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Abstract

CVD-diamond coatings were posttreated by plasma oxidation to recycle an original WC 
(Co) mother tool substrate for recoating and reuse. A developed RF/DC plasma oxidation 
system was stated together with a hollow cathode device to intensify the oxygen ion and 
electron densities and with a quantitative plasma diagnosis equipment. Plasma oxidation 
ashing conditions were optimized by this quantitative diagnosis toward the perfect ash-
ing of diamond films with less residuals and less tool edge damage. Geometric effect of 
tool teeth structure on this ashing process was discussed by in situ monitoring of plasmas. 
Engineering solution of this ashing process was proposed for industrial applications.

Keywords: plasma oxidation, CVD-diamond coating, ashing, hollow cathode device, 
quantitative plasma diagnosis

1. Introduction

CVD-diamond coatings as well as poly-crystalline diamonds have been widely utilized for 
the protection of dies and tools from wear and damage in cutting, drilling, and piercing 
operations in practice [1]. They are also expected to be working as a semi-conductive and 
thermal-conductive substrate for micro-electro-mechanical system (MEMS) and Bio-MEMS 
[2]. In parallel with high qualification in CVD-diamond coating technologies, how to make 
accurate shaping, micro−/nano-texturing, polishing and finishing of diamond films also 
becomes an engineering issue [3].

In the literature of patents to search for qualification in ashing the used diamond coatings, many 
studies have been developed to efficiently remove the diamond films from WC (Co) (Tungsten 
Carbide with Cobalt binder) and silicon substrates. Among them, three ashing processes were 
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noticed; the laser machining [4], the ion-beam and plasma discharging [5], and the reactive 
etching method [6]. The former two methods are difficult to be applied to tools with complex 
shaped teeth. Residuals of diamond were left on the treated tool surface. WC (Co) substrate 
suffered from severe thermal and chemical transients. Plasma oxidation method [7] has grown 

up as one of the most promising approaches to ashing. The CVD-diamond films are physically 
or chemically removed by ion bombardment and/or plasma-driven chemical reactions. These 
plasma ashing processes encounter some severe practical difficulties: (1) imperfect ashing of 
diamond films, (2) long leading time, (3) residual diamond films, especially behind the cut-
ting teeth, (4) overoxidation of WC (Co) substrate, and (5) damage at cutting tooth edges. The 
used carbon-base coatings were removed from substrates by nontraditional plasma oxidation 
method for industrial application [8–11]. In this chapter, RF/DC plasma oxidation system with 
hollow cathode devices is introduced as an effective ashing method. Plasma oxidation process-

ing for posttreatment of diamond films is stated with comments on its fundamental features and 
application to industries. Quantitative plasma diagnosis is utilized to characterize the oxygen 
plasmas and to describe the ashing process. Two types of CVD-diamond-coated cutting tools are 
employed as a specimen to demonstrate the effectiveness of present plasma oxidation ashing.

2. Plasma oxidation processing

The glow discharging process is utilized to ignite the oxygen plasmas by the application of 
radio-frequency (RF) power and direct current (DC) bias. This oxygen plasma density is effec-

tively intensified by using the hollow cathode devices. Emissive light optical spectroscopy 
(EOS) as well as the Langmuir probe are utilized to quantitatively characterize the oxygen 
plasma state and to describe the reaction process during oxidation. CVD-diamond-coated 
tools are prepared for ashing treatments.

2.1. RF/DC plasma oxidation system

Different from the conventional DC- or RF-plasma generators, where plasmas are ignited and 
generated in the frequency of 13.56 MHz or its multiples, the present RF/DC oxygen plasmas 
are ignited at 2 MHz without use of matching box, as shown in Figure 1.

