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Abstract

The main purpose of this chapter is to propose a novel boundary element
modeling and simulation algorithm for solving fractional bio-thermomechanical
problems in anisotropic soft tissues. The governing equations are studied on the
basis of the thermal wave model of bio-heat transfer (TWMBT) and Biot’s theory.
These governing equations are solved using the boundary element method (BEM),
which is a flexible and effective approach since it deals with more complex shapes
of soft tissues and does not need the internal domain to be discretized, also, it has
low RAM and CPU usage. The transpose-free quasi-minimal residual (TFQMR)
solver are implemented with a dual-threshold incomplete LU factorization tech-
nique (ILUT) preconditioner to solve the linear systems arising from BEM.
Numerical findings are depicted graphically to illustrate the influence of fractional
order parameter on the problem variables and confirm the validity, efficiency and
accuracy of the proposed BEM technique.

Keywords: boundary element method, modeling and simulation algorithm,
bio-heat transfer, fractional bio-thermomechanical problems, anisotropic soft
tissues

1. Introduction

Human body is a complex thermal system, Arsene d’Arsonval and Claude Ber-
nard have shown that the temperature difference between arterial blood and venous
blood is due to oxygenation of blood [1]. A large number of research papers in bio-
heat transfer over the past few decades have focused on an understanding of the
impact of blood flow on the temperature distribution within living tissues. Pennes
[2] was the first attempt to explain the temperature distribution in human tissue
with blood flow effect. The improvement of numerical models for determination of
temperature distribution in living tissues has been a topic of interest for numerous
researchers. Askarizadeh and Ahmadikia [3] introduced analytical solutions for the
transient Fourier and non-Fourier bio-heat transfer equations. Li et al. [4] studied
the bio-thermomechanical interactions within the human skin in the context of
generalized thermoelasticity.
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Analytical solutions for the current problem [5, 6] are very difficult to obtain, so
numerical methods have become the main way for solving these problems [7–10].
The boundary element method (BEM) [11–21] is one of the numerical methods used
to solve the current general problem [22–31]. Generally, Laplace-domain funda-
mental solutions are easier to obtain than time-domain fundamental solutions for
engineering and scientific problems [32, 33]. consequently, the BEM is very helpful
for problems that did not have time-domain fundamental solutions, because it
requires the Laplace-domain fundamental solutions of the problem’s governing
equations. So, BEM expands the range of engineering problems that can be solved
with the classical time-domain BEM.

The main aim of this chapter is to propose a new boundary element fractional
model for describing the bio-thermomechanical properties of anisotropic soft tis-
sues. The dual reciprocity boundary element method has been used to solve the
TWMBT for obtaining the temperature distribution, and then the BEM has been
used to obtain the displacement and stress at each time step. The linear systems
from BEM were solved by the TFQMR solver with the ILUT preconditioner which
reduces the number of iterations and the total CPU time.

A brief summary of the chapter is as follows: Section 1 introduces the back-
ground and provides the readers with the necessary information to books and
articles for a better understanding of bio-thermomechanical problems in anisotropic
soft tissues Section 2 describes the BEM modeling of the bio-thermomechanical
interactions and introduces the partial differential equations that govern its related
problems. Section 3 outlines the dual reciprocity boundary element method
(DRBEM) for temperature field. Section 4 discusses the convolution quadrature
boundary element method (CQBEM) for poro-elastic field. Section 5 presents the
new numerical results that describe the bio-thermomechanical problems in aniso-
tropic soft tissues.

2. Formulation of the problem

Consider an anisotropic soft tissue in the Cartesian coordinate system Ox1x2x3 as

shown in Figure 1. It occupies the region Ω ¼ x1, x2, x3ð Þ : 0< x1 < α, 0< x2 < β, 0< x3 < γ

n o

with boundary Γ that is subdivided into two non-intersective parts ΓD and ΓN .

Figure 1.
Geometry of the current problem.
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The governing equations which model the fractional bio-thermomechanical
problems in anisotropic soft tissues can be written as follows [34, 35].

