CS students and practitioners who want a deeper understanding of the design of

a CPU, but it is also targeted at computer hobbyists who are interested in how computers actually work.

This is the first monograph in a planned series documents which describe and implement different CPU

architectures. This monograph implements a one-address Central Processing Unit (CPU) which the

author has implemented in Logisim. Except for some simple Integrated Circuits (ICs), specifically a

decoder, multiplexer, adder, and flip flop, this CPU is designed using only simple gates (AND, OR, NOT,

XOR and NAND) and simple Boolean logic, and thus should be at a level that can be understood by a

hobbyist who wants to delve deeper into what a CPU is, and what can a CPU do.

This CPU can also be used in classes on Computer Organization or Computer Architecture. A planned

workbook to be released for this CPU will have a number of projects that students or hobbyists can

implement in Logisim to modify and extend the capabilities of the CPU, to aid in the understanding of

how a CPU works. These projects will include enhancing the assembly language and modifying the

assembler to handle the modifications, as well as modifying the hardware to handle the new features.

This book can also be used with other books by the author to create a complete class in Computer

Organization. The book Digital Circuits Projects implements the basic ICs used in this textbook using

breadboards chips to illustrate how these circuits work. The book Introduction to MIPS Assembly

Language Programming introduces the students to a real assembly language for the MIPS computer, and

integrates the assembly language into larger programming constructs like structured programming,

subprogram calling and conventions, and memory concepts such as stack, heap, static, and text

memory. These three texts are used by the author in his Computer Architecture course. All are free to

download (except for the workbook associated with this textbook, for which a nominal fee is asked)

from the links provided. Additional resources for these textbooks can be found at the author’s web site,
http://chuckkann.com.

This monograph is the first in a planned series of monographs, hopefully written as student research

projects, that will implement different CPU designs, including the difference between Von Neumann and

Harvard architectures, and 0-Address, one-address, and 2/3-Address computer architectures. This will

help readers to understand some of the design decisions that go into implementing a CPU. All of the

CPU designs will be RISC based, though a CISC 3-Address architecture may be implemented to show the

complexity of CISC designs, and talk about why they are no longer used.

The author is an adjunct professor at two schools, Gettysburg College and Johns Hopkins University,

Engineering Professionals program. Neither school provides a large number of students to work with, so

if a student using this book is interested in implementing a CPU as part of this series, I would be willing

to work with them and their advisor on this as a research project. Please contact me at

ckann(at)gettysburg.edu and I would be glad to discuss this.

http://cupola.gettysburg.edu/oer/1/
http://cupola.gettysburg.edu/oer/2/
http://cupola.gettysburg.edu/oer/2/
http://chuckkann.com/

4
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

Acknowledgements

The following have helped in producing this text.

I would like to thank Amrit Dhakal for his help in writing and debugging the assembler code,

and for his ideas in the development of the CPU.

The cover design includes a picture of a generic CPU which was retrieved from the site

http://www.freeiconspng.com/free-images/microprocessor-icon-9584

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 5

Contents
1 Introduction .. 9

1.1 Basic Components in a CPU .. 9

1.1.1 Boolean operations ... 9

1.1.2 Integrated Circuits ... 10

1.1.3 ALU (Adder) ... 11

1.1.4 Decoder ... 11

1.1.5 Multiplexer .. 12

1.1.6 Registers (D Flip Flops) and Memory .. 12

1.2 Comparisons of Computer Architectures ... 13

1.2.1 Zero-, One-, and Two/Three- Address Architecture ... 13

1.2.2 One-Address Architecture... 15

1.2.3 Two/Three - Address Architecture .. 16

1.3 Von Neumann and Harvard Architectures .. 17

2 Assembly Language ... 19

2.1 What is Assembly Language .. 19

2.2 Assembly Language Caveats ... 20

2.3 Assembler Directives ... 21

2.4 Data types ... 22

2.5 Designing an Assembly Language ... 22

2.5.1 Transferring data from main memory to internal CPU memory .. 23

2.5.2 Set of valid ALU operations ... 23

2.5.3 Program Control (Branching) .. 23

2.5.4 Assembler Instructions ... 24

2.6 Assembler Programs ... 25

2.6.1 Loading a value into the AC .. 26

2.6.2 Adding Two Immediate values .. 26

2.6.3 Adding two values from memory, and storing the results ... 27

2.6.4 Multiplication by iterative addition .. 27

3 Machine Code ... 29

3.1 Overview of the machine code instruction format ... 29

4 Assembler program ... 32

6
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

4.1 Running a program on the One-Address CPU ... 33

5 CPU implementation ... 45

5.1 The sign extend unit .. 45

5.2 The ALU ... 45

5.3 The Control Unit (CU) .. 47

5.4 The CPU ... 47

5.4.1 The CPU – Arithmetic Subsection ... 48

5.4.2 The CPU – Execution Path Subsection .. 49

5.5 Implementing the CU .. 50

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 7

Figures
Figure 1-1: ALU .. 11

Figure 1-2: Decoder... 12

Figure 1-3: Multiplexer ... 12

Figure 1-4: Square Wave ... 13

Figure 1-5: 0-address architecture .. 14

Figure 1-6: 3-address architecture .. 16

Figure 1-7: 2-address architecture .. 17

Figure 1-8: Difference between a Von Neumann and Harvard architecture.. 18

Figure 3-1: 16-bit machine instruction format ... 29

Figure 4-1: Assembly Process .. 32

Figure 4-2: Assembler overview.. 33

Figure 4-3: Running the assembler - step 1 .. 34

Figure 4-4: Running the assembler - step 2 .. 35

Figure 4-5: Running the assembler - step 3 ... 36

Figure 4-6: Running the assembler - step 4 ... 37

Figure 4-7: Running the assembler - step 5 ... 38

Figure 4-8: Running the CPU - step 1 .. 39

Figure 4-9 Running the CPU - step 2 ... 40

Figure 4-10: Running the CPU - step 2 ... 41

Figure 4-11: Running the CPU - step 3 ... 42

Figure 4-12: Running the CPU - step 4 ... 43

Figure 4-13: Running the CPU - step 5 ... 44

Figure 5-1: The sign extend unit ... 45

Figure 5-2: Simple Adder... 46

Figure 5-3: Adder/Subtracter .. 46

Figure 5-4: Adder/Subtracter with overflow .. 47

Figure 5-5: CPU - Arithmetic Subsection ... 48

Figure 5-6: CPU - Execution Path Subsection .. 49

Figure 5-7: Control Unit .. 50

8
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

Table 1-1 : Truth table for AND gate ... 10

Table 1-2: Truth table for NOT gate .. 10

Table 1-3: Truth table for AND, OR, XOR, and NAND gates .. 10

Table 5-1: Operations and control wires .. 50

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 9

1 Introduction

Most computer users have an incorrect, but useful, cognitive metaphor for computers in which

the user says (or types or clicks) something and a mystical, almost intelligent or magical,

behavior happens. It is not a stretch to describe computer users as believing computers follow

the laws of magic, where some magic incantation is entered, and the computer responds with an

expected, but magical, behavior.