This frequency is automatically adjusted to keep matching between input and out powers 
around 2 MHz [7, 12–13]. This automatic and prompt response in power matching stabilizes 
the temporally varying plasma state. As reported in [7], a longer response time in the order of 
1–10 s is needed for the mechanical matching box to adjust the RF-power. The present oxygen 
plasma state for ashing process is controlled within 1 ms in response; there is no time delay in 
power control. The vacuum chamber is electrically neutral without a self-biased current. Both 
the RF-voltage and DC-bias are controlled independently from each other to be from 0 to 250 V, 
and, from 0 to 600 V, respectively. This RF-plasma is ignited and controlled by using a dipole 
electrode, while the DC bias is directly applied to the specimens. In the following ashing experi-
ments, the specimens were located on the cathode table before evacuation down to the base 
pressure. Then, a carrier gas was introduced into the chamber to attain the specified pressure. 
Both oxygen and argon gases were available in this system besides the nitrogen gas for bent.
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2.2. Plasma oxidation diagnosis

EOS (Hamamatsu Photonics, Co., Ltd., Japan) is first utilized for diagnosis on the oxygen 
plasmas, as shown in Figure 2. The emissive light from plasmas is detected through a silica 
window of chamber to send the signals to the analyzer via the optical fibers. This spectro-

scopic analysis is also useful to make on-line monitoring on plasma state in ashing. Each 
activated species in the plasma is identified by its corresponding peak at the specified wave 
length in the measured spectrum. Figure 2 also illustrates the Langmuir probe, equipped to 
the present ashing system. Both the ion/electron density and electron temperature are mea-

sured for optimization of ashing process. With this information of density and temperature 

Figure 1. High density RF-DC oxygen plasma etching system. ① vacuum chamber, ② RF-generator, ③ control panel, ④ 

RF- and DC-power supplies, ⑤ evacuation units, and ⑥ carrier gas supply.

Figure 2. Quantitative plasma diagnosis to measure the electron density and temperature as well as the spectrum of 
activated species in plasmas.
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both for electrons, ions and radicals, the plasma state in processing are precisely defined and 
described to investigate the effect of plasma processing parameters on the ashing behavior.

Let us first explain the experimental set-up for EOS and measure the typical spectra in the 
function of oxygen gas pressure [14]. Figure 3 shows an experimental set-up to make EOS. The 
whole window was covered by a pure aluminum sheet to be free from noises. The measuring 
point can be varied by focusing; the plasma state at the focused point in the chamber is in situ 
measured during oxidation process.

When RF voltage was 250 V and DC-bias, −500 V, the emissive light optical spectra were 
measured in the function of gas pressure. As shown in Figure 4, the oxygen molecular ion 
O

2
+ as well as the oxygen ion (OII or O+) has the highest peak at 774 and 470 nm, respectively.

The intensity of oxygen ions (OI or O*; OII or O+; OIII or O2+) and O
2

+ reduced with increasing 
the gas pressure in Figure 4. This is because the reaction cross-section significantly reduces for 
electron detachment from oxygen molecules.

The Langmuir probe is employed to measure the electron and ion densities as well as the elec-

tron temperature. The experimental set-up for I-V curve measurement in the RF/DC plasmas 
is depicted in Figure 5. The accuracy in measurement strongly depends on the tip geometry 
and resistivity; e.g., the tip radius is 350 μm, the tip holder, 3 mm, the probe tip length, 1 cm, 
and, the tip resistance, 36 Ohm, as shown in Figure 5(b).

The measured I-V curve is nearly constant but abruptly changes at the vicinity of plasma poten-

tial. This I-V curve is deconvoluted to deduce each contribution of ions and electrons to measured 
current density. Each I-V curve for ion and electron is differentiated to calculate its first and sec-

ond derivatives across the plasma potential; the electron and ion density as well as the electron 
temperature are deduced from this direct calculation. Figure 6 depicts the variation of measured 
ion density with the oxygen gas pressure when the DC bias was −600 V. Reduction of ion density 

Figure 3. An experimental set-up for plasma diagnosis by EOS.
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was only measured in the range of 150–175 Pa; ion density monotonically increases with the pres-

sure when DC bias was more than −500 V. Ionization is activated with increasing the pressure 
because of collision of electrons with oxygen molecules. Finally, the present RF/DC plasma char-

acteristics is compared with the ICP (Induction-Coupled Plasma) where a cylindrical tube with 
diameter 40 mm and a length of 600 mm was used to ignite the plasmas. At the pressure of 75 Pa, 
the electron density (Ne) reaches to 4.8 × 1016 m−3 with the electron temperature (Te) of 3.9 eV in 

Figure 4. Measured emissive light optical spectra in the function of gas pressure for a standard RF/DC plasma under 
[250 V; −500 V].