∇Tσ
� �T

þ F ¼ ρ€uþ ϕρ f €u f � €u
� �

(1)

_ζ þ ∇Tq ¼ 0 (2)

σ ¼ Cailg tr∈ � Ap
� �

I �Bθ, (3)

∈ ¼
1

2
∇uT þ ∇uT

� �T
� �

(4)

ζ ¼ A tr∈ þ
ϕ2

R
P (5)

where the fluid was modeled by the following Darcy’s law [36].

q ¼ �K ∇pþ ρ f €uþ
ρa þ ϕρ f

ϕ
€u f � €u
� �

� �

(6)

The fractional order equationwhich describes the TWMBT can be expressed as [37].

∇K∇T r, τð Þ þWbCb Tb � Tð Þ þ Qmet þQ ext þ
τ

α!
�WbCbD

α
τT þDα

τQmet þDα
τQext

� �

¼ ρC
τ

α!
Dαþ1

τ T þ
∂T

∂τ

� 	

, 0< α≤ 1

(7)

where σ, ∈ , Cajlg, ρ ¼ ρs 1� ϕð Þ þ ϕρ f , ρs, ρ f , u, u f , FF and qq are total stress

tensor, linear strain tensor, constant elastic moduli, bulk density, solid density, fluid
density, solid displacement, fluid displacement, bulk body forces and specific flux
of the fluid, respectively,B are stress-temperature coefficients, tr denotes the trace,
A ¼ ϕ 1þQ=Rð Þ is Biot’s coefficient, Q and R are the solid–fluid coupling parame-
ters, p is the fluid pressure in the vasculature, ζ is the fluid volume variation

measured in unit reference volume, ϕ ¼ V f

V is the porosity, V f is the fluid volume,

V ¼ V f þ Vs is the bulk volume, V s is the solid volume, τ is the time, K is the
permeability, ρa ¼ ϕρ f where  ¼ 0:66 at low frequency [38], K is the soft tissue

thermal conductivity, Wb is the blood perfusion rate, Cb is the blood specific heat,
Tb is the arterial blood temperature, T is the soft tissue temperature, τ is the thermal
relaxation time ρ is the soft tissue density, C is the soft tissue specific heat, Qmet is
the metabolic heat generation and Q ext is the external heat generation.

According to Bonnet [39], our problem can be expressed as amatrix system as [40].

B̂~xû
g
~xð Þ ¼ 0 for ~x∈Ω

ûg xð Þ ¼ ĝD for x∈ΓD

t̂
g
xð Þ ¼ ĝN for x∈ΓN

9

>

=

>

;

(8)

where

B̂~x ¼

Be
~x þ s2 ρ� βρ f

� �

I α� βð Þ∇~x �B∇~x

s α� βð Þ∇T
~x �

β

sρ f

Δ~x þ
sϕ2

R
0

2

6

6

4

3

7

7

5

(9)
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t̂
g
xð Þ ¼

Te
x �αnx 0

sβnTx
β

sρ f

nTx∇x 0

2

6

4

3

7

5

û xð Þ

p̂ xð Þ

θ xð Þ

2

6

4

3

7

5
, β ¼

ϕ2sKρ f

ϕ2 þ sK ρa þ ϕρ f

� � (10)

3. Boundary element implementation for bioheat transfer field

Through this chapter, we supposed that Qmet and Tb are constants and θ r, τð Þ ¼
T r, τð Þ � T r, 0ð Þ. Thus, Eq. (7) can be written as

ρC
τ

α!
Dαþ1

τ θ þ ρC
∂θ

∂τ
þ

τ

α!
WbCbD

α
τ θ þWbCbθ ¼ K

∂
2θ

∂x2
þ q, 0< α≤ 1 (11)

According to finite difference scheme of Caputo [22] and using the fundamental
solution of difference equation resulting from fractional bio-heat Eq. (11) [41], we
can write the following dual reciprocity boundary integral equation