This magic computer does not actually exist. In reality computer are machines, and every action

a computer performs reduces to a set of mechanical operations. In fact the first complete

definition of a working computer was a mechanical machine designed by Charles Babbage in

1834, and would have run on steam power.

Probably the biggest success of Computer Science (CS) in the 20th century was the development

of abstractions that hide the mechanical nature of computers. The fact that average people use

computers without ever considering that they are mechanistic is a triumph of CS designers.

This purpose of this monograph is to break the abstract understanding of a computer, and to

explain a computer’s behavior in completely in mechanistic terms. It will deal specifically with
the Central Processing Unit (CPU) of the computer, as this is where the magic happens. All

other parts of a computer can be seen as just providing information for the CPU to operate on.

 This monograph will deal with a specific type of CPU, a one-address CPU, and will explain this

CPU using only standard gates, specifically AND, OR, NOT, NAND and XOR gates, and 4

basic Integrated Circuits (ICs), the Decoder, Multiplexer, Adder, and Flip Flop. All of these

gates and components can be described as mechanical transformations of input data to output

data, and the overall CPU can then be seen as a mechanical device.

While it is not necessary to know the details of implementing these ICs to read this text, only

how the ICs are used, the implementation of these 4 ICs is not difficult. A free book on the

implementation of these integrated circuits is available from the author at

http://cupola.gettysburg.edu/oer/1/. The rest of this chapter will provide a basic overview of the

gates and ICs used in this text (Section 1.1) and then give an overview of different ways a CPU

can be organized and architected.

1.1 Basic Components in a CPU

This section covers the basic components in a CPU. It covers the gates which are used in the

CPU, and four common ICs used in a CPU, the adder, decoder, multiplexer, and register.

1.1.1 Boolean operations

Gates are hardware implementations of Boolean operations. Boolean operations are operations

that take one or more binary values and calculate a result. For example, the AND operation

http://cupola.gettysburg.edu/oer/1/

10
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

takes 2 binary value (with 0 = false and 1 = true) and calculates a binary output. For the AND

operations, the inputs of 0 AND 0, 0 AND 1, and 1 AND 0 all yield 0 (false), and the input of 1

AND 1 yields 1 (true). This is normally implemented using a truth table, as follows:

Input Output

A B AND

0 0 0

0 1 0

1 0 0

1 1 1
Table 1-1 : Truth table for AND gate

In this text 5 Boolean operators will be used, the AND, OR, NOT, XOR, and NAND. The NOT

is a unary function (it only takes one input), and so is given in Table 1-2.

Input Output

A NOT

0 1

1 0
Table 1-2: Truth table for NOT gate

The AND, OR, XOR, and NAND operators are binary (taking two inputs) and shown in Table 1-

3 below.

Input Output

A B AND OR XOR NAND

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 1

1 1 1 1 0 0
Table 1-3: Truth table for AND, OR, XOR, and NAND gates

1.1.2 Integrated Circuits

An Integrated Circuit (IC) is a collection of gates that are used to build components to implement

a behavior. The components of an IC are simple gates, and all of the ICs in this chapter can be

reduces easily to AND, OR, NOT, XOR, and NAND gates. So just as the gates mechanically

transform input into output, the ICs also do a mechanical transformation of inputs into outputs.

The ICs to be described in this chapter are the Adder, Decoder, Multiplexer, and Flip Flop.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 11

1.1.3 ALU (Adder)

The Arithmetic Logic Unit (ALU) is the central component of the CPU. It performs all

arithmetic and logical operations on the data. Everything else in the CPU is designed to provide

data for the ALU to operate on.

The ALU is normally a black box that provides the operations for the CPU on two operands.

This black box is responsible for all operations that the CPU performs, including not only integer

and logical operations, but floating point calculations as well. Operations like floating point

calculations are very complex, and are often implemented in coprocessors. To keep things

simple, the only data types allowed for the CPU in this text will be integers, and only integer and

logic operations will be allowed.

An overview of an ALU can be seen in the typical ALU shown below. An ALU takes two

arguments, and implements and operation, such as add, subtract, multiply and divide operations

on these two operands. The ALU also allows operations such as Boolean operations (AND, OR,

XOR, etc), bit-shifting, and comparison.

Figure 1-1: ALU

Because the only ALU operation covered in the recommended text on ICs is an adder, the ALU

the used in the Logisim implementation of the CPU will contain only an adder circuit. Using an

adder, both addition and subtraction are implemented. A more robust configuration for an ALU

is can be found in the extra notes that can be accessed for this text.

1.1.4 Decoder

A decoder is an IC splits a n-bit number into 2n separate output lines. For example, consider a 2-

bit number, which can have 4 values, 0x0 … 0x3. A decoder would take as input 2 input lines

representing the 2-bit number, and turn on one (and only one) of the four output lines. The line

which is turned on corresponds to the value of the 2-bit input. So in the following diagram, if the

2-bit input has both lines high (representing “11”), and the output line 3 is turned on.

12
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

Figure 1-2: Decoder

1.1.5 Multiplexer

A multiplexer is an IC that selects between different inputs. In the following diagram, the 8 bits

used by the Output can come from either Register 1 or Register 2. The MUX selects which 8-bit

value to use. If Select Input is 0, Register 1 is chosen, and if Select Input is 1 Register 2 is

chosen.

Figure 1-3: Multiplexer

1.1.6 Registers (D Flip Flops) and Memory

Memory is different than the other ICs in that it is synchronous, where synchronous means the memory

cell has a value which at discrete time intervals. An example of this behavior is the $ac in the following

program fragment:

clac time = t0, $ac = 5
addi 5 time = t1, $ac = 5
addi 7 time = t2, $ac = 5
subi 2 time = t3, $ac = 5

This program shows that the value of the memory, $ac, changes discretely over time. This discrete

behavior is accomplished by a system clock. A system clock is an electronic oscillator circuit that

produces a square wave with a precise frequency. The following is an illustration of a square wave.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 13

Figure 1-4: Square Wave

In a square wave, the value is always 0 or 1, and memory uses the transition from 0 to 1 (the positive

edge) to change the value of all memory components. Thus memory cells have discrete values that

change on each clock pulse.