Figure 5. Experimental set-up for measurement of ion and electron densities as well as electron temperature at the 
specified position in the RF/DC plasmas by using the Langmuir probe.

Controlled Post-treatment of Thick CVD-Diamond Coatings by High-Density Plasma Oxidation
http://dx.doi.org/10.5772/intechopen.79143

79



the present system. When using ICP, Ne = 1.0 × 1016 m−3 and Te = 5.0 eV in [15]. Higher electron 
density by five times can be attained even at the center of large chamber in Figures 1 and 5(b).

2.3. High-density plasma oxidation

Various tools and devices are available to intensity ion and electron densities in the plasmas. 
A magnetism works as a lens to concentrate the ions in the magnetic field [16, 17]; ion density 
increases with increasing the magnetic field strength. Electric insulation is also effective to 
separate the plasmas into the specified spaces [18]. In this study on the plasma oxidation, a 
hollow cathode device [19] is selected and redesigned to confine the oxygen plasmas in the 
hollow and to intensity their ion and electron densities. The quantitative plasma diagnosis in 
2.2 is also utilized to describe how much the oxygen ion and electron densities are enhanced 
by the hollow cathode device.

Variation of the electron and oxygen ion densities with pressure is compared in Figure 7 

without and with use of the hollow cathode. At the pressure of 75 Pa, N
i
 = 7.8 × 1016 m−3 in 

Figure 7(a); this N
i
 is enhanced to be 5 × 1017 m−3 when using the hollow cathode device in 

Figure 7(b). In the following, this hollow cathode device is redesigned to make effective ash-

ing of diamond films coated on the cutting and end-milling tools.

2.4. Observation and measurement

High resolution optical microscopy as well as scanning electron microscopy (SEM) are uti-
lized to observe the ashed surfaces of diamond-coated specimens. Raman spectroscopy is also 
used to detect a characteristic peak to the diamond.

Figure 6. Variation of the measured ion density with the gas pressure by the Langmuir probe.
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3. Plasma oxidation ashing of used diamond films

Plasma oxidation ashing process is employed to make perfect removal of used diamond films, 
coated onto the WC (Co) cutting tools, with minimum damage to tool teeth and to recycle 
the mother WC (Co) substrate for recoating and reuse. As an engineering issue, no residuals 
of diamond films are left on the WC (Co) substrate, less damage is induced during ashing 
process, and, this ashing must be done in short duration.

3.1. Background

CVD-diamond-coated WC (Co) cutting, drilling, and end-milling tools have been widely uti-
lized for dry machining of the carbon fiber–reinforced plastic (CFRP) or Carbon fiber–reinforced 
thermoplastic (CFRTP) components and parts in the airplanes and automobiles [20, 21]. These 
materials are used for main cabin and wings; a hundred thousand holes must be machined 
or drilled into these CFRP/CFRTP structural members for each airplane in dry by using the 
diamond-coated tools. Since the number of airplanes is expected to be doubled in next 8 years, 
the above tooling cost percentage significantly increases in the total production cost. Event at 
present, the carbon fibers in CFRP/CFRTP have high strength and stiffness enough to make 
fatal damage and defect to the diamond coating of machining tools. Since an equivalent num-

ber of holes to be machined are estimated to be 100,000 per an airplane, the production cost, 
especially the tooling cost, increases with demanded numbers of planes or cars. Those new 
materials are too hard to machine or drill without damages to CVD-diamond-coated WC (Co) 
tools; the used tool is exchanged with new one in every machining by 10 m, or in every drilling 
by 10 holes [22]. How to recycle the WC (Co) substrate is essential to reduce the cost.

These used or damaged diamond coatings must be once removed to recycle the WC (Co) tool 
substrate with less damages to its tooth geometry before recoating and to reuse this in cut-
ting operations. RF/DC plasma oxidation process was demonstrated to be useful for perfect 

Figure 7. Comparison of the ion and electron density variation with pressure with and without use of the hollow cathode 
device. (a) RF-DC plasmas in Figure 1 without use of the hollow cathode, and, (b) with use of the hollow cathode.
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removal of used tetragonal amorphous carbon coating or t-a:C coatings and for recycle of 
WC (Co) cutting substrate [23–25]. The recoated WC (Co) tools were proven to have the same 
capability in cutting performance as the virgin tools [24, 25]. This plasma oxidation process is 
further advanced to remove the used diamond coatings for recycle and reuse and to reduce 
the production cost in machining of CFRP/CFRTP members [26–28].