Ciθi þ

ð

Γ

q ∗ θdΓ�

ð

Γ

θ ∗ qdΓ ¼
X

NþL

j¼1

α j C jθ̂ij þ

ð

Γ

q ∗ θ̂ jdΓ�

ð

Γ

θ ∗ q̂ jdΓ

� �

(12)

in which

Ci ¼
γ

2π
, q ¼

∂θ

∂n
, q ∗ ¼

∂θ ∗

∂n
, θ ∗ ¼ ln

1

r

� �

(13)

where n is the outward unit normal vector to boundary Γ, r is the distance
between source point i and considered point j, N is the number of boundary nodes
and L is the number of internal nodes.

where

α ¼ 
�1~f ¼ 

�1
~a
∂
2θ

∂τ2
þ ~b

∂θ

∂τ
þ ~cθ þ ~d

� �

(14)

The discretization process for Eq. (12) leads to

Ciθi þ
X

N

k¼1

ð

Γk

q ∗ θdΓ�
X

N

k¼1

ð

Γk

θ ∗ qdΓ

¼
X

NþL

j¼1

αj Ciθ̂ij þ
X

N

k¼1

ð

Γk

Zikθ̂kjdΓ�
X

N

k¼1

ð

Γk

Gikq̂kjdΓ

 ! (15)

After interpolation and integration processes over boundary elements, Eq. (15)
can be expressed as

Ciθi þ
X

N

k¼1

Zikθk �
X

N

k¼1

Gikqk ¼
X

NþL

j¼1

αj Ciθ̂ij þ
X

N

k¼1

Zikθ̂kj �
X

N

k¼1

Gikq̂kj

 !

(16)

The matrix form of Eq. (16) can be written using (14) as

Zθ � Gq ¼ ZΘ̂� GQ̂
� �


�1

~a
∂
2θ

∂τ2
þ ~b

∂θ

∂τ
þ ~cθ þ ~d

� �

(17)

4

Recent Developments in the Solution of Nonlinear Differential Equations



which also can be written

X ~a
∂
2θ

∂τ2
þ ~b

∂θ

∂τ
þ ~cθ þ ~d

� �

þ Zθ ¼ Gq (18)

where

X ¼ ZΘ̂�GQ̂
� �


�1

The boundary and initial conditions

θ x, y; τð Þ ¼ 0 (19)

∂θ x, y; 0ð Þ

∂τ
¼ ϑ x, y; 0ð Þ ¼ 0 (20)

θ x, y; 0ð Þ ¼
1∘C �0:02≤ x, y≤0:02

0 other x, y




(21)

The time discretization has been performed as follows

q ¼ 1� θq
� �

qm þ θqq
mþ1 (22)

θ ¼ 1� θuð Þθm þ θuθ
mþ1 (23)

∂θ

∂τ
¼

1

Δτ
θmþ1 � θm
� �

(24)

∂
2θ

∂τ2
¼

1

Δτ2
θmþ1 þ θm�1 � 2θm
� �

(25)

Substituting from Eqs. (22)–(25) into (20), we obtain

X~a

Δτ2
þ
X~b

Δτ
þ X~cθu þ θuZ

 !

θmþ1 � θqGq
mþ1 þ X~d

¼
2X~a

Δτ2
þ
X~b

Δτ
� X~c 1� θuð Þ � Z 1� θuð Þ

 !

θm �
X~a

Δτ2
θm�1 þ 1� θq

� �

Gqm

(26)

Thus, with the temperature θ determined, the remaining task is to solve the
problem (8).

4. Boundary element implementation for the poro-elastic fields

The representation formula of (8) that describes the unknown field ûg can be
written as

ûg ~xð Þ ¼ V̂t̂
g

� �

Ω
~xð Þ � K̂û

g
� �

Ω
~xð Þ for ~x∈Ω (27)

where

V̂t̂
g

� �

Ω
~xð Þ ¼

ð

�

Γ

Û
T
y� ~xð Þ̂t

g
yð Þdsy (28)
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K̂û
g

� �

Ω
~xð Þ ¼

ð

�

Γ

T̂yÛ
� �T

y� ~xð Þûg yð Þdsy (29)

For anisotropic case, the Laplace domain fundamental solution Û rð Þ and the

corresponding traction T̂v can be expressed as [40].