Any memory cell in a CPU is normally called a register. Register memory normally consists of

Static Ram (SRAM), and is implemented using Flip Flops. Main computer memory is often

Dynamic Ram (DRAM)., however some memory, particularly cache memory, can be

implemented with SRAM. The specifics of memory are beyond the scope of this text, and the all

the reader needs to know is register memory is most typically SRAM and located within the

CPU.

1.2 Comparisons of Computer Architectures

This monograph is the first in a series of monographs that will cover different types of CPUs,

where the two big differences between the CPU types is the address format of the instructions,

and how the instruction and data memory for the processor is divided. This next section will

deal with the address format of the instructions. The section following it will cover designs

where instruction and data memory are combined (Von Neumann architecture) verses separate

instruction and data memory (Harvard architecture).

1.2.1 Zero-, One-, and Two/Three- Address Architecture

The major difference between 0-, 1-, and 2/3- address computer architectures is where the

operands for the ALU come from. This section will outline each of these architectures.

Note that in all of these architectures, operands can come from registers/memory, or operands

can be part of the instruction itself. For example, the value used in the instruction add A in a

one-address computer comes from memory cell at an address corresponding to the label A, and

the instruction adds the value in memory location A to the $ac. In the instruction addi 5 the

value of the operand is included in the instruction, and is referred to as an immediate value. In

this series of monographs operators that use an immediate value will be appended with an “i”.
For example, as shown above, the add instruction uses a memory value, and the addi uses an

immediate value.

14
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

1.2.1.1 0-Address Architecture

When discussing the address architecture of a computer, the central question is how are the

arguments to the ALU retrieved, and where are the results from the ALU stored? A 0-adress

architecture retrieves (pops) the two arguments from the top of an operand stack, performs the

operation, and then stores (pushes) the result back on the operand stack. The two operands to the

ALU are implied as the two operands on the top of the stack, and the operation, in this case add,

does not specify any operands. Because the operator does not take any explicit operands, 0

addresses are included as part of the operation and this is called a 0-address architecture. Note

that a 0-address architecture is often referred to as a stack architecture because it uses a stack for

the operands to/from the ALU.

 Figure 1-5: 0-address architecture

When writing assembly code to for this architecture, the operands are first pushed onto the stack

(from memory or immediate values) using two push operations. The operation is executed,

which consists of popping the two operands off the stack, running the ALU, and pushing the

result back to the stack. The answer is then stored to memory by using a pop operation. The

following program, which adds the value of variable A and value 5, then stores the result back to

variable B, illustrates a simple 0-address program.

PUSH A

PUSHI 5

ADD

POP B

Program 1-1: 0-address program to add two numbers

Historically there have been computers implemented using 0-address architectures, such as the

Burroughs 6500 and 7500 series, but it is seldom if ever used in modern hardware architectures.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 15

However, most modern languages running on Virtual Machines (VM), such as the Java Virtual

Machine (JVM) or the .Net Common Language Runtime (CLR), implement 0-address, or stack,

architectures.

1.2.2 One-Address Architecture

In a one-address architecture a special register, called an Accumulator or $ac is maintained in the

CPU. The $ac is always an implied input operand to the ALU, and is also the implied

destination of the result of the ALU operation. The second input operand is the value of a

memory variable or an immediate value. This is shown in the following diagram.

Program 1-2: one-address architecture

The following is a simple one-address computer program to add the value 5 and the value of variable A, and store

the result back into variable B.

CLR // Set the AC to 0

ADDI 5 // Add 5 to the $AC. Since it was previously 0, this loads 5

ADD A // Add A+5, and store the result in the $AC

STOR B // Store the value in the $AC to the memory variable B

Program 1-3: one-address program to add two numbers

Because only one value is specified in the ALU operator instruction, this type of architecture is

called a one-address architecture. Because a one-address architecture always has an

accumulator, it is also called an accumulator architecture.

Historically many early CPUs used one-address designs, including the Intel 8080 and PDP-8,

used accumulator architectures. Because of their simplicity and can be faster than other

architectures, some micro-computer designs still use an accumulator architecture, though most

computers implement general purpose register designs.

16
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

1.2.3 Two/Three - Address Architecture

The two-address and three-address architectures are called general purpose register

architectures. The two-address and three-address designs both operate in a similar fashion. Both

architectures have some number of general purpose registers can be used to select the two inputs

to the ALU, and the result of the ALU operation is written back to a general purpose registers.

The difference is in how the result of the ALU operation (the destination register) is specified. In

a three-address architecture the 3 registers are the destination (where to write the results from the

ALU), Rd, and the two source registers providing the values to the ALU, Rs and Rt. This is shown

in the following figure.

Figure 1-6: 3-address architecture

A 2-address architecture is similar to a 3-address architecture, and the only difference being that

only 2 registers are specified in the instruction, the first being used for both the destination of the

operation and the first source to the ALU.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 17

Figure 1-7: 2-address architecture

As shown in the diagrams, the CPU selects two of the general purpose registers the values to

send to the ALU, and another selection is made to write the value from the ALU back to a

register. In this design, all values passed to the ALU must come from a general purpose register,

and the results of the ALU must be stored in a general purpose register. This requires that

memory be accessed via load and store operations, and the correct name for a two/three-address

computer is a “two/three-address load/store computer”.

The following two programs execute the same program, B=A+5, as in the previous examples.

The first example uses the 3-address format, and the second uses the 2-address format.

LOAD $R0, A

LOADI $R1, 5

ADD $R0, $R0, $R1

STORE B, $R0

Program 1-4: 3-address program for adding two numbers

LOAD $R0, A

LOADI $R1, 5

ADD $R0, $R1

STORE B, $R0

Program 1-5: 2-address program for adding two numbers

1.3 Von Neumann and Harvard Architectures

When discussing how memory is accessed at the CPU level, there are two designs to consider.

The first is a Von Neumann architecture, and the second is a Harvard architecture. The major

difference between the two architectures is that in a Von Neumann architecture all memory is

18
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

capable of storing all program elements, data and instructions; in a Harvard architecture the

memory is divided into two memories, one for data and one for instructions.

For this monograph, the major issue involved in deciding which architecture to use is that some

operations have to access memory both to fetch the instruction to execute, and to access data to

operate on. Because memory can only be accessed once per clock cycle, in principal a Von

Neumann architecture requires at least two clock cycles to execute an instruction, whereas a

Harvard architecture can execute instructions in a single cycle.