3.2. Preparation of diamond-coated tools

The diamond-coated WC (Co) end-milling tools were prepared for ashing experiments. As 
shown in Figure 8, two types of tools were employed to investigate the effect of tooth geom-

etry on the plasma ashing process. The tool with the length of 70 mm, the diameter of 10 mm, 
and the edge skew angle of 30° was used as a standard specimen to search for an optimum 
ashing condition. A small-sized tool with the length of 70 mm, the diameter of 6 mm, and the 
edge skew angle of 10° was also used to investigate whether the optimal ashing condition is 
affected by down-sizing. The diamond film thickness was common in both tools by 15 μm.

3.3. Experimental set-up

An end-milling tool has skewed tooth geometry; diamond films are coated even on the curved 
surfaces backward the teeth. A special hollow cathode is designed to preserve the confined 
plasma in the hollow against the rotating tools. Figure 9 depicts the developed hollow cath-

ode device for ashing.

The generated RF-plasma is confined in this hollow so that higher ion and electron densities 
are attained for ashing the diamond films. As shown in Figure 9(a), a diamond-coated tool is 
placed in the center of hollow tube; the same DC-bias is applied to both the hollow and the 
tool. Although the rotating speed has influence on the plasma configuration, it is selected to 
be 6 rpm in the following experiments.

A standard experimental set up is summarized as follows. After placing the specimen in 
Figure 9(b), the chamber is evacuated down to the base pressure, less than 5 × 10−3 Pa. The pure 
oxygen gas with its purity of 99.99% is introduced as a carrier gas. RF- and DC- bias voltages 

Figure 8. Two diamond-coated end-milling tools as a specimen for plasma ashing process.
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are variable from 100 to 250 V and from −400 to −800 V, respectively. The plasma pressure (p) 
is marginable to be determined; in the following, 25 < p < 100 Pa. The plasma oxidation condi-
tions are optimized by the quantitative plasma diagnosis to be 100 V for RF-voltage, −500 V 
for DC-bias, 45 Pa for pressure and 3.6 ks for duration time.

3.4. Experimental results

A standard specimen is first employed to investigate the effect of plasma processing param-

eters on the ashing behavior. Under the optimal conditions, the small-scaled tool specimen 
is also used to describe the geometric effect of tool teeth on the ashing process. Difference in 
ashing process conditions is explained by the in situ plasma diagnosis.

3.4.1. Standard end-milling tools

Both RF-voltage and pressure are varied to describe the plasma ashing process. In the first 
experiment, RF-voltage was set to be 250 V, DC-bias, −650 V and oxygen gas pressure, 30 Pa. 
Figure 10 shows the ashed specimen for 3.6 ks.

Since cobalt in WC (Co) is mainly oxidized, the tool surface is colored in green in Figure 10(a). 
No residual diamond debris are left on the tool surface in Figure 10(b). Due to this excess in 
oxidation, the shrinkage of tool edge reaches to 7.7 μm in Figure 10(c). In order to reduce the 
oxidation rate, the above processing parameters are tuned to be (250 V; −500 V; 45 Pa; 3.6 ks). 
Figure 11 depicts the surface condition and SEM image of ashed specimen.

The surface is colored in reddish yellow in Figure 11(a); this implies that a part of tung-
sten in WC (Co) is mainly oxidized even under this condition. Almost all the diamond films 
are removed on the tool surface in Figure 11(b). This over-oxidation results in a significant 
shrinkage of edge by 9.7 μm in Figure 11(c). To be discussed in later, the activated oxygen 
atom density must be directly controlled by lowering the RF-voltage.