Û rð Þ ¼
Û

s
rð Þ Û

f
rð Þ 0

P̂
s

� �T
rð Þ P̂

f
rð Þ 0

2

6

4

3

7

5
, T̂y ¼

Te
y sany 0

�βnTy
β

sρ f
nTy ∇ 0

2

6

4

3

7

5
with r≔ y� xj j

(30)

where the solid displacement fundamental solution Û
s
rð Þ may be expressed as

Û
s
rð Þ ¼

1

4πr ρ� βρ f
� � 1

k24 � k22
� �

k21 � k22
� � e�k1r � 2

k24 � k21
� �

k21 � k22
� � e�k2r þ Ik23 � 3

� �

e�k3r

" #

(31)

with

 j ¼
3∇yr∇

T
y r� I

r2
þ k j

3∇yr∇
T
y r� I

r
þ k2j∇yr∇

T
y r (32)

which can be expressed as [36].

Û
s
rð Þ ¼

1

4πμr λþ 2μð Þ
λþ μð Þ∇yr∇

T
y rþ I λþ 3μð Þ

h i

þ O r0
� �

(33)

The fundamental solution of solid displacement Û
s
rð Þ can be dismantled into

singular Û
s

s rð Þ and regular Û
s

r rð Þ parts as

Û
s
rð Þ ¼ Û

s

s rð Þ þ Û
s

r rð Þ with r≔ y� xj j

¼
1

μ
IΔy �

λþ μ

λþ 2μ
∇y∇

T
y

� 	

Δyx̂ rð Þ

�
1

μ
k21 þ k22
� �

Δy � k21k
2
2

� �

I � k21 þ k22 � k24 �
k21k

2
2

k23

 !

∇y∇
T
y

" #

x̂ rð Þ

(34)

in which

x̂ rð Þ ¼
1

4πr

e�k1r

k22 � k21
� �

k23 � k21
� �þ

e�k2r

k22 � k21
� �

k22 � k23
� �þ

e�k3r

k21 � k23
� �

k22 � k23
� �

" #

¼ �
1

k21 � k22
� �

k21 � k23
� �

k23 � k22
� �þO r2

� �

(35)

The remaining parts of Û rð Þ as in (30) can be described as [36].
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Û
f
rð Þ ¼

ρ f α� βð Þ∇yr

4πrβ λþ 2μð Þ k21 � k22
� � k1 þ

1

r

� �

e�k1r � k2 þ
1

r

� �

e�k2r

� 	

¼ O r0
� �

(36)

P̂
s
rð Þ ¼

Û
f
rð Þ

s
¼ O r0

� �

(37)

P̂
f
rð Þ ¼

sρ f

4πrβ k21 � k22
� � k21 � k24

� �

e�k1r � k22 � k24
� �

e�k2r
� �

¼
sρ f

4πrβ
þ O r0

� �

(38)

On the basis of limiting process ~x∈Ω ! x∈Γ on (28) we get

lim
~x∈Ω!x∈Γ

V̂t̂
g

� �

Ω
~xð Þ ¼ V̂x̂

g
� �

xð Þ≔

ð

�

Γ

Û
T
y� xð Þ̂t

g
yð Þdsy (39)

According to limiting process ~x∈Ω ! x∈Γ on (28) we obtain [42].

lim
~x∈Ω!x∈Γ

K̂û
g

� �

Ω
~xð Þ ¼ �I xð Þ þ C xð Þ½ �ûg xð Þ þ K̂û

g
� �

xð Þ (40)

where

C xð Þ ¼ lim
ε!0

ð

�

y∈Ω: y�xj j¼ε

T̂yÛ
� �T

y� xð Þdsy (41)

and

K̂û
g

� �

xð Þ ¼ lim
ε!0

ð

�

y�xj j≥ ε

T̂yÛ
� �T

y� xð Þûg yð Þdsy (42)

