The landscape of genotype-phenotype correlation in AML

Kiyomi Morita^{1,6*}, Mahesh Swaminathan^{1*}, Feng Wang^{2*}, Yuanqing Yan^{4*}, Jared Burks¹, Curtis Gumbs², Little Latasha², Samantha Tippen², Rebecca Thornton², Marcus Coyle², Jianhua Zhang^{2,5}, Song Xingzhi², Courtney DiNardo¹, Elias Jabbour¹, Michael Andreeff¹, Jorge Cortes¹, Marina Konopleva¹, Keyur Patel³, Guillermo Garcia-Manero¹, Hagop Kantarjian¹, Carlos Bueso-Ramos³, Andrew P Futreal², and Koichi Takahashi^{1,2*}

¹Department of Leukemia, ²Genomic Medicine, ³Hematopathology, and ⁵Institute of Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX ⁴Department of Bioinformatics, The University of Texas Health Science Center at Houston, TX, ⁶Department of Hematology and Oncology, The University of Texas KD and the School of Medicine

Background

- Acute myeloid leukemia (AML) is a group of clinically heterogeneous diseases.
- Heterogeneous presentation of AML is defined by the equally heterogeneous genetic basis during leukemogenesis.

Objective

- To describe the distinct mutation landscape based on the ontogeny of AML.
- To describe the correlation between clinical phenotype and genotype in AML.

Methods

- Bone marrow samples from 536 AML patients were analyzed by targeted capture exome sequencing of 295 genes (N=419) or whole exome sequencing (N=117).
- Extensive clinical-genotype correlation was performed using well annotated clinical data.

Results

Table1. Patient Characteristics

Characteristics	Median		IQR		
WBC	5.4	5.4		2.2-21.9	
HGB	9.3		8.4-10.3		
PLT	46		24-92		
BM blast %	46		26-72		
PB blast %	3		0-18		
LDH	715		512-1222		
Ferritin	842	442-1		847	
Age	62	51-		72	
Characteristics			No.	%	
Diagnosis					
de-novo / secondary/Tx-related AML		4	08/128	76/24	
Prior therapy					
untreated / relapse/refractory		4	11/125	77/23	
Cytogenetic risk, ELN defined					
favorable/intermediate/adverse		10/	326/177	2/61/33	
Induction chemotherapy (previously untreated patients only)					
High intensity chemotherapy (Ida + AraC-based)			204	50	
Low intensity chemotherapy (low dose AraC-based)			86	21	
Hypomethylating agents			91	22	

Figure 1. Landscape of driver mutations

Figure 3. Correlation between somatic mutations and clinical phenotype (BM morphology, PB count, karyotype, immunophenotype based on flow cytometry)

Figure 2. Distinct patterns of somatic mutations based on the ontogeny of AML

Figure 4. Increased MYC expression in patients with *MYC* mutations

MDAnderson

Making Cancer History*

Cancer Center

Conclusions

- We identified significant association between mutations and certain clinical phenotype.
 - Class 1 mutations (NPM1, FLT3, PTPN11, NRAS) were associated with proliferative disease (high WBC, blast, LDH), whereas patients with mutations in TP53, STAG2, BCOR, and ASXL1 had non-proliferative disease.
- IDH1, IDH2, and NPM1 mutations were associated with decreased expression of HLA-DR. Mutations associated with NOTCH or RAS-RTK pathway showed increased
- expression of T-cell markers, whereas mutations associated with hematopoietic differentiation transcription factor showed decreased expression of myeloid markers.
- MYC mutations were associated with MYC protein overexpression in AML.