Figure 12(a) depicts the ashed tool surface by lowering the RF-voltage down to 100 V. No oxide 
layers of cobalt and tungsten are seen on the WC (Co) substrate surface. The original diamond 

Figure 9. Special hollow cathode device for ashing the diamond films on the WC (Co) end-milling tool substrate. (a) 
Illustration of hollow cathode device, and, (b) experimental set-up for ashing.
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Figure 11. Ashing of CVD-diamond coating on the WC (Co) standard specimen under (250 V; −-500 V; 45 Pa; 3.6 ks). (a) 
Surface of ashed specimen before cleansing, (b) Ashed tool edge, (c) SEM image of tool edge.

coatings are completely removed only after ashing for 3.6 ks, as shown in Figure 12(b). The 
shrinkage of tool edge is limited by 1.1 μm in Figure 12(c). Fine SEM observation and the 
Raman spectroscopy are utilized to precisely describe this ashing process. Figure 13 compares 

the top view in SEM image for the WC (Co) tool surface before and after ashing under this 
optimal condition of (100 V; −-500 V; 45 Pa; 3.6 ks).

The original tetrahedral diamond crystals with significant roughness in Figure 13(a) are com-

pletely removed to leave a flat WC (Co) surface with micro-pores among WC grains. These 

Figure 10. Ashing of CVD-diamond coating on the WC (Co) standard specimen under (250 V; −650 V; 30 Pa; 3.6 ks). (a) 
Surface of ashed specimen before cleansing, (b) Ashed tool edge, (c) SEM image of tool edge.
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micro-pores are accommodated as a nucleation site for diamonds by selective removing the 
cobalt binders before CVD-coating. Hence, this microstructure in Figure 13(b) proves that 
starting WC (Co) substrate surface before coating is reproduced by the present ashing pro-

cess. The Raman spectroscopy is also utilized to precisely check whether a residual debris of 
diamond is left on the ashed tool surface. Figure 14 compares the Raman spectra before and 
after ashing. The presence of diamond film is identified by the Raman peak around 1330 cm−1 

as shown in Figure 14. No peaks are detected at the vicinity of 1330 cm−1 in Figure 14 after 
ashing; no diamond residuals are left on the tool surface after ashing.

3.4.2. Small-scaled end-milling tools

The small sized tools, as shown in Figure 8, were posttreated by plasma oxidation under the 
optimum condition in the above, or, (100 V; −500 V; 45 Pa; 3.6 ks). High resolution optical 

Figure 12. Ashing of CVD-diamond coating on the WC (Co) standard specimen under (100 V; −500 V; 45 Pa; 3.6 ks). (a) 
Surface of ashed specimen before cleansing, (b) Ashed tool edge, (c) SEM image of tool edge.

Figure 13. Comparison of microstructure on the diamond-coated tool surface before and after ashing under (100 V; 
−500 V; 45 Pa; 3.6 ks). (a) before ashing, and, (b) after ashing.
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Figure 15. Ashing of CVD-diamond coating on the WC (Co) small-scaled specimen under (250 V; −500 V; 45 Pa; 3.6 ks). 
(a) Surface of ashed specimen before cleansing, (b) Ashed tool edge, (c) SEM image of tool edge.

microscopy and SEM are also utilized to make close observation on the ashed surfaces of 
small sized tools. As shown in Figure 15(a), the outlook color of ashed tooth surfaces is gray 
in the similar manner to Figure 12(a). Figure 15(b) shows the top tooth surfaces of ashed tools. 
No diamond films are left on the surfaces. These prove that most of diamond films coated on 
the small sized tools are also homogeneously removed just in correspondence to Figure 12(b) 

for the standard tool. After close observation on the whole tooth surfaces by SEM, a cold spot 
with the residual diamonds was detected on the rake face or the gash of tools. A typical SEM 
image is shown in Figure 15(c). The diamond films at the upper edge and on the left-hand 

Figure 14. Comparison of the Raman spectra for the diamond-coated tool surface before and after ashing under (100 V; 
−500 V; 45 Pa; 3.6 ks).
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surface are almost completely ashed away; the diamond residuals are left as a dendritic col-
umn with the average diameter of 5–10 μm.

This difference in ashing behavior between two specimens comes from the optimality in oxy-

gen plasma sheath distribution surrounding the tool surface. The plasma diagnosis is also 
employed to describe this effect of the plasma state on the ashing behavior.

3.4.3. In situ plasma diagnosis

EOS works to monitor the temporal variation of oxygen plasma state during the ashing pro-

cess. Since the carbon in diamond reacts with oxygen atom, a peak for resultant of CO by the 
reaction, C (in diamond) + O (from O* and O+

 in palsmas) -> CO, is detected by EOS together 
with oxygen-related peaks. Hence, in this in situ EOS-diagnosis, oxygen peak at 470 nm and 
CO-peak at 288 nm are monitored to describe the plasma reaction for ashing.

