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Abstract

During cardiopulmonary resuscitation (CPR), chest compression quality is the key for
patient survival. However, several studies have shown that both professionals and
laypeople often apply CPR at improper rates and depths. The use of real-time feedback
devices increases adherence to CPR quality guidelines. This chapter explores new alter-
natives to provide feedback on the quality of chest compressions during CPR. First, we
describe and evaluate three methods to compute chest compression depth and rate
using exclusively the chest acceleration. To evaluate the accuracy of the methods, we
used episodes of simulated cardiac arrest acquired in a manikin model. One of the
methods, based on the spectral analysis of the acceleration, was particularly accurate in
a wide range of conditions. Then, we assessed the feasibility of using the transthoracic
impedance (TI) signal acquired through defibrillation pads to provide feedback on chest
compression depth and rate. For that purpose, we retrospectively analyzed three data-
bases of out-of-hospital cardiac arrest episodes. When a wide variety of patients and
rescuers were included, TI could not be used to reliably estimate the compression depth.
However, compression rate could be accurately estimated. Development of simpler
methods to provide feedback on CPR quality could contribute to the widespread of
these devices.

Keywords: cardiopulmonary resuscitation, chest compression quality, compression depth,
compression rate, feedback devices, chest acceleration, thoracic impedance

1. Introduction

The sequence of actions linking a victim of out-of-hospital cardiac arrest with survival is

described by the chain of survival, which consists of four independent links: early activation
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of the emergency medical services, early cardiopulmonary resuscitation (CPR), early defibril-

lation, and early advanced care. The four links of the chain of survival are important, but early

CPR and early defibrillation are pivotal for a successful outcome of the patient [1]. CPR

consists of cycles of chest compressions and ventilations delivered to the patient to artificially

maintain a minimal flow of oxygenated blood to the vital organs, whereas defibrillation

consists in the passage of electrical current through the myocardium (cardiac muscle) to

terminate certain lethal arrhythmias. In out-of-hospital settings, early defibrillation is normally

procured using an automated external defibrillator (AED).

There is a strong evidence that the quality of chest compressions is related to the chance of

successful defibrillation [2–4]. Current resuscitation guidelines [1] emphasize the importance

of providing chest compressions with an adequate depth (between 5 and 6 cm) and rate

(between 100 and 120 compressions per minute [cpm]), completely releasing the chest between

compressions and minimizing interruptions. However, several studies have shown that both

professionals and laypeople often apply CPR at improper rates and depths [5, 6].

In an effort to alleviate this problem, since 2010, resuscitation guidelines recommend monitor-

ing CPR quality and using metronomes and real-time feedback systems to guide rescuers

during resuscitation attempts [7]. Metronomes generate regular audible beats that help res-

cuers to follow the rhythm, while feedback devices are more sophisticated; they measure CPR

performance in real time and provide audiovisual messages to guide the rescuer toward target

depth and rate. The clinical studies conducted to date had an insufficient power to demon-

strate improved survival with the use of feedback devices [8]. As a consequence, ERC guide-

lines 2015 recommend the use of CPR feedback devices as part of a broader system of care that

should include comprehensive CPR quality improvement initiatives, rather than as an isolated

intervention. There is, however, strong evidence that feedback improves chest compression

quality, [9–12] which has been linked to survival from cardiac arrest [5, 8].

This chapter explores new alternatives to provide feedback on the quality of chest compres-

sions during CPR. First, we briefly describe the history of feedback devices and the different

technologies used. Then, we present three methods to provide feedback on chest compression

depth and rate based solely on chest acceleration. One of the methods presented particularly a

high accuracy in a wide range of conditions and is further discussed in three challenging

scenarios. Finally, we assessed the feasibility of using the transthoracic impedance (TI) signal

acquired through defibrillation pads to provide feedback on chest compression depth and rate.

2. History of feedback devices

The first CPR feedback devices were mechanical and used force or pressure sensors to provide

feedback on chest compression depth [13]. Devices in this category include CPRplus (Kelly

Medical Products, Princeton, USA), CPREzy (Health Affairs, London, England), and the more

recent Cardio First Angel (Schiller, Baar, Switzerland). These systems guide the rescuer toward

the target depth based on the force applied on the chest for each compression. However,

stiffness of the chest is not linear [14] and varies among individuals. Tomlinson et al. [15]

Resuscitation Aspects78



simultaneously measured compression force and depth in 91 adult out-of-hospital cardiac

arrest patients. In the studied population, the force required to achieve 38 mm varied from 10

to 54 kg. Even if some of the devices in this category take into account the approximate size of

the patient, the wide variation in chest wall elasticity and its changes with time impede an

accurate estimation of compression depth from compression force.

