AS10-001 **CLINICAL UTILITY OF 320-DETECTOR ROW COMPUTED TOMOGRAPHY IN THE EVALUATION OF MOYAMOYA DISEASE**

<u>A. Hashimoto¹</u>, H. Tajiri¹, K. Mizokami², T. Mizuno¹, M. Endo³, O. Seiki³. ¹Ofuna Chuo Hospital, Diagnostic Radiology, Kamakura, Japan. ²Shonan Fujisawa Tokushukai Hospital, Neuroendovascular Surgery, Fujisawa, Japan. ³Shonan Fujisawa Tokushukai Hospital, Neurosurgery, Fujisawa, Japan.

Background and Purpose

The present study aimed to determine the ability of 320-detector row computed tomography angiography (CTA) to evaluate moyamoya disease.

What is moyamoya disease (MMD)?

 Chronic progressive cerebrovascular disorder, particularly affecting Asian persons · Bilateral stenoses or occlusions of the supraclinoid ICA and its major branches · Arterial collateral circulation, so-called "moyamoya vessels (MMVs)

"moyamoya" means Puffy, Obscure, or Hazy, like a puff of smoke in the air

Moyamoya vessels

Digital subtraction angiography (DSA)

Diagnostic criteria DSA (Gold Standard since 1957)

* Bilateral stenoses or occlusions of the supraclinoid ICA that extend to the proximal portions of the ACA, MCA, and PCA.

- * Presence of parenchymal collateral vessels (MMVs)
- MRI MRA (since 1994)

Adding to DSA ...

'At least two flow voids in the basal ganglia (T2WI)

Should be excluded

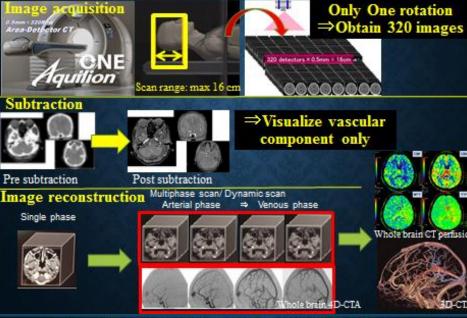
Atherosclerosis, Cranial irradiation, Autoimmune disease, Neoplasms, Trauma, Meningitis, Neurofibromatosis, etc.

The role of CT? \Rightarrow Not determined !

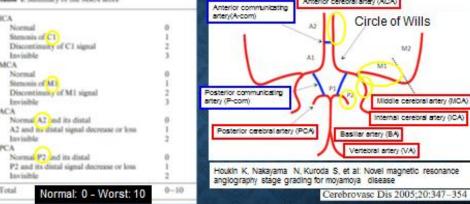
Materials and Methods

- Retrospective study
- April 2013 March 2018
- · Clinically diagnosed MMD and underwent all three examinations
- Contras-enhanced CTA using 320-detector row CT (3D/4D CTA, VR, MIP)
- TOF-MRA using 3T MRI
- **DSA**

A 50-y.o. woman



① Correlations between CTA, MRA, and DSA scores

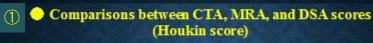

(Houkin score)

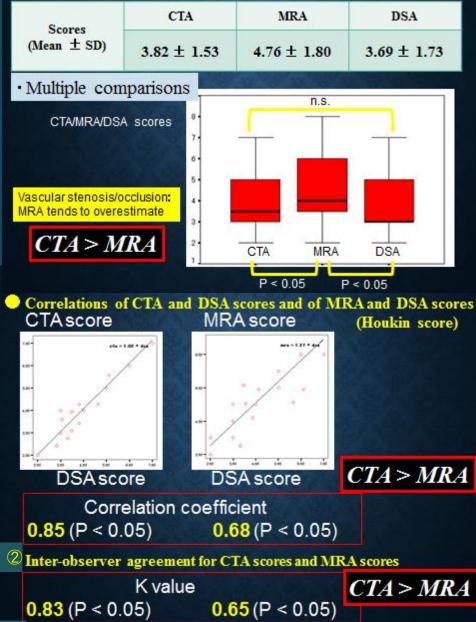
- ② Inter-observer difference of CTA scores and MRA scores
- ③ Visualization of basal MMVs
- Statistical analysis (SPSS for Windows 15.0J)
- (1) Multiple comparisons (Tukey's honestly significant difference test)
 - Pearson's product moment correlation coefficient
- **② Kappa** statistic
- **③** Fisher's exact test
 - P < 0.05: statistically significant

Equipment: Aquilion ONETM, 320-detector row CT d by CANON Modical Systems Janan *Contrast media: 50 mL at a rate of 4 mL/s, 20 mL saline

CTA, MRA, DSA scores (Houkin score) Anterior cerebral artery (ACA)

