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Abstract

Soybean is one of the most cultivated crops in the world, with a global production of 
approximately 240 million tons, generating about 18–20 million tons of hulls, the major 
by-product of soy industry. The chemical composition of soybean hulls depends on 
the efficiency of the dehulling process, and so, the soybean hulls may contain variable 
amounts of cellulose (29–51%), hemicelluloses (10–25%), lignin (1–4%), pectins (4–8%), 
proteins (11–15%), and minor extractives. This chapter provides a review on the composi-
tion and structure of soybean hulls, especially in regard to the application and conversion 
of the compositions. Current applications of soybean hulls are utilizations to animal feed, 
treatment of wastewater, dietary fiber, and herbal medicine. The conversion of soybean 
hulls is concerned with ethanol production, bio-oil, polysaccharides, microfibrils, peroxi-
dase, and oligopeptides. On the basis of the relevant findings, we recommend the use of 
soybean hulls as important source on environment, energy, animal breeding, materials, 
chemicals, medicine, and food.
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1. Introduction

Soybeans are one of the most worthy crops in the world because of their high protein and 

oil content, which provides a wide variety of uses [1]. Soybean protein has been used in live-

stock and aquaculture feeds and is highly digestible, along with many human foods [2–4]. 

Soybean oil is used as a food and feed ingredient as well as in biodiesel production and cos-

metics [5, 6]. Soybean hulls, accounting for a substantial fraction (7–8%) of the total mass of 

soybean, are the largest amount of by-products in the soybean process industry. In contrast 

to the oil and proteins, there is a fairly common perception that hull is a “waste” product of 

soybean processing [7]. It is predicted that the total world soybean production will be 371.3 

million tons by 2030 and there will be 29.7–37.1 million tons of soybean hulls available [8].
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The chemical composition of soybean hulls depends on the efficiency of the dehulling pro-

cess, and so, the soybean hulls may contain variable amounts of cellulose (29–51%), hemi-

celluloses (10–25%), lignin (1–4%), pectins (4–8%), proteins (11–15%), and minor extractives 

[9–11]. Therefore, soybean hulls are primarily lignocellulose material. However, unlike 

many other lignocellulosic material such as hardwood or switchgrass, soybean hulls are 

easy degradable [9, 11]. Chemically, cellulose is a linear polymer of 250 to over 10,000 glu-

cose units linked by β-1,4 glycosidic bonds. Pectin is a polysaccharide consisting of a back-

bone of α-1,4 linked galacturonic acid residues usually up to 100 residues in length. The 
galacturonic acid residues are commonly methylesterified or acetylated, and the backbone 
may include substitutions of rhamnose and/or branching chains consisting of arabinose 

and galactose [12]. Hemicellulose is a group of wall polysaccharide that is characterized by 

being neither cellulose nor pectin and by having β-1,4-linked backbone of glucose, man-

nose, or xylose [13]. The backbone is frequently decorated with a variety of sugar side 

chains or acetyl ester groups [14]. The average degree of polymerization of hemicellulose 

is in the range of 80–200. Lignin is a heterogeneous biopolymer in lignocellulose formed by 

radical-mediated oxidative coupling of phenyl-propane unit linked together through vari-

ous types of ether and carbon-carbon bonds [15].

The low lignin content in soybean hulls makes the residues have a very wide variety of appli-

cation (Figure 1). Due to this biomass composition, soybean hulls are widely used as animal 

feed [16]. In addition, soybean hull is lignocellulosic material containing a small proportion 

of lignin, as compared with other agro-residues, and has a good potential for saccharification, 
because lignin is a major hindrance for enzymatic hydrolysis of biomass [17]. Soybean hulls 

also contain a large amount of dietary fibers (DFs), and have been used as a batter ingredient 
to decrease the fat contents in cakes and cookies [18]. Moreover, soybean hulls have also been 

identified as a rich source of peroxidases and as an agro-industrial residue; they are a low-cost 
alternative for resulting in biocatalyst production [19]. This review summarizes the present 

knowledge on the composition, application, and conversion of soybean hulls.