To overcome the limitations of force and pressure sensors, electronic systems based on accel-

erometers were developed. These devices sense the acceleration of the patient’s chest during

CPR, and they process it in real time to obtain compression depth. By definition, acceleration is

the first derivative of velocity with respect to time, and velocity is the first derivative of

displacement. Consequently, chest displacement can be obtained from acceleration by apply-

ing double integration. However, integration is an inherently unstable process: small integra-

tion errors rapidly accumulate causing a significant drift in displacement that impedes

accurate estimation of the compression depth. Figure 1 illustrates the problem of double

integration of the chest acceleration with a record acquired while chest compressions were

provided to a resuscitation manikin. The acceleration signal (top panel) and the reference

compression depth signal obtained from a displacement sensor placed inside the manikin’s

chest (bottom panel, solid line) were registered. The second panel shows the reference velocity

signal computed differentiating the reference compression depth signal (solid line), and the

velocity signal computed by numerically integrating the acceleration signal (dashed line).

Integration errors quickly accumulate, and during the last seconds, the computed velocity

presents a noticeable offset with respect to the reference signal. When numeric integration is

performed again, this offset leads to big errors in the computed displacement (bottom panel,

dashed line), of more than 20 cm after only 8 s in this example.
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Figure 1. Integration errors in the displacement signal after the application of direct double integration to the acceleration

signal.

Audiovisual Feedback Devices for Chest Compression Quality during CPR
http://dx.doi.org/10.5772/intechopen.70742

79



A possible strategy to reduce the accumulation of integration errors would be to perform the

integration for small signal segments, for example, for each compression cycle. For that pur-

pose, the offset of each chest compression should be first identified, and the integration should

be reset by applying boundary conditions after each cycle, that is, setting velocity and dis-

placement at those points to zero. Over the last decade, several mechanisms to identify the

offset of chest compressions have been conceived, giving rise to complex commercial devices

that incorporate additional sensors or use elaborate signal processing techniques. For example,

PocketCPR (Zoll Medical, Chelmsford, USA) applies signal processing techniques to set

boundary conditions and compensate integrating drift, while CPRmeter (Laerdal Medical,

Stavanger, Norway) incorporates an additional force sensor. Both devices are rigid and must

be placed between the chest of the patient and the rescuer’s hands during CPR to measure

chest acceleration.

More recently, Physio-Control (Redmond, USA) presented TrueCPR, a solution to provide

feedback on chest compression rate, depth, and chest release based on triaxial magnetic field

induction. The device comprises two rigid pads: one of them is positioned between the

rescuer’s hands and the chest of the patient during CPR, and the other one, longer and flatter,

beneath the patient’s back. Feedback metrics are estimated from the changes in magnetic field

between both pads during CPR. The main disadvantage of this device is that it is bulkier than

the others and also rigid.

3. Use of the acceleration signal for chest compression quality

This section briefly describes three methods to compute chest compression rate and depth and

to provide CPR feedback to the rescuers using only chest acceleration. For a more detailed

description of the methods, see reference [16]. The first method derives from the traditional

approach; it consists in applying double integration to compute the compression depth signal.

In our proposal, integration is approximated using a stable band-pass filter (BPF) that per-

forms integration while suppressing low frequencies of the signal. The second and third

methods do not require computing the compression depth signal: the second method com-

putes velocity to calculate a compression rate and depth value for each compression, while the

third one computes rate and depth from the spectral analysis of the acceleration signal (SAA).

We used episodes of simulated cardiac arrest acquired using a resuscitation manikin to evalu-

ate the accuracy of the three methods.

