

# CENTRAL ASPECTS OF PAIN IN THE KNEE (CAP-KNEE) QUESTIONNAIRE FOR ASSESSING CENTRAL MECHANISMS IN PEOPLE WITH KNEE

Kehinde Akin-Akinyosoye<sup>1,2</sup>, Richard J. E. James<sup>1,3</sup>, Bonnie Millar<sup>,1,2,4</sup>, Daniel F. McWilliams<sup>1,2,4</sup>, Roshan das Nair<sup>1,5,6</sup> Eamonn Ferguson<sup>1,3,4</sup>, David A Walsh<sup>1,2,4</sup>.

<sup>1</sup>Pain Centre Versus Arthritis

<sup>2</sup>Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham

<sup>3</sup>School of Psychology, University of Nottingham

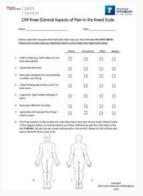
<sup>4</sup>NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals, NHS Trust

5Institute of Mental Health, University of Nottingham

6Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham

#### Introduction

- · Knee pain is the prevailing symptom of knee osteoarthritis.
- Central sensitisation creates discordance between pain and knee joint pathology.
- We previously reported associations between a QST index of central sensitization and a self-report central mechanisms trait derived from 8 discrete characteristics; neuropathic-like pain, fatigue, cognitive impact, catastrophising, anxiety, sleep disturbance, depression, and pain distribution.


## Study Aim

•This study sought to validate an 8-item questionnaire - Central Aspects of Pain in the Knee (CAP-Knee, figure 1) - which addresses these 8 characteristics that contribute to the Central Mechanisms trait.

#### **OBJECTIVES**

- 1. Explore the range of interpretations specific to each item within the CAP-Knee questionnaire in order to inform decisions on item revision
- 2. Demonstrate the psychometric properties of CAP-Knee questionnaire.

Figure 1. CAP-Knee Questionnaire



### Methods

- ·Participants with knee pain were from the community-based Investigating Musculoskeletal Health and Wellbeing study in the East Midlands. UK.
- Items were refined following cognitive interviews (n=22). Psychometric properties were assessed in 250 people using Rasch analysis, Cronbach's alpha and factor analysis.
- Intra-class correlation coefficients tested repeatability in 76 participants.
- Associations between CAP-Knee scores and knee pain severity were examined using linear regression and McGill Pain Questionnaire.

# Results

#### **COGNITIVE INTERVIEWS**

• Participants interpreted final versions of the CAP-Knee items in diverse ways which were aligned to their intended meanings - Table 1.

Table 1. Themes identified for each item included within the CAP-Knee questionnaire

| Item                                                                                             | Main Themes               |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|
| 1 Nouranathia like pain (Cold or heat touching                                                   | Thermal allodynia;        |  |  |  |  |  |
| 1. Neuropathic-like pain ('Cold or heat touching my knee was painful')*                          | Weather induced pain      |  |  |  |  |  |
| my knee was painful ).                                                                           | and Thermotherapy         |  |  |  |  |  |
| Revised Neuropathic-like pain item: (' Cold or heat (e.g. bath water) on my knee was painful ')" | Thermal allodynia         |  |  |  |  |  |
| 2. Fatigue ('I generally felt tired')                                                            | Source of fatigue         |  |  |  |  |  |
| 3. Cognitive impact ('Knee pain stopped me concentrating on what I was doing')                   | Task Distraction          |  |  |  |  |  |
| 4. Catastrophizing ('I kept thinking about how                                                   | Causes and                |  |  |  |  |  |
| much my knee hurts')                                                                             | Consequences;             |  |  |  |  |  |
|                                                                                                  | Avoidance behaviours      |  |  |  |  |  |
| 5. Anxiety ('In general, I got sudden feelings of panic')                                        | Fear                      |  |  |  |  |  |
| 6. Sleep ('Knee pain affected my sleep')                                                         | Sleep disturbance         |  |  |  |  |  |
| 7. Depression ('I generally still enjoyed the things                                             | Social function; Physical |  |  |  |  |  |
| I used to enjoy)                                                                                 | limitation                |  |  |  |  |  |
| 8. Pain Distribution (Body Pain Manikin)                                                         | Painful sites             |  |  |  |  |  |
| *Original version of Neuropathic-like pain item was misinterpreted by participants.              |                           |  |  |  |  |  |

#### **PYCHOMETRIC PROPERTIES**

- Fit to the Rasch model was optimised by rescoring from 4 to 3 responses per item, producing a summated score ranging from 0-16 (Table 2).
- Consistent with findings from the rasch analysis, Confirmatory Factor Analysis (CFI = 0.99; TLI= 0.98; X2(df)=37(20); RMSEA= 0.06) showed that the CAP-Knee questionnaire constituted a unidimensional scale. All CAP-Knee items contributed significantly (item loading range = 0.21-0.92; p<0.01) to one distinct factor.
- Internal consistency was acceptable ( $\alpha = 0.75$ ).
- •Test-retest reproducibility was excellent (ICC=0.91, 95% CI, 0.86-0.94).
- ·High CAP-Knee scores were associated with worse overall knee pain intensity (B=0.33 (95% CI 0.25 - 0.41), p<0.001, n=137) after adjusting for age, sex and BMI in the model.

## Conclusion

- •CAP-Knee is a simple and valid 8-item self-report questionnaire which measures a single construct.
- Measuring central aspects of knee pain may help identify and target treatments that aim to reduce central sensitisation.

Table 2. Summary item-person interaction statistics for CAP-Knee using the partial credit Rasch model

| Model                        | X² (df) | P value | Item fit<br>residual<br>(mean) | Item fit<br>residual<br>(SD) | Person fit<br>residual<br>(mean) | Person fit<br>residual<br>(SD) | PSI   | Percentage of significant <i>t</i> -tests (95% CI) |
|------------------------------|---------|---------|--------------------------------|------------------------------|----------------------------------|--------------------------------|-------|----------------------------------------------------|
| Scores not Rasch transformed | 63 (28) | <0.05   | 0.79                           | 1.35                         | 0.01                             | 1.09                           | 0.8   | 4.43% (2.23% to 7.79%)                             |
| Scores Rasch transformed     | 52 (28) | < 0.05  | 0.19                           | 1.34                         | 0.02                             | 1.28                           | 0.73  | 4.43% (2.23% to 7.79%)                             |
| Ideal value                  | -       | >0.05   | 0                              | 1                            | 0                                | 1                              | ≥0.70 | <5%                                                |
|                              |         | \ o c.  | 1 1 1 1 1 1                    |                              | 10 1                             |                                |       | 100 10 11 10                                       |

Rasch transformation comprised collapsing responses 'Often' and 'Always' each scored 2, whereas non-transformed scores were 'Often'=2, 'Always'=3. PSI; Person Separation Index. N=250.

<sup>\*</sup>The revised Neuropathic-like pain item was found to work well across all participants.