Figure 1. Application and conversion of soybean hulls.
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2. Compositions and structure of soybean hulls

2.1. Cellulose

Cellulose derived most frequently from wood is widely used in a range of applications 

including composites, papermaking, food additives, textile, and pharmaceutical industries 

[20]. More importantly, cellulose is also useful for bio-ethanol production after enzymatic 

hydrolysis. Cellulose is a linear polymer of anhydroglucose unit linked at the one and four 

carbon atoms by a β-glycoside bond [21]. This is confirmed by the presence of three hydroxyl 
groups with various acidity/reactivity, secondary OH at the C-2, secondary OH at the C-3, 

and primary OH at the C-6 position, and accordingly, by the formation of different strong 
intermolecular hydrogen bonds [22]. Based on carbon nuclear magnetic resonance (13C NMR) 

spectra and X-ray diffraction patterns, four major polymorphs of cellulose have been reported 
and named cellulose I, II, III, and IV [23]. Cellulose I is the most abundant native crystal-

line form and can be converted into the other polymorphs through a variety of treatments. 

Cellulose I consists of two phases, Iα and Iβ. Cellulose Iα has one-chain triclinic structure and 

cellulose Iβ has two-chain monoclinic structure and they differ in hydrogen bonding [24]. 

The chemical, physical, and biological properties of cellulose depend on its shape properties 

such as its ease of deformability and its intrinsic form [23]. The noncrystalline cellulose is also 

important because of higher chemical reactivity of noncrystalline (or amorphous) cellulose.

2.2. Hemicellulose

Hemicellulose, next to cellulose, refers to a large group of complex polysaccharide in cell wall 

of plants [25]. Unlike cellulose, it is a low-molecular-weight polysaccharide, associated in 

plant cell wall with lignin and cellulose. It forms covalent bonds (mainly α-benzyl ether link-

ages) with lignin, hydrogen bonds with cellulose, and ester linkages with hydroxycinnamic 

acids and acetyl units, which restrict the liberation of hemicellulosic polymers from the cell 

wall matrix [26]. Large variations in hemicellulose content and chemical structure can occur 

between various lignocellulosic materials. Many methods have been used to isolate hemicellu-

losic polymers from plant materials, which include extraction with alkaline, alkali, organic sol-

vent, or twin-screw extrusion and ultrasonication treatments, as well as steam or microwave 

treatment [26]. For higher lignin content materials, they must be delignified and/or pretreated 
in some way prior to extraction of hemicelluloses, such as pretreatment by sodium chlorite in 

acetic acid solution. For soybean hulls, they do not require delignification prior to isolation 
of hemicelluloses, as compared with other lignocellulosic biomass, because of low content 

of lignin. The major hemicelluloses in soybean hulls are composed of α-L-arabinofuranosyl, 
L-arabino-4-O-methyl-D-glucurono-D-xylan, 4-O-methyl-glucuronic acid and α-D-galactose 
units attached with substituted sugars [27, 28]. These hemicelluloses have the potential to 

be integrated in a wide variety of applications, including thickeners, film-former substances, 
emulsifiers, binders, and stabilizers in the food, cosmetic, and pharmaceutical industries [29]. 

In addition, they can be easily hydrolyzed into hexose (mannose, glucose, and galactose) and 

pentose (arabinose and xylose), and can be transformed into fuel ethanol and other value-

added chemicals, including furfural, 5-hydroxymethylfurfural (HMF), xylitol, and levulinic 
acid (Figure 2) [30].
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2.3. Pectin

Pectin is a complex polysaccharide consisting of D-galacturonic acid linked by α-1,4 glyco-

sidic linkages [31]. The molecular weight of pectin varies from 50,000 to 150,000 Da depend-

ing on the source materials and extraction procedure. Pectin is a highly valuable functional 
food ingredient and is very important in creating or modifying the texture of jellies, jams, 

and confectionery, and in low-fat dairy products. Soybean hulls were potentially inexpen-

sive commercial sources of pectin. Soybean hull pectin (SHP) mainly contains galactose, 
xylose, galacturonic acid, arabinose, glucose, and rhamnose. The chemical composition of 

the extracted soybean hull pectin has been comparatively investigated with that of commer-

cially soybean hull pectin (CSHP) and citrus pectin (CP) by Yamaguchi et al. (Table 1) [32]. 

The results showed that SHP had a molecular weight similar to the CSHP and CP. Glucose 
content in SHP was higher as compared with CSHP and CP, but other sugar contents were 

Figure 2. The potential products from hemicelluloses [13].