The ability in a Harvard architecture to execute an instruction in a single instruction leads to a

much simpler and cleaner design for a CPU than one implemented using a Von Neumann

architecture. For this first monograph a Harvard implementation will be implemented. Later

monographs will look at the implementation of the CPU using the Von Neumann architecture.

Figure 1-8: Difference between a Von Neumann and Harvard architecture

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 19

2 Assembly Language

2.1 What is Assembly Language

Assembly language is a very low level, human readable and programmable, language where each

assembly language instruction corresponds to a computers machine code instruction. Assembly

language programs translate directly into machine code instructions, with each assembly

instruction translating into a single machine code instruction1.

After having chosen a basic address format for the architecture, the format of the assembly

language, called an Instruction Set Architecture (ISA), is defined. The next step is to design the

entire assembly language that will be translated and run on the CPU.

The following are the steps in design of the CPU.

1. First, the assembly language is designed that can be used to write programs for this CPU.

This language is tested by implementing simple programs in the assembly language.

2. A machine code representation for the assembly language will be written. The CPU only

has the ability to interpret information that is binary data, so the assembly language needs

to be translated into binary data that will be understood by the CPU.

3. The CPU is then designed to execute the machine code instructions.

This process of designing the language, creating the machine code for the language, and

implementing the CPU is normally iterative, but the only final product of these steps will be

included in this monograph.

The first step, the creation of the assembly language, is the topic of this chapter.

To create an assembly language there are three major constraints to the language that must be

defined.

1. The definition of data that will be dealt with in this CPU need to be defined. In higher

level languages this would be types, like integer, float, or string. In a CPU, types do not

exist. Instead the CPU is concerned with issues such as the size of a word in the

computer, and how memory addresses will be used to retrieve data.

2. A set of assembler directives to control the assembler program as it runs. Directives to

define issues such as the type of memory being accessed (text or data), labels to specify

addresses in the program, how to allocate and store program data, and how comments are

defined.

1 Normally this one-to-one correspondence between assembly language instructions and machine code

instructions is removed. Assembly languages will define pseudo instructions that are translated into multiple

machine code instructions. These pseudo instructions are designed to make it easier to write programs in the

assembly language. This monograph is designed to show the reader how the CPU works, and so every assembly

language instruction will correspond to a single machine language instruction.

20
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

3. A complete set of assembler instructions must be defined.

The next section of this chapter will give some caveats to programmers coming from a higher

level language about issues they should consider when programming in assembly language. The

3 sections after that will define the data used in the assembler, the assembler directives, and the

assembler instructions.

2.2 Assembly Language Caveats

Programmers who have learned higher level language, such as Java, C/C++, C#, or Ada, often

have developed ways of thinking about a program that are inappropriate for low level languages

and systems such as assembly language. This section will give some suggestions to

programmers approaching assembly language for the first time.

The first thing to consider is that all instructions should implement primitive operations. Higher

level languages allow a short hand that implies many instructions. For example, the statement

B=A+5 implies load operations that ready variables A and 5 to be sent to the ALU. Next an add

operation by the ALU is to be performed. Finally an operation to store the result of the ALU

back to variable B needs to be executed. In assembly the programmer must specify all of the

primitive operations needed. There are no shortcuts.

The second thing to consider is that despite what you might have heard about goto statements

being bad, there is no way to implement program control such as if statements or loops without

using a branch instruction, which is the equivalent to a goto statement. This does not mean that

structured programming constructs cannot be used effectively. If a program is confused about

how to implement structured programming constructs in assembly, there is a chapter in a free

book on MIPS assembly program written by the author of this monograph that explains how this

can be accomplished.

The third important point about assembly language is that data has no context. In a higher level

language normally the variables A and B, and the number 5, are specified as integers. The

higher level language knows that these are integers, and then provides a context to interpret

them. The add operation is known to be an integer add, and the compiler will generate an

instruction to do the integer option and not a floating point operation. If the declaration for the

numbers was changed to float, the add operation in the higher level language would be changed

to a floating point add. The higher level language knows the type variables, and can provide the

proper context for interpreting them.

In assembly language, there is no context for any data. Data can be an integer, a Boolean value,

a floating point number, ASCII characters, or even program instructions. The assembler has no

idea of a type, and simply will execute the operation specified. It is possible in assembly to do

meaningless operations, such as adding two program instructions together. Assembly language

will gladly let you do meaningless and completely inane things, and will in no way warn you that

http://cupola.gettysburg.edu/oer/2/
http://cupola.gettysburg.edu/oer/2/

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 21

it is meaningless. The assembler has no context for data, and there is no way to correct this

problem because from an assembler point of view, there is no problem.

When programming in assembly language, it is important that the programmer maintain

knowledge of the current program context. It is the programmer who knows if two data elements

are integers, and thus an integer add operation is appropriate. It is up to the programmer to be

aware if the values being worked with are addresses or values, and to do the proper

dereferencing operations. There is nothing but the knowledge of the programmer to ensure that a

program will execute correct operations on the proper datatypes.

2.3 Assembler Directives

Assembler directives are directions to the assembler to take some action or change a setting.

Assembler directives do not represent instructions, and are not translated into machine code.

For this assembler, all directives begin with a “.” or “#” (the comment is a #), and the directive

must exist on a separate line from any other assembler directive or assembler instruction. There

are 4 assembler directives and the comment tag.

 .text – The .text directive tells the assembler that the information that follows is program

text (assembly instructions), and the translated machine code is to be written to the text

segment of memory.

 .data – The .data directive tells the assembler that information that follows is program

data. The information following a .data instruction will be data values, and will be stored

in the data segment.

 .label – A label is an address in memory corresponding to either an instruction or data

value. It is just a convenience so the programmer can reference an address by a name. It

will be used as follow:

.label name

The label is a tag that can be referenced in place of an address in any assembly

instruction that can take a label/adress. Labels and addresses can be used

interchangeably.

 .number – The number directive tells the assembler to set aside 2 bytes of memory for a

data value, and to initialize the memory to the given value. It will often be used with the

.label directive to set a label to a 2-byte memory value, and initialize the value, as shown

in the following code fragment.

.label var1

 .number 5

22
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

This statement allocates space for the variable var1, and assigns that space in memory

the value 5. The data for this CPU will only work with 2-byte (16-bit) integer numbers so

discrete values from -32768..32767 (inclusive) can be used. All data values are in

decimal; the assembler will not recognize hex values.

 # - the # (hashtag) is used to specify a comment. Anything on a line which begins with a

“#” is a comment line and ignored by the assembler.

2.4 Data types

While an assembly language has no explicit data types, there are rules for how the data is

accessed and stored. This section defines the rules for data access.