3.1. Experimental set-up and data collection

We equipped a Resusci Anne QCPR manikin (Laerdal Medical, Norway) with a photoelectric

sensor to register the reference compression depth signal. Chest compressions were delivered

in the center of the manikin’s chest with a triaxial accelerometer encased in a metal box placed

beneath the rescuer’s hands. The reference compression depth signal and the three axes of the

acceleration were digitized and recorded using a National Instruments (Austin, USA) acquisi-

tion card connected to a laptop computer. Figure 2 shows the experimental set-up used to

perform the data collection.
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Twenty-eight volunteers participated in the recording sessions. They were grouped in couples,

and for each couple, four 10-min episodes were recorded. During each episode, volunteers

alternated providing 2-min CPR series, each series involving 30 compressions with 5-s pauses

in between. A total of 56 episodes were acquired. The experimental protocol was approved by

the ethical committee for research involving human subjects of the University of the Basque

Country (CEISH UPV/EHU).

3.2. Methods to estimate chest compression rate and depth

3.2.1. Band-pass filter

There are a number of discrete integration algorithms available, the most common one being

the trapezoidal rule, because of its trade-off between simplicity and accuracy. Analytically, the

implementation of this rule derives in an unstable linear system [16]. In practice, that means

that small low-frequency components in the input signal generate low-frequency components

in the output with amplitude that increases with time. If no technique is applied to compensate

this accumulation of error in the output signal, the system could suffer a numeric overflow.

Our first approach consists in approximating the integration by a stable band-pass filter,

designed as the series connection of a high-pass filter and the trapezoidal rule filter, which

presents a low-pass response. The high-pass filter is aimed at compensating the instability of

the trapezoidal rule filter for low frequencies. Figure 3 shows the magnitude of the frequency

response of the band-pass filter, HBPF(f), represented by a solid line. Note that for frequencies

above 0.6 Hz, the system matches the ideal response of the trapezoidal rule, depicted with a

dashed line, whereas for low frequencies, it is stable (it does not tend to infinity, as opposed to

the trapezoidal rule response).

Figure 2. Experimental setup: Resusci Anne QCPR manikin fitted with a displacement sensor, triaxial accelerometer

encased in a metallic box, acquisition card, and laptop computer.
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Figure 4 illustrates the process of computing compression depth with this method. First, the

acceleration signal a(t) (first panel) is processed with the band-pass filter to obtain velocity,

v(t) (second panel). Then, this process is repeated with the velocity to obtain the computed

compression depth signal sc(t) (third panel). Because of the suppression of the low-frequency

components and the waveform distortion caused by the filtering process, sc(t) and the refer-

ence compression depth signal s(t) (fourth panel) have different waveforms. However, com-

pression depth and rate can be easily computed by applying a peak detector to sc(t) and

measuring the peak-to-peak amplitude and the distance between the peaks, respectively.

Compression rate is computed as the inverse of the distance between two consecutive peaks,
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Figure 3. Frequency response of the band-pass filter (solid line) compared to the ideal frequency response of the

trapezoidal rule filter (dashed line).
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Figure 4. BPF method, based on band-pass filtering.
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expressed in compressions per minute (cpm). In Figure 4, the detected compressions and their

corresponding depths are depicted by vertical lines in the third and fourth panels.

3.2.2. Detection of zero-crossing instants in the velocity signal (ZCV)

In this second method, the compression rate and depth values are directly calculated from the

velocity signal, without computing the compression depth signal. For that purpose, the band-

pass filter described in the previous section is applied to the acceleration once to obtain the

velocity signal. The resulting signal is quite stable and can be processed to identify the zero-

crossing instants from positive to negative, which represent the onset of each compression

cycle (marked by circles in the second panel of Figure 5) and the zero-crossing instants from

negative to positive, which correspond to the points of maximum displacement of the chest

(marked by crosses in the second panel). For each compression cycle, the compression depth is

computed as the area of the velocity signal between the onset and the maximum displacement

point (shadowed in the second panel of the figure). Finally, the rate of the chest compressions

can be computed as the inverse of the interval between two consecutive zero-crossing instants

from positive to negative. In the bottom panel of Figure 5, the computed depth values

(represented by vertical lines) are drawn over the reference compression depth signal for

comparison.