Composition SHP CSHP CP

Galacturonate, % Dry material basis 33.0 18.5 85.8

(% Esterified galacturonate, % Dry material basis) 18.1 0 73.7

Neutral sugar composition, % Dry material basis

Rhamnose + Fucose 8.0 8.0 25.1

Arabinose 24.2 26.3 15.6

Xylose 2.7 2.5 1.8

Mannose 0 0 0

Galactose 49.8 59.5 49.5

Glucose 15.3 3.7 8

Table 1. Composition of soybean hull pectin (SHP), commercially available soluble soybean hulls pectin (CSHP), and 
citrus pectin (CP) [32].
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similar between SHP and CSHP. The SHP had a similar galacturonan structure to that of CP, 
but SHP contains more arabinose and glucose, less rhamnose and fucose, and more xylose as 
compared with CP. The SHP extracted by Yamaguchi et al. [32] showed the degree of esterifi-

cation of 18.1%, belonging to low methoxyl pectin.

2.4. Lignin

Lignin is a three-dimensional amorphous biopolymer formed by three major monolignols, 

that is, p-coumaryl alcohol (H), coniferyl alcohol (G), and sinapyl alcohol (S) of various ratios, 

Figure 3. Main lignin structures present in bamboo lignin: (A) β-O-4 alkyl-aryl ethers; (A′) β-O-4 alkyl-aryl ethers 
with acylated γ-OH with p-coumaric acid; (A″) Cα-oxidized β-O-4 structures; (B) resinols; (B′) tetrahydrofuran; (C) 
phenylcoumarans; (D) spirodienones; (E) α, β-diaryl ethers; (T) a likely incorporation of tricin into the lignin polymer 
through a G-type β-O-4 linkage; (I) p-hydroxycinnamyl alcohol end groups; (I′) p-hydroxycinnamyl alcohol end groups 
acylated at the γ-OH; (J) cinnamyl aldehyde end groups; (p-CE) p-coumarates; (H) p-hydroxyphenyl units; (G) guaiacyl 
units; (S) syringyl units. (S′) oxidized syringyl units bearing a carbonyl at Cα [33].
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linked together by different types of ether (β-O-4’) and carbon-carbon (β’-β’ and β’-5’) link-

ages (Figure 3). Besides, lignin is covalently linked to hemicellulosic polysaccharides, forming 

a lignin-hemicellulose network made up of phenyl-glycoside, benzyl-ether, and benzyl-ester 

bonds [34]. Despite the extensive investigations of lignin, the complex and irregular structure 

of lignin has not been completely understood up to now. Lignin is considered as the most 

abundant sources of aromatic compound in nature and can be utilized for adhesives or chemi-

cal reagents to replace those derived from oil. For the lignin of soybean hulls, it is not usually 
utilized as a major value product, due to its lower content. However, the soybean hull is a 

good resource for lipid production due to its low lignin content and it has been proven in the 

bioconversion process that soybean hulls can be utilized without any pretreatment [9].

2.5. Protein

The chemical composition of soybean hulls depends on the efficiency of the dehulling pro-

cess. If soybean meal with high protein content is required, the dehulling process is more 

intense in order to avoid contamination of the meal with pieces of hulls [10]. In general, the 

soybean hulls may contain 11–15% of proteins. Soybean proteins are commercially and exten-

sively used in food products due to their functional properties, low cost, and high nutritional 

value. Soybean proteins are composed almost exclusively of two globular protein fractions 

called 11S (glycinin) and 7S (β-conglycinin) [35].

3. Application of soybean hulls

3.1. Animal feed

The by-products of agro-industrial may become an economical alternative to corn grain in 

ruminant diets, especially when the price of corn is high due to the increase of demand from 

the ethanol industry [36]. Soybean hulls are by-product from the soybean-processing indus-

try, where the soybean is de-hulled leaving a highly digestible, fibrous feed [37]. Due to their 

compositions, the biomass is widely used as animal feed. Many investigations have demon-

strated that there are advantages of using soybean hulls as an energy source for ruminants 

in replacement of corn, as long as they are supplied together with effective fiber sources to 
reduce the rate of passage and enable ruminant fermentation [38–40]. For example, the exces-

sive use of starch in equine diets can lead to fermentation of the ingested material by amylolytic 

bacteria in the large intestine resulting in an increase in lactic acid production and increased 

production of short-chain fatty acids, which can cause intestinal disorders such as laminitis 
or colic [41]. However, studies on the inclusion of soybean hulls in equine diets have shown 

promising a decrease in starch level without compromising the caloric density of the feed [42]. 