By using (39)-(42), we can write

C xð Þûg xð Þ ¼ V̂t̂
g

� �

xð Þ � K̂û
g

� �

xð Þ (43)

By applying the inverse Laplace transform, we obtain

C xð Þug x, tð Þ ¼ V ∗ tgð Þ x, tð Þ � Kugð Þ x, tð Þ (44)

where ∗ is the time convolution.
According to [40], the fundamental solution is

T̂yÛ
� �T

¼

T̂
e

y sany

�βnTy
β

sρ
f
0

nTy ∇y

2

6

4

3

7

5

Û
s

Û
f

P̂
s

� �T
P̂

f

2

4

3

5

2

6

4

3

7

5

T

¼
T̂
s

T̂
f

Q̂
s

� �T
Q̂

f

2

4

3

5 (45)

On the basis of Stokes theorem, we obtain

ð

�

Γ

∇y � a, ny
� �

dsy ¼ �

ð

,

∂Γ

a, vð Þdγy ¼ �

ð

,

ϕ

a, vð Þdγy ¼ 0 (46)
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which can be expressed as

ð

�

Γ

ny � ∇y, a
� �

dsy ¼ 0 (47)

On the basis of [40], we get

ð

�

Γ

My a
� �

dsy ¼ 0 (48)

in which My ¼ ∇y∇
T
y

� �T
� ∇y∇

T
y .

By applying (48) to a formula a ¼ vu we obtain [43].

ð

�

Γ

My v
� �

udsy ¼ �

ð

,

Γ

v My u
� �

dsy (49)

ð

�

Γ

My v
� �T

udsy ¼ �

ð

�

Γ

vT My u
� �

dsy (50)

Making use of (34) and (45), we can express T̂
s
as

T̂
s

� �T
¼ Te

y Û
s

sin g þ Û
s

reg

� �� �T
þ sαP̂

s
nTy ¼ Te

yÛ
s

sin g

� �T
þO r0

� �

(51)

On the basis of [40], we obtain

T̂
s

� �T
¼ λþ 2μð Þny∇

T
y Û

s

sin g � μ ny � ∇y � Û
s

sin g

� �� �

þ 2μMyû
s
sin g þO r0

� �

(52)

which may be expressed using (34) as

T̂
s

� �T
¼ MyΔ

2
yX̂ þ I nT∇y

� �

Δ
2
yX̂ þ 2μ MyÛ

s

sin g

� �T
þ o r0
� �

(53)

By applying (29) (53), we obtain

k̂û
� �s

Ω

~xð Þ ¼

ð�

Γ

MyΔ
2
yX̂

� �

ûþ I nT∇y

� �

Δ
2
yX̂

� �

ûþ 2μ MyÛ
s

sin g

� �T
ûþ o r0

� �

û

� 	

dsy

(54)

Based on [42], we have

K̂û
� �s

Ω
~xð Þ ¼

ð

�

Γ

�Δ
2
yX̂ Myû
� �

þ I nT∇y

� �

Δ
2
yX̂

� �

ûþ 2μÛ
s

s Myû
� �

þ o r0
� �

û
h i

dsy (55)

In the in right-side of (55), we can write second term as follows

nT∇y

� �

Δ
2
y x̂ rð Þ ¼

nT∇yr

4πr2
þO r0

� �

(56)
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in which

Cs xð Þ ¼ I xð Þ c xð Þ with c xð Þ ¼
ϕ xð Þ

4π
(57)

According to [40], we can write

lim
Ω∈ ~x!x∈Γ

K̂û
� �s

Ω
~xð Þ ¼ �I xð Þ �1þ c xð Þ½ �û xð Þ þ K̂û

� �s
xð Þ (58)

By augmenting Û
s

s to Û
s
, we obtain

k̂û
� �s

Ω

~xð Þ ¼

ð

�

Γ

�Δ
2
y x̂ Myû
� �

þ I nT∇y

� �

Δ
2
y x̂

� �

ûþ 2μÛ
s
Myû
� �

þO r0
� �

ûdsy (59)