Figure 16 depicts a time evolution of measured O- and CO-peak intensities by this in situ 
EOS. O-peak intensity is constant during ashing process; a constant oxygen atom flux is sup-

plied to hot spots of plasma reaction. CO-peak intensity is enhanced in the early stage in 
ashing; it exponentially decays from t = 1000 s to be lower level and nearly minimum for 
t = 4000 s. This implies that homogeneous ashing process retards by itself with a constant 
time exponent. Hence, this exponential decay of CO-peak intensity with time proves that the 
diamond coating is homogeneously ashed away.

This time transient of CO-peak intensity is employed to describe the difference in ashing 
behavior between two diamond-coated tools. When using the standard tool, two CO-peak 
intensities, monitored at λ = 287 and 312 nm, exponentially decrease with time as shown in 
Figure 17(a). Just as seen in Figure 16, the diamond film is expected to be homogeneously 
ashed away from this in situ diagnosis. This homogeneous ashing has been proven by pre-

cise observation on the posttreated tool surfaces as shown in Figures 12–14. On the other 

Figure 16. Temporal evolution of O- and CO-peak intensities, measured by the in situ EOS.
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Figure 17. Time transients of CO-peak intensities at λ = 287 and 312 nm by the EOS in situ monitoring during ashing 
process.

hand, when using the small-sized tool, this time transient changes by itself as depicted in 
Figure 17(b). The up-and-down deviation of CO-peak intensity reveals that ashing reaction 
localizes in hot spot at one surface but in cold spot at other surfaces. This heterogeneous ash-
ing process results in a residual diamond film at the cold spots such as a small part on the rake 
edges of tools as shown in Figure 15(c).

3.5. Summary

A diamond film coated onto a single WC (Co) tool substrate in a standard size was success-
fully ashed away without residuals and with much less damage at the tool tooth-edges. Due 
to this perfect ashing of diamond films, an original WC (Co) substrate surface was reproduced 
to have a decobalted WC (Co) microstructure. This posttreated surface is easy to be diamond-
recoated for reuse of tools. The duration time for this ashing is only 3.6 ks, much faster than 
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the commercial operation time by 20–30 hours experienced in several tooling companies. 
The whole ashing process can be in situ controlled by monitoring the CO-peak intensities 
at the specified wave length through EOS. A homogeneous, perfect ashing is guaranteed by 
an exponential decay of CO-peak intensity with time in this quantitative diagnosis. The tool 
teeth-edge geometry has significant effect on the formation of plasma sheaths on the tool 
surfaces. Inhomogeneous ashing can be also detected by the in situ plasma diagnosis; plasma 
oxidation conditions must be tailored for each tool geometry in practice.

4. Discussion

How to design this ashing process in practice and how to apply this posttreatment to indus-

tries are discussed in this session.

4.1. Plasma processing design

Theoretical plasma processing design is often needed to construct a new device to control a plasma 
configuration in chamber and to understand the experimental results [29]. Some studies have just 
started to build up this theoretical model. Among them, for an example, the Boltzmann equation 
was solved to obtain electron transport coefficients and rate coefficients for fluid models [30].

In the present study, a multi-disciplinary program is used to build up a theoretical model of 
plasma processing and to simulate the effect of pressure on the plasma density [11]. Although 
the basic data for activation process is still limited, one-dimensional model is proposed to 
describe the argon plasma state in the function of plasma parameters such as RF-voltage, 
DC-bias, and pressure. Figure 18(a) illustrates this one-dimensional model of argon plasma. 
Ionization of argon is expected to concentrate at the vicinity of tool surface in Figure 9. As 
depicted in Figure 18(b), a hot spot with high electron temperature or the plasma sheath is 
formed only at the vicinity of cathode table. Under this geometric configuration, the elec-

tron density distribution is calculated at each specified pressure. Figure 19 depicts a varia-

tion of electron density distribution with increasing the argon pressure. This enhancement 

Figure 18. One dimensional model of argon plasma by using the multi-disciplinary equations. (a) Theoretical model of 
argon plasma, and, (b) decay of calculated electron temperature.
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Figure 19. Enhancement of electron density distributions with increasing the argon pressure.