3.2.3. Spectral analysis of the acceleration signal

In this third method, neither the compression depth nor the velocity signal is computed by

integration. Instead of that, average compression rate and depth values are computed every 2 s

by applying spectral analysis to the acceleration signal [17]. The basis of this method is the

assumption that during short intervals with continuous chest compressions, the acceleration
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Figure 5. ZCV method, based on the analysis of velocity.
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and the displacement signals are quasi-periodic. Consequently, both signals can be modeled as

a periodic acceleration and a periodic depth, with a fundamental frequency that represents the

average frequency of the chest compressions during the interval. We modeled each 2-s seg-

ment of the acceleration and displacement signals using the first three harmonics of their

Fourier series representation, without considering the direct current component. Figure 6

illustrates the procedure followed to apply this method. We first computed the fast Fourier

transform (FFT) of the windowed acceleration signal and estimated the module and phase of

the three first harmonic components of the acceleration. In the example shown in the figure,

the selected window is shaded in the first panel, and its FFT with the identified harmonics is

shown in the second panel. Taking into account that acceleration is the second derivative of

displacement, when both signals are modeled as periodic, the amplitudes and phases of the

spectral components of the compression depth can be derived from the ones of the accelera-

tion. Using these values, a periodic version of the chest displacement during the analysis

window can be reconstructed. This last step is represented in the third panel of Figure 6. The

reference compression depth signal is plotted using a solid line, and the reconstructed signal

for the selected window is represented by a dashed line. The reconstructed signal is periodic;

i.e., it has the same amplitude for all the compressions, which represent the average compres-

sion depth during the analysis window. Average compression rate for each 2-s analysis win-

dow is computed from the fundamental frequency of the acceleration, fcc.

3.3. Results

Panel (A) of Figure 7 shows the boxplots of the error in the estimation of compression depth

for each of the methods. On each box, the central mark is the median, and the edges of the box
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Figure 6. SAA method, based on the spectral analysis of the acceleration.
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are the percentiles 25 and 75, P25 and P75, respectively. The whiskers extend to the most

extreme data points not considered outliers i.e., within the �1.5 interquartile range (IQR)

interval. Differences in the errors between methods were statistically significant (p < 0.001).

SAA provided the highest accuracy, while BPF and ZCV displayed a slight tendency to

overestimate depth values. Median (P25-P75) unsigned percent error in depth calculation for

each method was 5.9 (2.8–10.3), 6.3 (2.9–11.3), and 2.5 (1.2–4.4)%.

Boxplots of the error in rate estimation are represented in panel (B) of Figure 7. For the ZCV

method, errors were clearly concentrated around zero. Median (P25-P75) unsigned percent

error in rate calculation was 1.7 (0.0–2.3), 0.0 (0.0–2.0), and 0.9 (0.4–1.6)% for BPF, ZCV, and

SAA, respectively. Differences between methods in error in rate estimation were not statisti-

cally significant (p = 0.49).

3.4. Discussion

This section presents three strategies for feedback on the rate and depth of chest compressions

during CPR by processing exclusively the acceleration signal and assesses their accuracy in a

simulated manikin scenario.

The BPF and ZCV tended to overestimate chest compression depth and presented errors above

5 mm in 25% of the compressions. The SAA method, in contrast, was very accurate and not

biased, with an error above 5 mm in only about 5% of the cases.

Percent error in rate estimation was very low for the three methods (median of 1.7, 0.0, and

0.9% for BPF, ZCV, and SAA, respectively). Errors of BPF and ZCV methods were mainly

caused by the filter transient, particularly at the beginning of each compression series. This

influence was higher for the BPF method, in which the filter was applied twice.

Most current CPR feedback devices rely on accelerometry and double integration to estimate

chest compression depth. Manufacturers have designed different solutions for the instability

problem, often protected by patent rights, based on either using additional pressure or force

sensors to detect the onset of each compression cycle, or on advanced filtering techniques

requiring reference signals. All these solutions lead to complex devices, limiting their wide-

spread use in the practice, especially for bystanders and first responders to a cardiac arrest.
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Figure 7. Boxplots of the global error in depth (A) and in rate (B) for the three methods.
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The methods discussed in this section are based solely on accelerometry and could lead to

simpler, flexible, and cheaper devices. For its simplicity and accuracy, the method based on the

spectral analysis of the acceleration might be a good candidate for implementation. To further

test this method in challenging scenarios, we conducted three additional studies to evaluate

the accuracy of the method: (1) when chest compressions were provided to a patient laying on

a soft surface, (2) when the feedback device was attached to the rescuer’s back of the hand, or

to the wrist, or to the forearm, instead of being placed in the usual position between the chest

and the rescuer’s hands, and (3) when CPR was performed in a moving vehicle, particularly in

a moving long-distance train.