In this CPU, a word is 16 bits. All memory locations are 16 bits wide, and words, not bytes, are

addressable. Thus the value at the address 0 is contained in bits 0...15, the value at address 1 is

contained in the bits 16...31, etc.

Each address refers to a 2-byte quantity or word. If that memory location is in data memory the

value is an integer number; if the address is in text memory it is a 2-byte instruction.

There are a total of 256 memory locations (addressable words) in both the data memory and the

text (program) memory. The addresses for both of these memories start at 0 and run to 255,

which corresponds to an 8-bit unsigned value. Though the memory addresses overlap, the

context of the request will determine which memory to use. Only the $pc will be used to access

text memory, and all other addresses will refer to data memory.

When referencing values in instructions (immediate values and addresses) an 8 bit value is used.

This 8-bit value can either be given as a numeric value, or as a valid label to an address

somewhere in the program. When used as an address, this 8-bit value will be is unsigned, and

refers to a number between 0…255. For the instructions add, sub, and stor, this is an addresses

in the data segment. For branch instructions, beqz, the 8-bit address refers to the text segment.

For immediate instructions, addi and subi, the value of the operand is an 8-bit integer value, and has a

value from -128…127.

2.5 Designing an Assembly Language

When designing an assembly language, a language to manipulate a CPU, there are 3 major

concerns:

1. Transferring data from main memory to memory internal to the CPU (registers or

operand stack).

2. The set of operations that can be performed by the ALU on the data, for example add,

subtract, and, shift, etcetera.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 23

3. A way to provide program control, for example to implement branch (if) and looping (for

or while) type structures in a program. Normally control structure will be provided by a

branch operation.

These three major concerns, and how they are addressed in the assembly language, will be

discussed in the next sections. The last section of this chapter will give some programs that will

illustrate how a program will be written in this assembly language.

2.5.1 Transferring data from main memory to internal CPU memory

The amount of memory directly accessible to a programmer on the CPU (e.g. registers) is very

limited. In the case of the one-address architecture, only one memory slot, the $ac, is directly

useable by a programmer. Therefore programs need to rely on main memory to store program

instructions and data.

To transfer items from data memory to the $ac the instructions add, sub, and stor are used.

For the add and sub instructions, the second operand of the instruction is the label or memory

address of the value to retrieved from memory and sent to the ALU. So for example, to load a

value into the $ac from a memory location labelled A the following code would be used.

clac

add A

Note that the $ac should always be set to 0 (using the clac) before loading a value into the $ac, or

the value stored in the $ac will be the result of adding the value at memory location A with the current

value in the $ac.

For the stor instruction, the second operand is the label or memory address at which to stor the

value from the $ac. For example, to store the value in the $ac to memory at the address in label B, the

following code would be used.

stor B

2.5.2 Set of valid ALU operations

The next consideration is the set of operations which the ALU can perform on the input data. This list

depends on the complexity of the ALU. The ALU in this computer is very simple, and so will only support

the operations add and sub.

2.5.3 Program Control (Branching)

To do any useful program, if and loop constructs must be supported. In the implemented one-

address CPU this is accomplished by the Branch-if-equal-zero (beqz) operation. For this

operation, if the $ac is 0, the program will branch to the text memory address that is contained in

24
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

the branch statement. This address can be either a label representing the address, or the numeric

value of the branch address. So in the following instruction, the program will branch to the

address of label EndLoop if the value in the $ac is 0.

beqz EndLoop

An unconditional branch statement is often used, but can be simulated by first setting the $ac to

0 before the branch statement. The following instruction implements an unconditional branch.

clac

beqz StartLoop

2.5.4 Assembler Instructions

Based on the criteria of the preceding section, A minimum set of assembler instructions is

defined to create useful programs. These instructions are sufficient to create useful programs,

and several examples will be shown at the end of this chapter.

 add [label/address] – Add a value from data memory (dm) to the current $ac.

$ac <- $ac + dm[address]

Either a label or the actual address of the value can be used in this instruction. Thus if the

label A refers to the dm address of 5, the following two instructions are the same.

add A

add 5

 addi immediate - Add the immediate value in this instruction to the $ac. The

immediate value is an 8-bit integer value between -128…127

$ac <- $ac + immediate

An example of an addi instruction which adds 15 to the value in the $ac follows.

addi 15

 beqz [label/address] – The beqz instruction changes the value in the Program

Counter ($pc) to the text memory address in the instruction if the value in the $ac is 0.

In this CPU, the $pc always specifies the next instruction to execute, so this has the

effect of changing the next instruction to execute to the address in the instruction. This is

called a program branch, or simply branch.

$pc <- address IF $ac is 0

An example of the beqz instruction that branches to address 16 if the $ac is 0 follows:

beqz 16

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 25

 clac – The clac instruction sets the $ac to 0. This could be done with a set of stor and

sub operations, so instruction is mostly for convenience.

$ac <- 0

 sub [label/address] - Subtract a value from data memory to the current $ac.

$ac <- $ac - dm[address]

Either a label or the actual address of the value can be used in this instruction. Thus if the

label A refers to the dm address of 5, the following two instructions are the same.

sub A

sub 5

 subi immediate - Sub the immediate value in this instruction to the $ac. The

immediate value is an 8-bit integer value between -128…128.

$ac <- $ac - immediate

An example of an subi instruction which adds 15 to the value in the $ac follows.

subi 15

 stor [label/address] – Store the current value in the $ac to data memory.

dm[address] <- $ac

Either a label or the actual address of the value can be used in this instruction. Thus if the

label A refers to the dm address of 5, the following two instructions are the same.

stor A

stor 5

 noop – this statement does nothing. Executing this statement does not change the value

of any memory or registers (except the $pc) in the system. It is included so that text

memory can be set to 0 and executed without changing the internal state of the computer.

2.6 Assembler Programs

The following assembly programs illustrate how the assembly language defined in this chapter

can be used to implement some simple programs.

26
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

2.6.1 Loading a value into the AC

This first program loads an immediate value of 5 into the $ac register. After running the

program, the value in the $ac will be 5.

.text

clac

addi 5

Program 2-1: Loading a value into the $ac from an immediate value

This second program loads the value from the memory address corresponding to the label var1

into the $ac. Since the value at the address of var1 is 5, the program loads the value 5 into the

$ac.
.text

clac

add var1

.data

.label var1

 .number 5

Program 2-2: Loading a value into the $ac memory using a label

This third program adds the value at address 0 in the data segment to the $ac. Since the value 5 has

been loaded as the first value in the .data segment, the value 5 is loaded to the $ac.