It was suggested that diets with up to 28% soybean hulls can be used as equine feed without 

negatively affecting digestibility, the selected microbiota or short-chain fatty acids concentra-

tions, and physicochemical characteristics in the feces [38]. Soybean hulls can also be a resource 

in maintaining sheep meat production without compromising product quality. Investigation 

has been carried out for the improvement of sheep diets by soybean hulls, which leads to the
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improvement of the fatty acid composition of meat and the production of meat with adequate 
levels of fat which reduce the levels of saturated fatty acids [43]. The investigation found that 

the inclusion of soybean hulls in the sheep diet increased the total lipid content, conjugated 

linoleic acid, and omega 3 fatty acids. The increase of unsaturated and polyunsaturated fatty 
acids ensured greater consumer satisfaction, since the population was increasingly attentive 
to health. Soybean hulls can also be used replacing ground corn in diets of goats in the early 

lactation, because they improve the digestibility of the diet and nutrients, do not change the 

physical and chemical quality or productive performance of the milk, and increase the content 

of omega 3 fatty acids in the milk [44]. Soybean hulls can replace corn grain to supply about 

30% of the dry matter in high-grain content diets without negatively affecting either the diges-

tion of nutrients or fermentation in gastrointestinal tract or the performance of dairy cows [45]. 

Vinay Kumar [46] investigated the effect of soybean hulls on the physicochemical characteris-

tics, color, texture, and storage stability of chicken meat nuggets. The results showed that the 

addition of soybean hulls to chicken nuggets improved nutritional value, sustained the desired 

cooking yield and emulsion stability, and helped in improving instrumental textural and color 

values. In addition, the inclusion of soybean hulls in the chicken diet increased the storage 

times of meat.

3.2. Treatment of wastewater

Fresh water is a limited and essential natural resource for the development of a series of liv-

ing organisms in aquatic environments as well as for humans, all of which require its pres-

ervation [46]. The quality of the water is being negatively affected by the world’s population 
growth along with accelerated industrial development that generally involves processes 

requiring a huge consumption of water and the release of wastewaters back into water bod-

ies [46]. Current methods used to treat wastewater include chemical precipitation, oxidation 

and chemical reduction, filtration, electrochemical treatment, ion exchange, reverse osmosis, 
evaporation, and adsorption [47, 48]. Among these techniques, adsorption is an economic and 

efficient method, based on flexible and simple operating conceptions and the use of regen-

erative adsorbents, for the removal of inorganic or organic pollutants with high efficiency 
in many cases [48]. Biosorption is the binding of radionuclides and metal ions onto the cel-

lular structure of biological materials, which contain their functional groups and ligands [49]. 

Biosorbent materials that are lignocellulosic, containing cellulose, hemicelluloses, and lignin, 

have high adsorption properties due to the ion exchange capabilities [50]. Biosorbent materi-

als have some advantages. For example, they can be regenerated for reuse, can recover the 
biosorbent material, do not require much energy input, and do not produce a toxic sludge 

[49, 51]. Much attention has been given to the use of soybean hulls in the remediation of 
heavy metals [46, 49, 52]. Soybean hulls without the soluble dietary fiber (SDF) present good 
metal-binding property and can be used as novel biosorbent [53]. The preparation of soy-

bean hulls including pretreatment, drying, modification, activation, and so on was presented 
to make the preparation process feasible and economical [46, 54, 55]. Generally, adsorption 
of inorganic or organic pollutants in wastewater by soybean hulls has been limited and the 

hull modification is desirable to enhance adsorption especially of metal ions. Aparecido N. 
Módenes [46] investigated the absorption characteristic of the soybean hulls absorbent by 
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various modification methods for the removal of Cd2+ and Pb2+. The results showed that an 
increase in the sorption capacity of Pb2+ ions of around 20% was achieved as compared with 
the unmodified material and that an insignificant improvement in the sorption capacity of 
Cd2+ ions was obtained when the soybean hulls were modified by treating them with strong 
base (0.1–1.0 M NaOH). Functional groups such as phosphoryl, hydroxyl, and carboxyl could 
be the activated sites on soybean hulls sorbent, with metal ion uptake on a neutral sorbent 

surface occurring via an ion exchange process [46]. The addition of surface functional groups 

by chemical reaction with NaOH could be responsible for the increase in the biosorbent sur-

face area and consequently greater metal sorption capacity as compared with the untreated 

material [56]. Investigation has demonstrated that soybean hulls work well at removing tex-

tile dyes from contaminated water [52]. Results of the investigation indicated that the soybean 

hulls and rice hulls worked well at removing the Safranin T and Direct Violet 51 dyes from 

solution. The soybean hull samples were more effective at removing the Remazol Brilliant 
Blue R dye as compared with rice hull samples.