When the patient is lying on a mattress or on any soft surface, accelerometer feedback devices

overestimate chest compression depth, [18] as the calculated depth corresponds to the total

displacement of the chest, that is, the sternal-spinal displacement plus the mattress displace-

ment. This would lead to erroneous feedback, which could contribute to the delivery of

shallow chest compressions. We proposed a solution based on two accelerometers incorporat-

ing the spectral method. One is placed on the chest to measure the total displacement of the

chest, while the other one is placed at the back of the patient and measures the mattress

compression distance. The difference between both measurements will correspond to the

actual compression depth. This method presented a high accuracy. Detailed results are

presented in reference [19].

Current positioning of CPR feedback devices may cause soft-tissue damage to the patient or to

the rescuer, along with wrist discomfort. We analyzed the accuracy of the spectral method when

the accelerometer was placed in alternative positions that reduce discomfort: the rescuer’s back

of the hand, the wrist, and the forearm. We compared these results with those obtained in the

traditional position and concluded that positioning the device at the back of the hand was the

optimal sensor position. Fixed to the wrist or to the forearm, the sensor was subjected to

swinging movements or hands separation from the chest, which caused a large overestimation

of compression depth. Readers are encouraged to consult reference [20] for further details.

Finally, we studied the performance of the spectral method when tested in a moving long-

distance train. Currently, defibrillators are increasingly being installed in public transportation

settings, in an effort to provide an early response to sudden cardiac arrest. Early CPR should

be also administered in such scenarios, and the CPR feedback devices could increase CPR

quality, but to date how the movement of the vehicles affects accelerometer-based devices has

not been sufficiently studied. We tested the spectral method in a long distance train with a

manikin setup and compared the results with those obtained in static conditions. Errors in

depth estimation tended higher in the train, but no statistical differences were found. Rate

estimation was very accurate. Our conclusion was that, as the spectral method does not

consider frequency components of the acceleration out of the range of chest compressions

(1–10 Hz), movement did not affect performance [21].

In conclusion, the spectral method was accurate to compute chest compression depth and rate

in a wide set of conditions and could be used to develop a new CPR feedback device.

However, the method is not capable of detecting inadequate rescuer’s leaning between com-

pressions. Leaning decreases the blood flow throughout the heart and can decrease venous
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return and cardiac output. Guidelines recommend minimizing leaning, but human studies

show that a majority of rescuers often lean during CPR and do not allow the chest to recoil

fully between compressions. This is the current major drawback of any attempt to derive

feedback only from accelerometers. For this reason, some commercial accelerometer-based

devices use force sensors to provide feedback on this quality parameter.

4. Transthoracic impedance signal for chest compression quality

Most defibrillators, particularly the simplest devices, acquire only the ECG and the TI signal

through the defibrillation pads. A straightforward solution for monitoring and providing feed-

back on the quality of chest compressions could be using the already available signals in current

defibrillators. TI measures the resistance of the thorax to current flow. It is calculated by passing

an alternate current (usually 2–3 mA at 20–30 kHz) through the tissue, measuring the voltage

drop, and calculating the impedance using the Ohm’s law. TI is used to check if defibrillation

pads are correctly attached to the patient and to adjust the energy of the defibrillation pulse.

Baseline TI is approximately 70–80 Ω in adults, but changes in tissue composition due to

redistribution and movement of fluids cause fluctuations on the TI. For example, blood circu-

lation and respiration (or ventilation) generate oscillations of different amplitudes in the TI. In

addition, chest compressions during CPR cause a disturbance in the electrode-skin interface,

inducing artifacts on the TI. With each compression, the TI fluctuates around the baseline

impedance with amplitude varying from 0.15 Ω to several Ohms. Figure 8 shows a segment

of the compression depth and the TI signals recorded during CPR. In the example, two series

of 15 compressions were provided, with pauses for two ventilations in between. The oscilla-

tions in the TI signal reflect compressions and ventilations. In general, the waveform of the

fluctuations induced by chest compressions is very variable between patients and even along

each resuscitation episode.