.text

clac

add 0

.data

 .number 5

Program 2-3: Loading a value into the $ac from memory using a reference

2.6.2 Adding Two Immediate values

This program illustrates adding 2 immediate values together in the $ac. The $ac is initialize to 0, and

then the first value is loaded in the $ac from the immediate value of in the instruction. The immediate

value in the second instruction is then added to the $ac, and the $ac contains the final result.

.text

clac

addi 5

addi 2

Answer in the $ac is 7

Program 2-4: Adding two immediate values

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 27

2.6.3 Adding two values from memory, and storing the results

This program adds two values from memory at labels var1 and var2, adds them, and stores the result

back to the value at label ans. This program also introduces a new construct, which we will call halt.

The halt is a set of instructions that creates an infinite loop at the end of the program so that the

program does not simply continue to execute noop instructions until it runs out of memory. This

constructs sets the $ac to 0, and then branches to the same statement over and over again. The

program is running, but it is not progressing the $pc or changing the state of the computer.

.text

clac

add var1

add var2

stor ans

.label halt

 clac

 beqz halt

Answer is in data memory at address 0.

.data

.label ans

 .number 0

.label var1

 .number 5

.label var2

 .number 2

Program 2-5: Adding two memory values and storing back to memory

2.6.4 Multiplication by iterative addition

This program multiples two numbers by iteration. This means than n*m is calculated by adding n to

itself m times, e.g. n + n + n… etc.

.text

Begin the multiplication loop.

.label startLoop

When the program is assembled the multiplier and multiplicand are

initialized # in memory. The counter is initialized to 0

and incremented by 1 each time through the loop. When the

counter == multiplier, # the value of multiplier-counter = 0,

and the beqz instruction branches to the end of the loop.

clac

add multiplier

sub counter

beqz endLoop # Go to end when done

calculate product. The product is initially zero, but each

time through the loop the product

28
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

is augmented by the value of the multiplicand. The product is

then stored back to memory for use on the next pass.

clac

add product

add multiplicand

stor product

The counter is incremented and the program branches

back to the beginning of the loop for the next pass.

clac

add counter

addi 1

stor counter

clac

beqz startLoop

When counter == multiplier, the program has completed.

The answer is at the memory location of the label product.

.label endLoop

clac

 beqz endLoop

result is in ans (data address 0)

.data

.label multiplicand

 .number 5

.label multiplier

 .number 4

.label counter

 .number 0

.label product

 .number 0

Program 2-6: Multiplication using iterative addition

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 29

3 Machine Code

Machine code is a representation of an assembly language program that the CPU hardware can

understand. Since the CPU only understands binary, machine code is a binary language that

controls the CPU. When we write the machine binary code, to make it easier for a human to

read, the code will be collected into groups of 4 bits, and the hexadecimal (base 16) result will be

written.

3.1 Overview of the machine code instruction format

All machine code instructions for our computer will consist of two 4-bit segments, and one 8-bit

segment, as shown below.

Figure 3-1: 16-bit machine instruction format

The first 4-bit segment will represent the type of operation. The possible types of operations are

the following:

 0 – This is a no operation (or noop) instruction. It does not change the current state of the

computer, and simply moves the CPU to the next instruction.

 1 –This opcode represents an immediate operation which uses the ALU to produce a

result. This instruction consists of the 4-bit opcode, a 4-bit ALU option (ALUopt) to tell

the ALU what operation to execute, and an 8 bit data immediate value for an operand.

As implemented the ALU only executes 2 operations, 0x0 is add and 0x1 is subtract,

though the exercises at the end of the text add more operations. A maximum of 16

operations can be implemented in the CPU.

Examples of translating these assembly instructions into machine code follow.

The instruction:

addi 2

translates into the following machine code:

0x1002

The instruction:

30
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

subi 15

translates to the following machine code

0x110f

 2 – This opcode represents a memory address operation which uses the ALU to produce a

result. This instruction consists of the 4-bit opcode, a 4-bit ALUopt to tell the ALU what

operation to execute, and an 8 bit data memory address for an operand. As implemented

the ALU only executes 2 operations, 0x0 is add and 0x1 is subtract, though the exercises

at the end of the text add more operations. A maximum of 16 operations can be

implemented in the CPU.

Examples of translating these assembly instructions into machine code follow.

The instruction:

add 2

translates into the following machine code:

0x2002

The instruction

sub 15

translates into the following machine code

0x210f

Note that during assembly process labels in assembly code are translated into addresses,

so labels will never appear in machine code.

 3 – This opcode executes the clac operation (e.g. it sets the $ac to 0). In this instruction

all of the subsequent bits after the 0x3 are ignored, so they can contain any value. By

convention, the extra bits should always be set to 0.

For example, the following assembly instruction

clac

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 31

translates to

0x3000

 4 – This opcode executes the stor operation. In this instruction the 4 bit ALU opt is not

used, and should be set to 0. The address value is the address at which to store the value

in the $ac. For example, the following instruction

stor 15

translates to:

0x400f

 0x5 – The opcode executes the beqz operation. In this instruction the 4 bit ALU

operation is not used, and should be set to blank. The result of this operation is the $pc is

set to the address value if the $ac is zero. Setting the value for the $pc causes the

program to branch to that address.

 For example, the following instruction

beqz 40

translates to:

0x5028

32
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

4 Assembler program

The assembler is the program that translates an assembly language program into machine code.

The assembler will read a source assembly program consisting of assembly instructions. The

assembler will then write two files which will be used to run the program in the Logisim CPU.

The first output file contains the machine code segment containing the machine code program

that will be used in the CPU. This is a translation of the assembly instructions into machine

instructions. The second output file contains the initialized data segment that will be used in the

CPU. This is illustrated in the following figure.

Figure 4-1: Assembly Process

The assembler is a two-pass assembler. A two-pass assembler reads the input file twice, or in 2

passes from the start to the end of the source assembly file. The first pass will calculate an

address for each label in the program to create a symbol table. A symbol table is a list that

contains labels in the program and their address in memory. The second pass will translate

each instruction in the input file into machine code, and write out a file that corresponds to

machine code for the data and the text segments for the program. The second pass through the

file uses the symbol table to resolve any label references that are used in assembly instructions.

The format of the program is shown in the following figure.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 33

Figure 4-2: Assembler overview

The assembler is written in Java. There is no particular reason or advantage to writing this

assembler in Java. The major issue in the assembler is the writing of call backs or virtual

methods/functions to parse the individual instructions. These would probably be easier in

C/C++, and definitely faster using function pointers instead of polymorphism. But the concept

of a call back is difficult in any language for readers not familiar with the concept, and this

assembler is more than fast enough.