Figure 20. Down-sizing of an ashing unit for plasma oxidation of miniature parts and tools.

of electron density just near the cathode implies that electrons are activated in the plasma 
sheath. This theoretical model can be extended to describe the plasma oxidation process even 
by two dimensional model.

4.2. Down-sizing of plasma oxidation processing

Surface and interface area ratio to volume increases by down-sizing or miniaturing the dimensional 
size of products and elements. Surface or interface quality and functionality must be improved 
by surface- and interface -treatment and modification. The present plasma oxidation system has 
to be also down-sized to make plasma processing onto the surfaces and interfaces. Figure 20(a) 

illustrates a typical design of miniature plasma oxidation unit. RF-plasma is confined by using the 
RF-coils to form a plasma sheath around a small-sized tool above the insulator. The population of 
activated species in this plasma can be also controlled by the DC-bias. A shown in Figure 20(b), a 
small-sized tool is subjected to high intensity plasmas in the designated space [18, 31].
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4.3. Plasma oxidation processing for industries

A single diamond-coated WC (Co) tool can be ashed away without residuals and tool edge 
damage by using the present plasma ashing system in Figure 9. Most of tooling companies 
are demanded to deal with hundreds of used diamond-coated tools in a day per a processing 
machine. The above plasma oxidation ashing system must be modified to make several or tens 
of works simultaneously even by using a single machine. The present system in Figures 1 and 

9 with use of the hollow cathode device is extended in the design concept to make simultane-

ous plasma oxidation for two diamond-coated tools [31, 32]. Figure 21 depicts a developed 
simultaneous ashing system. The chamber is automatically opened for experimental set up of 
the diamond-coated tools, capped by the hollow cathode tubes.

An inserted photo in Figure 21 shows that a pair of diamond-coated tool capped with the hol-
low cathode is subjected to the plasma oxidation. Only the inside of two hollows shines white; 
outside of hollows are in black. This reveals that oxygen plasmas are simultaneously confined 
into two hollows with high density and that ion density is much very low outside the hollows. 
This generation of oxygen plasmas is not limited to two hollows but extended to multi-ashing 
process to deal with tens of used diamond-coated tools by a single shot.

5. Conclusion

High density plasma oxidation ashing provides an effective processing to remove the used dia-

mond films coated on the WC (Co) tool for recoating and reuse the mother tool substrate of WC 

Figure 21. Simultaneous ashing system of two diamond-coated cutting tools toward industrial demonstration.
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(Co). Different from the conventional plasma ashing processes in commercial, the diamond films 
are removed away without residuals even on the backsides of tool teeth and with less loss of teeth 
edges. In particular, the shrinkage in the tooth edge is more reduced down to 1.1 μm under the 
optimum ashing conditions than 5 μm in the commercial processes. In addition, the original micro-

structure with decobalted WC grains is reproduced by the present method to improve the engi-
neering compatibility for nucleation and growth of diamond layers during the recoating process.

The emissive light optical spectroscopy as well as the Langmuir probe, equipped with the 
present system, work as a sensing medium to make quantitative diagnosis on the oxygen 
plasma state for optimization and to make in situ monitoring on the plasma oxidation reac-

tion during the ashing process.

There might be several steps to extend this technology toward industrial applications. The carbon-
base films including the diamond films are often utilized as a substrate of MEMS and miniature 
media; the small-scaled plasma ashing device is expected to work as a cutting and drilling tool 
to reshape that substrate and to modify its surface and interface. A miniatured oxygen plasma 
generator is just on the research to make demonstration tests. In practical operations of ashing 
processes in tooling industries, a stack of used diamond coated WC (Co) tools is processed by 
100–1000 per a day. Considering that the tact time for present ashing is only 3.6 ks or 1 hour, tens 
of tools must be posttreated. The simultaneous plasma oxidation treatment is expected to be a 
candidate processing to make ashing of used diamond-coated tools in the industrial scale.

With aid of the theoretical model and simulation, the present plasma oxidation process can be 
extended to etching, polishing and finishing of various carbon base films, substrates and solid 
products by using the tailored devices to each application.
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