The aim of this section is to explore the feasibility of using TI signal to provide feedback on the

rate and depth of chest compressions.
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Figure 8. Segment of compression depth and TI signals during CPR. Artifact induced by chest compressions and

fluctuation induced by ventilations is clearly visible in the TI signal.
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4.1. Use of the TI signal for chest compression quality assessment

Several researchers have investigated the use of TI signal for gathering information on the

quality of chest compressions. Some studies focused on detecting the instants of the chest

compressions in the TI signals to derive compression rate. Others have studied the relationship

between compression depth and the amplitude of the TI fluctuations.

4.1.1. Chest compression rate

The commercial program Codestat (Physio-Control, Redmond, USA) incorporates an auto-

mated chest compression and ventilation detector based primarily on the analysis of the TI.

The program annotates compression positions and derives the quality parameters compres-

sion rate and chest compression fraction (the percentage of time during which chest compres-

sions are provided). Different filtering options allow the user to highlight chest compressions

oscillations or ventilation oscillations. Other authors used the TI signal to automatically detect

chest compressions in order to estimate the instantaneous compression rate [22]. They found a

high correlation between the instantaneous rate computed from the TI and from the compres-

sion depth signal. The TI was used also to detect pauses in chest compressions [23] and could

be used to measure chest compression fraction.

A comprehensive study that aimed to determine the feasibility of a generic algorithm for

feedback on chest compression rate using the TI signal recorded through the defibrillation pads

was recently published [24]. Out-of-hospital cardiac arrest episodes were collected equally from

three different emergency services and different defibrillator models. The algorithm for comput-

ing compression rate was based on the spectral analysis of the TI signal. The gold standard was

obtained from reference signals such as the force or the ECG. This approach was accurate under

different device front ends and a wide range of conditions, proving the generality of the results.

The availability of feedback on the rate of chest compressions could have a significant impact on

the quality of CPR, especially in basic life-support emergency systems.

4.1.2. Chest compression depth

Regarding the relationship between chest compression depth and the amplitude of the fluctu-

ations induced in the TI, contradictory results have been found in the literature. An experi-

mental study conducted with swine reported higher amplitudes in the TI oscillations for

higher compression depths [25]. Another study using porcine models reported high correla-

tions between TI and systolic blood pressure, end-tidal CO2, cardiac output, and carotid flow

[26]. Two clinical studies suggested the potential of TI to identify adequate chest compression

depth in patients under cardiac arrest [27, 28]. However, none of those studies included any

objective measurement of the actual compression depth; i.e., no gold standard was used to

validate the hypothesis. In subsequent studies in which a reference compression depth was

included, contradictory results were found, and limited details were provided on the methods

and the data analyzed [29, 30]. Finally, a prospective, experimental study with swine by Zhang

et al. [31] reported a high correlation between TI and both the compression depth and the

coronary perfusion. They found significant differences in the TI fluctuation amplitude between

adequate and shallow chest compressions, and a strong linear relationship between TI ampli-

tude and compression depth. Authors concluded that changes in the TI had the potential to
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serve as an indicator of the quality of chest compressions. Nevertheless, they acknowledged

that further research was required to extrapolate these conclusions to humans.

We present a study aimed to go further into this remaining question regarding TI signal and its

application to provide feedback on chest compression quality: Is there a relationship between

chest compression depth and TI in humans?

4.2. Estimation of chest compression depth from TI signal

The aim of this study was to analyze the relationship between TI fluctuations and compression

depth during out-of-hospital cardiac arrest episodes. First, we analyzed the overall correlation

between three morphologic features of the TI and the compression depth. Second, we evalu-

ated the influence of the patient by computing this correlation independently for each patient.

Third, we studied the influence of the rescuer, by isolating series of chest compressions

corresponding to a unique rescuer-patient pair. Finally, we tried to replicate the experiments

by Zhang et al., focusing on the correlation analysis with series of optimal and suboptimal

chest compressions, and we assessed the discrimination power of the TI signals to distinguish

between shallow and nonshallow chest compressions.

4.2.1. Data collection

The data set used in this study was collected by Tualatin Valley Fire & Rescue (TVF&R), a first

response advanced life-support fire agency serving 11 incorporated cities in Oregon, USA. It

comprised 623 out-of-hospital cardiac arrest episodes recorded during CPR. The compression

depth and TI signals were available for 189 of the 623 episodes. We extracted 60 episodes

containing both signals concurrently, with a minimum of 1000 chest compressions per episode.