The assembler uses static initializers with factory patterns and singleton objects to implement the

polymorphic call back structure for processing the commands. This could be done in a large “if”
statement, but this polymorphic solution is cleaner and easier to extend. It is also instructive for

readers who are not familiar with the factory pattern, singleton pattern, and static initializers to

see them. But the assembler is a relatively short and straight forward program, and readers are

welcome to rewrite it using any structure or language they prefer.

The assembler can be obtained from the author's web site, http://chuckkann.com. The zip file

contains the assembler, the circuit definition file for the one-address CPU, and some programs

and files for the user to text and work with the CPU.

4.1 Running a program on the One-Address CPU

The following directions detail how to use the one-address CPU.

1. First download the One-AddressCPU.zip file from the author’s web site,
http://chuckkann.com. Unzip the file in a suitable location.

http://chuckkann.com/

34
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

2. In the root directory of this zip is an executable JAR file named

OneAddressAssembler.jar. Double click on this icon, and you should see the following

screen.

Figure 4-3: Running the assembler - step 1

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 35

3. Click the Browse button, and a file dialog box should appear. Select the directory

AssemblyPrograms.

Figure 4-4: Running the assembler - step 2

36
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

4. Select the AdditionExample.asm program. This is Program 2.5 from Chapter 2, and adds

two values from memory together and stores the result back in memory.

Figure 4-5: Running the assembler - step 3

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 37

5. The program will display the following screen, which says that the assembler will use as

input the AdditionExample.asm file, and if it successfully completes will produce two

output files, AdditionExample.mc (the machine code) and AdditionExample.dat (the

data). Click the Assemble button.

Figure 4-6: Running the assembler - step 4

38
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

6. You should get the following message that the assembly completed successfully. Click

Exit to close the assembler.

Figure 4-7: Running the assembler - step 5

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 39

7. Go to the subdirectory called Logisim, and click on the icon for logisim-generic-2.7.1.jar.

This will open Logisim, and you should see the following screen. Choose the File-

>Open option, select the Logisim directory, and open the OneAddressCPU.circ file.

Figure 4-8: Running the CPU - step 1

40
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

8. You should now see a screen with the One-Address CPU on it. Set the Zoom size

(circled in the picture) to 75% (or 50% if needed) to see the entire diagram. For now the

only two areas of the CPU se are interested in are the Text Memory and the Data

Memory, which are circled in the diagram.

Figure 4-9 Running the CPU - step 2

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 41

9. Right click on Text Memory box, and select the Edit Contents option. You should see

the following editor for the memory appear on your screen. Note that the input values for

this memory are in hexadecimal, but we are going to fill it in from the files that were

created by the assembler, and the assembler has written the files in hexadecimal.

Figure 4-10: Running the CPU - step 2

42
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

10. Choose the Open option, go the AssemblyPrograms directory, and select the

AdditionExample.mc file.

Figure 4-11: Running the CPU - step 3

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 43

11. You should now have the AdditionExample machine code in this data block, as in the

following example. Select the close option, and the machine code is now available in the

CPU.

Figure 4-12: Running the CPU - step 4

12. Repeat steps 9-11 for the Data Memory using the AdditionExample.dat file. Your data

and program memory should now both be initialized.

44
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

13. Clicking twice on the clock (remember that the registers and memory only change on a

positive edge trigger, not a negative edge trigger), and the clac instruction will execute.

This will not result in a change because the $ac is already zero. Click the clock twice

more, and you should see program is at instruction 2, and the $ac change to 5.

Figure 4-13: Running the CPU - step 5

14. Clicking on the clock 6 more times shows that the program has completed, and the value

of 7 (5+2) has been calculated and store at memory address 0. The last two instructions,

clac and beqz halt, simply put the program in an infinite loop at its end so that it does not

continue to execute through the rest of memory.

In Logisim there are a number of ways to control the simulation using the Simulation option.

Of particular use is the tick frequency (how often to a clock click happens), tick enabled

(which runs the clock at the tick frequency), and Logging (which provides an easy way to

review your results).

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 45

5 CPU implementation

This chapter will cover the Logisim implementation of the One-Address CPU. This

implementation will consist of 3 Logisim subcomponents that are needed to implement the CPU,

and the main component which is the CPU. The 3 subcomponents, the sign extend unit, the

ALU, and the Control Unit (CU) will be explained first, and then the main component will be

broken down and examined in detail.

5.1 The sign extend unit

The immediate values which can be part of an instruction are 8 bits, and can be used as an input

to the ALU. However, the ALU accepts inputs which are 16 bits. Therefore, immediate values

which are passed to the CPU must be expanded to fill 16 bits. The question is how to fill in the

high 8 bits when expanding immediate values from 8 to 16 bits.

Remember that all the immediate values passed to the CPU are integers; the top (left-most) bit of

the value determines the sign. If the 2’s complement number is positive, leading 0s have no

effect on the number. For example, 01012 = 0000 01012 = 510. In a negative 2’s complement
number, leading 1s have no effect on the number. Thus 10112 = 1111 10112 = -510. Thus to

extend an integer the left-most bit is extended into the new binary digits. This is what the sign

extend unit is doing, extending the 7th bit to positions 8-15 to translate the 8-bit integer into a 16-

bit integer.

Figure 5-1: The sign extend unit

5.2 The ALU

The ALU for this unit supports addition and subtraction, and also implements a flag to tell if the current

operation produced an overflow. And overflow occurs when two number are added which are too big

to be stored in the implemented 16 bit integers in the CPU. For example, adding 27000 + 25000 =

52000, a value larger than the maximum integer that can be handled, which is 32767. Likewise -27000 +

-25000 = -52000, a number that is too below the minimum integer that can be handled, which is -32768.

How the ALU handles these situations will be discussed later.

46
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

A simple ALU that would implement only 16-bit addition is easy to implement, and is shown in the

following figure. Two 16-bit values ($ac and Y) are sent to the CPU, and an adder is used to add the

values and produce a result.

Figure 5-2: Simple Adder

To create implement subtraction, a bit of creative mathematics is used.

1. Remember that X ⊕ 0 = X; and X ⊕ 1 = X’.
2. Simple arithmetic says X + Y = X + (-Y)

3. -Y = Y’ + 1 (2’s complement negation operation).
4. Subtraction can be implemented by taking each bit of Y, XORing it with 1 (getting the

completment), then adding 1. To add 1, pass this bit into the carry in of the adder.

5. Addition can be implemented by taking each bit of Y, XORing it with 0 (so it doesn’t change) and
adding 0. To add 0, pass this bit into the carry in of the adder.