According to [41], we get

f ∗ gð Þ tð Þ ¼

ð

t

0

f t� τð Þg τð Þdτ for t∈ 0,T½ � (60)

where

f ∗ gð Þ tnð Þ≈
X

n

k¼0

ωΔt
n�k f̂
� �

g tkð Þ (61)

On the basis of Lubich [44, 45], the integration weights ωn are calculated using
Cauchy’s integral formula as

ωΔt
n�k f̂
� �

≔
1

2πi

ð

zj j¼R

f̂
γ zð Þ

Δt

� �

z� nþ1ð Þdz (62)

Polar coordinate transformation z ¼ Re �iφ is used with the trapezoidal rule to
approximate the integral (62) as

ωΔt
n f̂
� �

≈
R�1

Lþ 1

X

L

ℓ¼o

f̂ sℓð Þζℓn with ζ ¼ e
2πi
Lþ1 and sℓ ¼

γ Rζ�ℓ
� �

Δt
(63)

Substitution of Eq. (63) into Eq. (61), we get

f ∗ gð Þ tnð Þ≈
X

N

k¼0

R� n�kð Þ

N þ 1

X

N

ℓ¼0

f̂ sℓð Þζℓ n�kð Þg tkð Þ

≈
R�n

N þ 1

X

N

ℓ¼0

f̂ sℓð Þĝ sℓð Þζℓn

(64)

with

ĝ sℓð Þ ¼
X

N

k¼0

Rkg tkð Þζ�ℓk: (65)
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According to the procedure [43], the convolution operator (44) can be
expressed as

C xð Þug x, tð Þ ¼ v ∗ tgð Þ x, tð Þ � k ∗ ugð Þ x, tð Þ (66)

which may be written as

C xð Þûg x, sℓð Þ ¼ v̂̂t
g� �

x, sℓð Þ � k̂û
g

� �

x, sℓð Þ, ℓ ¼ 0… … ::N (67)

Let the boundary Γ is discretized into Ne boundary elements τe as follows

Γ ≈Γh ¼ ⋃
Ne

e¼1
τe (68)

Now, we assume that we have

Sh k½ � ΓN,hð Þ≔ span φα
i k½ �

 �

i¼1
, α≥ 1 (69)

Sh k½ � ΓD,hð Þ≔ span ψ
β
i k½ �

n o

j¼1
, β≥0 (70)

where

ûg k½ � xð Þ≈ û
g
h k½ � xð Þ ¼

X



i¼1

û
g
h,i k½ �φα

i k½ � xð Þ∈ Sh k½ � ΓN,hð Þ (71)

t̂
g
k½ � xð Þ≈ t̂

g
h k½ � xð Þ ¼

X



j¼1

t̂
g
h,j k½ �ψβ

j k½ � xð Þ∈ Sh k½ � ΓD,hð Þ (72)

where k ¼ 1, 2, 3, 4 are the poro-elastic degrees of freedom, φα
i k½ � are  continu-

ous polynomial shape functions and ψ
β
i k½ � are  piecewise discontinuous polynomial

shape functions.
Thus, from (67), we can write the following N þ 1 algebraic systems of

equations

V̂DD � K̂DN

V̂ND � Cþ K̂NN

� �

" #

ℓ

t̂
g
D,h

û
g
N,h

" #

ℓ

¼
�V̂DN Cþ K̂DD

� �

�V̂NN K̂ND

" #

ℓ

ĝ
g
N,h

ĝ
g
D,h

" #

ℓ

ℓ ¼ 0…N

(73)

5. Numerical results and discussion

In the current study, a Krylov subspace iterative method is used for solving the
resulting linear systems. In order to reduce the number of iterations, a dual thresh-
old incomplete LU factorization technique (ILUT) which is one of the well-known
preconditioning techniques is implemented as a robust preconditioner for TFQMR
(Transpose-free quasi minimal residual) [46] to accelerate the convergence of the
solver TFQMR.