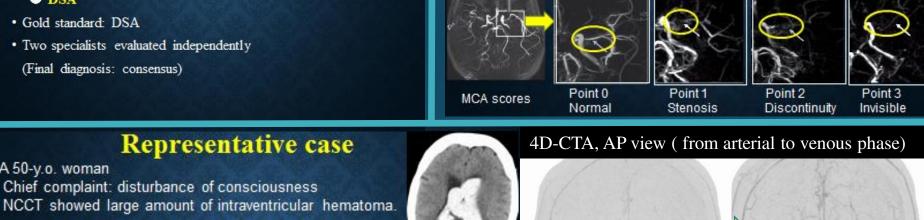
ESI)(2019 The Voice of Stroke in Europe 5th European Stroke Organisation Conference 22 - 24 May 2019 | Milan, Italy

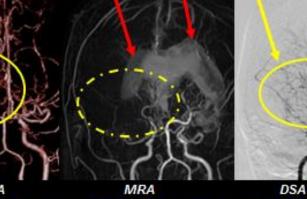

☑ The author has no conflict of interest to disclose with respect to this presentation.


Results

Patients' Characteristics

- 25 consecutive patients (50 cerebral hemispheres) Males: n = 15 (60%); Females: n = 10
- Mean age: 48 years
- Age range: 23-71 years (No children) Stroke subtype
 - Ischemic Stroke or TIA: n = 20
 - Hemorrhagic stroke: n = 5


Unilateral moyamoya disease: n=5



- · Gold standard: DSA
- Two specialists evaluated independently (Final diagnosis: consensus)

Comparison CTA, MRA, and DSA

Moyamoya vessels Intraventricular hematoma Moyamoya vessels

AP view DSA (Right ICAG) Image quality of MRA was obviously inferior to that of CTA and DSA.

Conclusions

 Steno-occlusive changes were evaluated more accurately, and basal moyamoya vessels were visualized with greater sensitivity by CTA using 320-detector row CT than by MRA.

• CTA should be incorporated into the diagnostic criteria for moyamoya disease.

DSA Moyamoya vessels			DSA Moyamoya vessels		
5		4	2		0
0		41	0		18
Мо	yamoya v	essels: MRAte	nds to under	estimate	4
5	10		2		+5
0	35		0		3
CTA	MRA	P value	CTA	MRA	P value
41/45 91%	35/45 78%	P < 0.05	8/8 100%	3/8 38%	P < 0.01
5/5 100%	5/5 100%	n.s.	2/2 100%	2/2 100%	n.s.
46/50 92%	40/50 80%	P < 0.05	10/10 100%	5/10 50%	P < 0.01
	Absent (n=5 5 0 0 5 0 CTA 41/45 91% 5/5 100% 46/50	Moyamoya ves Absent (n=5) Pre 5 0 Moyamoya v 5 0 CTA MRA 41/45 35/45 91% 78% 5/5 5/5 100% 100% 46/50 40/50	Moyamoya vessels Absent (n=5) Present (n=45) 5 4 0 41 Moyamoya vessels: MRAte 5 5 10 0 35 CTA MRA P value 41/45 35/45 P < 0.05	Moyamoya vessels Motor Absent (n=5) Present (n=45) Absent (n 5 4 2 0 41 0 0 35 0 5 10 2 0 35 0 CTA MRA P value CTA 41/45 35/45 P < 0.05	Moyamoya vessels Moyamoya Absent (n=5) Present (n=45) Absent (n=2) 5 4 2 5 4 2 0 41 0 Moyamoya vessels: MRAtevents to underestimate 5 10 2 0 35 0 CTA MRA P value CTA MRA 41/45 35/45 P < 0.05 8/8 3/8 91% 78% P < 0.05 8/8 3/8 5/5 5/5 n.s. 2/2 2/2 2/2 100% 100% P < 0.05 10/10 5/10

3 Comparison of Evaluation of MMVs with CTA, MRA, and DSA

Hemorrhage (10 cerebral hemispheres)

All (50 cerebral hemispheres)

CTA > MRA

Discussion

- Steno-occlusive lesions: MRA tended to overestimate
- Visualization of MMVs: MRA tended to underestimate

CTA≒ DSA>MRA

Inter-observer agreement: CTA > MRA

Comparison between CTA and MRA Advantages and Disadvantages of CTA

Advantages of CTA

Accurate evaluation of steno-occlusive lesions

Good visualization of slow-flow vessels (e.g. moyamoya vessels, collateral vessels)

Easy access, short scan time

Subtraction: Visualize vascular components only

Whole-brain dynamic scan: whole-brain CT perfusion

* Only 320-detector row CT can evaluate

whole-brain CT angiography: 4D-CTA

Disadvantages of CTA

Radiation exposure

· Use of iodine contrast media (risk of allergy)