6. Thus an Add/Subtract unit can be implemented by passing in a flag bit. If the bit is 0, an add

operation is performed; if the bit is 1, a subtract operation is performed.

This procedure is implemented in the following Logisim circuit. Note that all it does is XOR the Y bits

with the flag value 0/1, and then add the flag to the adder via the carry in to the adder.

Figure 5-3: Adder/Subtracter

There is one last addition to be made to the ALU. We want to check if there is an overflow or not. The

easiest way to do this is to check the carry-in and carry-out bits to the last full adder. If they are the

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 47

same, there is no overflow, but if they are different, then overflow occurred. These two bits can be

checked by using an XOR gate. If they are the same (no overflow), the XOR will produce 0, and if they

are different (overflow) the XOR will produce 1.

The adder from Logisim does not signal overflow, so once again some creative use of the circuit has to

be done. Instead of using a 16-bit adder, the ALU will use one 15-bit adder and a 1-bit adder. This

allows the checking of the carry-in and carry-out of the last bit, but requires a number of switches to get

the number of lines to each component correct. However, this is the only change between the last

version of the ALU, and the final version presented in the figure below.

Figure 5-4: Adder/Subtracter with overflow

5.3 The Control Unit (CU)

The CU is the brains behind the CPU. It takes the opcode from the instruction, and sets control wires

which will control how the CPU will process the instruction. Since the setting of the control wires will

only make sense once the use of the control wires is understood, the explanation of the CU will be done

after the CPU is explained.

5.4 The CPU

The CPU brings together all of the components into a single package to run programs. The CPU in this

text consists of two subsections, and was purposefully designed to be simple enough that the control

wires (other than the clock) for each subsection of the CPU are completely separate from the other.

The first subsection does all arithmetic and manages input/output to/from data memory. This

subsection uses the control wires Clock, MemWr (write memory), ClrAC (clear $ac by setting it to 0),

48
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

WriteAc (write a value to $ac), ALUSrc (choose a source for the second ALU operand, either a memory or

immediate value), and ALUOpt (a 4-bit value to specify what operation to run on the ALU).

The second subsection controls the execution path of the program. It uses the Clock and Beqz (branch if

equal zero) control wires.

These two subsections will be looked at separately.

Before starting, a 0 in a control wire implies do nothing, hence a noop instruction is a 2 byte 0x0000. If

a wire is not being used, by default set it to 0.

5.4.1 The CPU – Arithmetic Subsection

The arithmetic subsection of the CPU covers the $ac register, the ALU, and the data memory. This will

cover the Assembly operations clac, add, addi, sub, subi, and stor. The arithmetic subsection is shown in

the following diagram.

Figure 5-5: CPU - Arithmetic Subsection

The clac operation selects the constant input 0x0000 using the mux in front of the $ac to set the value of

the $ac. To do this, the ClrAC line to the mux is 1 (selecting 0x0000) and WriteAC line is 1. All other

control lines are 0.

For the add and sub operations, the input to the ALU is memory data, so the ALUSrc line is set to 0 to

select the Mem Data. The result is stored back into the $ac, so the ClrAC line must be set to 0 to select

the output from the ALU, and the WriteAC line is set to 1 to write the ALU result into the AC. The

ALUOpt is set to 0000 for add, and 0001 for subtract. All other control lines are set to 0.

IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM 49

For the addi and subi operations, the input to the ALU is the immediate value, fo the ALUSrc line is set to

1 to select the immediate data value. All other lines are set like the add and sub operations.

For the stor operation, the MemWr is set to 1, which writes the value to the D port on the Data Memory

to memory at the address specified at the A port (note the address comes from the immediate part of

the instruction). All other control lines are set to 0.

Some readers might be worried that there are values passed in the CPU that are not used. For example,

when the stor operation is being executed a value is still calculated in the ALU, and is sent on the wire to

the $ac. However, the WriteAC line is 0, so the ALU value has no effect, and is ignored. The same is true

of the Mem Data value for immediate operations like addi. The Mem Data is generated, but it is ignored

as the ALUSrc chooses the immediate value. Many lines are set in every instruction, and most of them

are ignored, which is why using by setting all control wires to 0 a NOOP instruction does nothing.

5.4.2 The CPU – Execution Path Subsection

The second subsection of the CPU is the execution path, which is shown in the figure below.

Figure 5-6: CPU - Execution Path Subsection

As this figure shows, the value of the $pc register is used to set the read address for the instruction. This

instruction is then split into the control half (bits 8-15) and the immediate value (bits 0-7). The control

bits are sent to the CU to set the control wires, and the immediate value is sent to the data memory or

the ALU for use in the arithmetic subsection of the CPU.

Each time an instruction is executed, the $pc register is changed to point to the next instruction to

execute. When the program is running sequentially, the next instruction in memory is selected by

adding 1 to the $pc in the adder name Increment PC, and the multiplexor is set to 0 to select this

instruction.

The only time the next instruction is not selected is if the Beqz wire is high (meaning this is a beqz

instruction), AND the results of the compactor are 1 (the ALU has a value of 0). When this happens, the

50
IMPLEMENTING A ONE-ADDRESS CPU IN LOGISIM

mux selects the Branch Address, which is the immediate value from the instruction, and the program

continues executing at the instruction at the new address.

5.5 Implementing the CU

It is now possible to specify how to set the control wires from the CU. First the ALU opt is the value of

bits 8-11 of the ALU, so these are split off and sent to control the ALU.

The top 4 bits, bits 12-15, are used to set the other control wires, and from the previous discussion can

be set according to the following table2.

Operation Code WriteAc ALUSrc ClrAc MemWr Beqz

Immediate

Operation3

0x1 1 1 0 0 0

Memory

Operation4

0x2 1 0 0 0 0

clac 0x3 1 x 1 0 0

stor 0x4 0 x x 1 0

beqz 0x5 0 x x 0 1
Table 5-1: Operations and control wires

To implement this table, a decoder is implemented to split out the individual operations. These

operations are then combined to produce the correct output behavior. The CU is shown in the figure

below.

Figure 5-7: Control Unit

2 An “x” in the table means a don’t care condition, e.g. the value can be either 0 or 1 as it does not affect the

working of the CPU. As a convention, all x values should be coded as 0.
3 addi, subi, etc.
4 add, sub, etc.

	7-22-2016
	Implementing a One Address CPU in Logisim
	Charles W. Kann
	Implementing a One Address CPU in Logisim
	Description
	Keywords
	Comments
	Creative Commons License

	Implementing a One-Address CPU in Logisim