Only chest compressions included in series of at least 10 compressions were considered,

yielding a total of 11,667,9 chest compressions. Then, we extracted intervals where the single-

rescuer-single-patient pattern was guaranteed. Interruptions in compressions longer than 1.5 s

were identified as a possible change of rescuer. We gathered 75 series of this type.

4.2.2. Signal processing and extraction of TI features

Compression depth signal was first processed to compute the maximum depth for each chest

compression, Dmax. The instants when Dmax was achieved were computed using a negative

peak detector with a static threshold of 15 mm. The cycle of each chest compression was then

identified using these instants both in the compression depth and in the TI signals. This

procedure is illustrated in Figure 9, where each cycle is delimited with vertical dotted lines.

TI signal was band-pass filtered to remove baseline and fluctuations caused by ventilations

and high-frequency noise. To characterize TI fluctuations, we defined three TI waveform

features computed for each chest compression:

• Peak-to-peak amplitude, Zppi: difference between the maximum and the minimum values

of the ith TI cycle.

• Area, Ai: area of the TI during the ith compression cycle.

• Curve length, Ci: length of the curve of the TI signal in the ith compression cycle.
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Figure 9 illustrates two examples with the extracted features depicted in the compression

depth (top) and in the filtered TI signal (bottom). Panel (A) shows quite sinusoidal TI fluctua-

tions, and panel (B) shows a more irregular TI waveform. This is why we computed area and

curve length in addition to the peak-to-peak value of TI, as this single feature cannot discrim-

inate between regular and irregular fluctuations. In order to smooth the values of the com-

puted features, the average value of each parameter was computed every 5 s.

4.2.3. Data analysis

The linear relationship between Dmax and the TI features was tested for the whole population,

for each patient independently, and for series of compressions provided by a single rescuer on

a single patient. Pearson’s correlation coefficient r was computed for each analysis. Univariate

linear regression was used to model the relationship between Dmax and the TI features.

In order to avoid potential variability introduced by the rescuer, we analyzed the relationship

between Dmax and Zpp in a single-rescuer-single-patient pattern. Series with a minimum

standard deviation of 7 mm in Dmax were considered. To avoid bias, a single series per patient

was selected, the one with the highest standard deviation. A total of nine series were extracted.

Univariate linear regression was used to predict Dmax using Zpp, and r coefficient was com-

puted for each series and jointly for the whole set.

In order to replicate the procedure by Zhang et al. in their swine model [31], we selected series

with optimal and suboptimal series of chest compressions. A series was suboptimal when at

least 75% of the compressions were below 38 mm, and optimal when at least 75% of the
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Figure 9. Two examples of the features extracted from the TI signal. The maximum depth is represented in the compres-

sion depth signal (top) and the TI features in the TI signal (bottom). Compression cycles are delimited by vertical dotted

lines.
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compressions were above 50 mm. A total of 12 series (one per patient) were selected. They

were jointly analyzed computing r and applying univariate linear regression.

Finally, we assessed the discrimination power of the three TI features to classify each 5-s

window as shallow (below 38 mm) or nonshallow (above 43 mm) according to the criteria

stated by 2005 resuscitation guidelines (valid at the time episodes were collected). We applied

a multivariate logistic regression model for the classifier. We split the 60 episodes into a

training (40) and a test set (20). The power of the classifier was evaluated in terms of the area

under the curve (AUC), and of the sensitivity and specificity in the diagnosis of shallow chest

compressions.

4.2.4. Results

Figure 10 shows the scatterplots of Dmax against each of the TI features for the whole popula-

tion and the model fitted in each case. In all cases, there was a high dispersion around the

regression line. The value of rwas 0.34, 0.36, and 0.37 for Zpp, A, and C, respectively. However,
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Figure 10. Scatterplots of Dmax with respect to TI features for the whole population. For each scatterplot, the fitted

regression line and the value of r are depicted.

Audiovisual Feedback Devices for Chest Compression Quality during CPR
http://dx.doi.org/10.5772/intechopen.70742

91



the analysis within patients yielded a median (IQR) correlation coefficient r of 0.40 (0.24–0.66)

for Zpp, 0.43 (0.26–0.66) for A, and 0.47 (0.25–0.68) for C.