To illustrate the numerical calculations computed by the proposed technique, the
physical parameters for transversely isotropic soft tissue are given as follows [47]:
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The elasticity tensor

Cablg ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

(74)

in which

C11 ¼
E2v20 � EE0

1þ vð Þ 2Ev20 þ E0 v� 1ð Þ
� � ,C12 ¼ �

E2v20 þ EE0v

1þ vð Þ 2Ev20 þ E0 v� 1ð Þ
� �

C13 ¼ �
EE0v

2Ev20 þ E0 v� 1ð Þ
,C33 ¼ �

E2
0 v� 1ð Þ

2Ev20 þ E0 v� 1ð Þ

C44 ¼ μ0, C66 ¼
1

2
C11 � C12ð Þ

(75)

where

v ¼ 0:196, v0 ¼ 0:163, μ0 ¼ 20:98 GPa,E ¼ 68:34 GPa,E0 ¼ 51:35 GPa (76)

and therefore

k1 ¼ 108:39 GPa, k2 ¼ �21:70 GPa (77)

where E and E0 are the respectively, v and v0 are Poisson’s ratio in the isotropy
plane and in the fiber direction respectively, and μ0 is the shear moduli in any
direction within a plane perpendicular to isotropy plane.

Since for strongly anisotropic soft tissue both bulk moduli are positive, we used
the following physical parameters for anisotropic soft tissue [48].

v ¼ 0:95, v0 ¼ 0:49, μ0 ¼ 20:98 GPa,E ¼ 22 kPa,E0 ¼ 447 kPa (78)

and therefore

k1 ¼ 1243 kPa, k2 ¼ 442 kPa (79)

and other constants considered in the calculations are as follows.

ρs ¼ 1600 kg=m3, ρF ¼ 1113 kg=m3, p ¼ 25 MPap ¼ 25MPa,

ϕ ¼ 0:15 and Q=R ¼ 0:65. (80)

The domain boundary of the current problem has been discretized into 21
boundary elements and 42 internal points as depicted in Figure 2. The computation
was done using Matlab R2018a on a MacBook Pro with 2.9GHz quad-core Intel Core
i7 processor and 16GB RAM.

Figure 3 shows the variation of the temperature T along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the
fractional order parameter has a significant influence on the temperature.
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Figure 4 illustrates the variation of the displacement u1 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the
fractional order parameter has a significant influence on the displacement u1.

Figure 5 shows the variation of the displacement u2 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the frac-
tional order parameter has a significant influence on the displacement u2.

Figure 2.
Boundary element model of the current problem.

Figure 3.
Variation of the temperature T along x‐axis.
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Figure 6 shows the variation of the fluid pressure p along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the frac-
tional order parameter has a significant influence on the fluid pressure p.

Figure 7 shows the variation of the bio-thermal stress σ11 along x‐axis for different
values of fractional order parameter. It can be seen from this figure that the fractional
order parameter has an important influence on the bio-thermal stress σ11.

Since there are no findings available for the problem under consideration.
Therefore, some literatures may be regarded as special cases from our general
problem. In the special case under consideration, the results of the bio-thermal

Figure 4.
Variation of the displacement u1 along x‐axis.

Figure 5.
Variation of the displacement u2 along x‐axis.
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stress caused by coupling between the temperature and displacement fields are
plotted in Figure 8 to illustrate the variation of the bio-thermal stress σ11 along
x‐axis for BEM, FDM and FEM, where the boundary of the special case problem has
been discretized into 21, 42 and 84 boundary elements (bes). The validity, accuracy
and efficiency of our proposed technique have been confirmed by a graphical
comparison of the three different boundary elements (21, 42 and 84) with those
obtained using the FDM results of Shen and Zhang [49] and FEM results of Torvi
and Dale [50] for the special case under consideration, the increase of BEM bound-
ary elements leads to improve the accuracy and efficiency of the BEM, also, it can

Figure 6.
Variation of the fluid pressure p along x‐axis.