For the nine series in which the single-patient-single-rescuer pattern was maintained, the

individual analysis of each series yielded a median r of 0.81 (0.51–0.83). However, when all of

them were considered jointly, r decreased to 0.47.

In the analysis parallel to the one conducted by Zhang et al., we considered the set of twelve

optimal and suboptimal series. For the optimal group, Dmax was 57 (54–63) mm and Zpp was

3.0 (2.5–3.7)Ω. For the suboptimal group,Dmaxwas 32 (30–34) mm, and Zppwas 0.9 (0.6–1.5)Ω.

We obtained a correlation coefficient of 0.87, quite similar to the 0.89 reported by Zhang

et al.

Finally, when analyzing the power of each feature to classify 5-s windows as shallow or

nonshallow, we found significant differences between groups, but a high overlap between

distributions. The logistic regression classifier showed sensitivity, specificity, and AUC of

89%, 49%, and 0.8 for the test set.

4.2.5. Discussion

Our study included a set of out-of-hospital cardiac arrest episodes with a wide variety of

patients and rescuers. The results obtained from the analysis of 14,424 values for each feature

showed very low correlation with Dmax (r < 0.38 in any case). Prediction of chest compression

depth with any of the TI features was highly unreliable. For instance, for any given Zpp value,

the probability of error in the prediction of Dmax is high because of the wide range of

corresponding Dmax values.

The variability of the results between patients was also high. Sex, chest size, body mass, and

pads position have been reported to affect TI baseline, and TI fluctuations during ventilations

are correlated with the thoracic fat and thoracic circumference. Our results showed also a great

dispersion with respect to the regression line between Dmax and Zpp from one patient to

another. Although, for some patients, little dispersion and high correlation values could be

observed along the episode, different tendencies were also found within each episode, show-

ing the influence of different rescuers. In these cases, a single regression model will hardly fit

all the values.

With a single rescuer, the dispersion of each series decreased, and linearity between Dmax and

Zpp increased notably. Nevertheless, interpatient factors such as chest/electrodes characteristics

of the nine patients caused a low correlation when all the series were considered jointly. This

emphasizes the inability to define a confident global linear fit.

Finally, we could replicate the high linearity observed between depth and TI amplitude

reported by Zhang et al. in the animal model. We also found significant differences between

the optimal and the suboptimal groups, but we also found that for a given value of Zpp, Dmax

varied widely. For a proper interpretation of the apparent observed linearity, we should

consider the limitations of the analysis. On the one hand, considering only optimal and

suboptimal chest compressions shows a biased picture of human out-of-hospital CPR. When
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the complete range of compression depths is considered, the correlation coefficient drops to

0.34. On the other hand, the set of patients and rescuers was small (12 patients/12 rescuers in

our study, 14 animals/2 rescuers in the study by Zhang et al.). When we included a greater

variability (60 patients and 2 to 6 rescuers), higher dispersion was observed and correlation

coefficient decreased substantially.

In summary, TI signal can be a feasible indicator for CPR quality parameters such as chest

compression rate, chest compression fraction or chest compression pauses. Unfortunately, in

this study, we proved that TI is unreliable to predict the key quality parameter of chest

compression depth. Nevertheless, we further analyzed, from a practical perspective, the power

to discriminate shallow from nonshallow chest compressions, in an effort to achieve a quality

feedback method. We tried to discriminate chest compressions <38 mm from those >43 mm.

Each TI feature showed different distributions between the two categories, but high overlap

between them. The results of the logistic regression classifier allowed us to conclude that it is

not possible to safely identify shallow chest compressions using the TI signal.

5. Conclusions

During CPR, the quality of chest compressions is related to patient’s survival. Feedback

devices guide the rescuers toward target compression depth and rate, and contribute to

increase the CPR quality. This chapter explored new alternatives to provide feedback on the

quality of chest compressions during CPR. Two strategies were studied: the use of the chest

acceleration, which can be acquired using an extra pad placed on the chest of the patient

during CPR and the use of the transthoracic impedance (TI) signal, which is acquired by

current defibrillators through defibrillation pads. Chest acceleration can be used to accurately

compute chest compression rate and depth in a wide range of conditions. TI, in contrast, can be

used to accurately compute chest compression rate, but not to identify too shallow chest

compressions. The development of simpler feedback devices could contribute to their wide-

spread use and to increase the CPR quality.
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