Figure 7.
Variation of the bio-thermal stress σ11 along x‐axis.
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be noted that the BEM findings are in excellent agreement with the FDM and FEM
results, we refer the interested reader to recent work [51–55] for understanding the
BEM methodology.

6. Conclusion

1.A novel boundary element model based on the TWMBT and Biot’s theory was
established for describing the bio-thermomechanical interactions in
anisotropic soft tissues.

2.The bio-heat transfer equation has been solved using the dual reciprocity
boundary element method (DRBEM) to obtain the temperature distribution.

3.The mechanical equation has been solved using the convolution quadrature
boundary element method (CQBEM) to obtain the displacement and fluid
pressure for different temperature distributions at each time step.

4.Due to the advantages of DRBEM and CQBEM such as dealing with more
complex shapes of soft tissues and not needing the discretization of the
internal domain, also, they have low RAM and CPU usage. Therefore, they are
a versatile and powerful methods for modeling of fractional bio-
thermomechanical problems in anisotropic soft tissues.

5.The linear systems resulting from BEM have been solved by TFQMR solver
with the ILUT preconditioner which reduces the number of iterations and the
total CPU time.

6.Numerical findings are presented graphically to show the effect of fractional
order parameter on the problem variables temperature, displacements and
fluid pressure.

Figure 8.
Variation of the bio-thermal stress σ11 along x‐axis for BEM, FDM and FEM.
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7.Numerical findings confirm the validity, efficiency and accuracy of the
proposed BEM technique.

8.The proposed technique can be applied to a wide variety of fractional
bio-thermomechanical problems in anisotropic soft tissues.

9.For open boundary problems of soft tissues, such as the considered problem,
the BEM users need only to deal with real geometry boundaries. But for these
problems, FDM and FEM use artificial boundaries, which are far away from
the real soft tissues. Also, these artificial boundaries are also becoming a big
challenge for FDM users and FEM users. So, BEM becomes the best method
for the considered problem.

10.The presence of fractional order parameter in the current study plays a
significant role in all the physical quantities during modeling and simulation
in medicine and healthcare.

11.From the research that has been performed, it is possible to conclude that the
proposed BEM is an easier, effective, predictable, and stable technique in the
treatment of the bio-thermomechanical soft tissue models.

12.It can be concluded from this chapter that Biot’s equations for the dynamic
response of poroelastic media can be combined with the bio-heat transfer
models to describe the fractional bio-thermomechanical interactions of
anisotropic soft tissues.

13.Current numerical results for our complex and general problem may provide
interesting information for researchers and scientists in bioengineering, heat
transfer, mechanics, neurophysiology, biology and clinicians.

Nomenclature

A ¼ ϕ 1þQ=Rð Þ Biot’s coefficient
Be
~x linear elastostatics operator

Γ considered boundary
ΓD Dirichlet boundary
ΓN Neumann boundary
C specific heat of soft tissue
 shape factor
Cb specific heat of the blood
Cp jkl specific heat of the blood

F bulk body forces
ĝD Dirichlet datum
ĝN Neumann datum
K dynamic permeability
K thermal conductivity of soft tissue
m iterative parameter
p pore pressure
P0 τð Þ heating power
Q,R solid–fluid coupling parameters
Qmet metabolic heat source
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Q ext external heat source
S0 scattering coefficient
T soft tissue temperature

T
^

b
arterial blood temperature

Te
x traction derivative

u solid displacement
u f fluid displacement

V ¼ V f þ Vs bulk volume

V f fluid volume

Vs solid volume
Wb blood perfusion rate
B stress-temperature coefficients
∈ linear strain tensor
ζ fluid volume variation
ρ ¼ ρs 1� ϕð Þ þ ϕρ f bulk density

ρs ¼ ϕρ f mass density of soft tissue

ρ f blood density

σ total stress tensor
τ time
τq phase lag for heat flux
τT phase lag for temperature gradient
φα
i k½ � continuous polynomial shape functions

ϕ ¼ V f

V
porosity

ψ
β
j k½ � discontinuous polynomial shape functions

Ω considered region
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