3.3. Dietary fiber

Dietary fiber can be defined as “the edible parts of plants or analogous carbohydrates that 
are resistant to digestion and absorption in the human small intestine with complete or par-

tial fermentation in the large intestine” [57]. Dietary fiber is a complex component of natu-

ral carbohydrate polymer which consists of a variety of nonstarch polysaccharides such as 

hemicellulose, cellulose, lignin, and pectin [58]. The beneficial role of dietary fiber in health 
and nutrition has been demonstrated in normal gastrointestinal and physiological functions, 

including carbohydrate and lipid metabolism, and in the reduction of chronic ailments such as 

coronary heart disease, diabetes, obesity, and some cancers [59]. Dietary fiber can typically be 
divided into soluble dietary fiber and insoluble dietary fiber (IDF). SDF includes pectins and 
some hemicelluloses. Cellulose, lignin, and some hemicelluloses are examples of dietary fiber 
classified as IDF. Soybean hulls contain the majority of the fibers with a higher level of IDF. 
Acid-base hydrolysis and autoclaving significantly affect the SDF, IDF, and total DF distribu-

tion in soybean hulls [60]. Kumar et al. [61] and Goldnon and Brown [62] reported that 4% 

addition of soy hull flours had no impact on the cooking yield and texture of chicken nuggets 
and pork patties, respectively. Investigation by Kumar et al. [63] indicated that 3–5% addition 

of soybean hull flours slightly improved emulsion stability and water-holding capacity of 
chicken nuggets. Kim et al. [64] indicated that insoluble fiber from soybean hulls through acid 
and alkali hydrolysis influenced positive effects on reduction in cooking loss and increase in 
hardness of meat without any adverse effect on springiness and cohesiveness, and minimized 
color alteration. The investigation also indicated that acid-base hydrolysis and autoclaving 

processes in soybean hulls could significantly boost total dietary fiber content, showing the 
great potential in various food applications due to the functional properties [60].

3.4. Medicine

Soybean with black, brown, yellow, and green seed coats possesses antioxidant capacity 

varying with color because of differences in phenolic levels and composition which is antho-

cyanins, phenolic acids (chlorogenic and caffeic acids), isoflavones, and proanthocyanidins 
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[65–67]. Black soybean has been used as an herbal medicine to treat edema and jaundice. It 

has also been used to treat enuresis by affecting the functions of the spleen and kidney [68]. 

The hull of the black soybean has been used for the treatment of headache and vertigo, as well 

as for detoxification and diuresis [68]. Black soybeans were reported to contain anthocyanins 

and only brown and black soybeans contain proanthocyanins [66, 67]. Investigation showed 

that black soybean had the highest antioxidant activity as compared with other colored seed 

coat soybeans [65]. The antioxidant activity of back soybeans is related to their phenolic pig-

ments in the seed coats [69, 70]. In vitro anticancer investigation reported that polysaccharides 

from black soybean may induce differentiation and inhibit proliferation in human leukemic 
U937 cells [71]. Anthocyanins isolated from black soybean hulls display growth inhibitory 

effects and strong apoptosis induction effect against human leukemia Molt 4B cells [72]. 

Animal experiments indicated that the intake of extract from black soybean hulls effectively 
enhanced memory and learning ability in rats [73]. The extract of the black soybean hulls has 

also been used as dietary ingredient including pigments and nutraceuticals [68].

4. Conversion of soybean hulls

4.1. Ethanol production

The National Biofuels Action Plan released in October 2008 states that expanding annual 
biofuels production to 36 billion gallons by 2022 would be a key component in America’s 
movement toward clean, affordable, and secure energy sources [11]. The interest for etha-

nol production from renewable resources has increased in the last decade, directly related 

to environmental and economic concerns over fossil fuels [74]. Currently, ethanol is mainly 

produced from sugarcane and corn (in the Brazil and USA, respectively), accounting for 66% 

of worldwide production [75]. However, recently, there has been increasing interest in cel-

lulosic ethanol production, because biomass is an abundant feedstock that is inexpensive and 

has a high cellulosic content [10, 76]. Lignocellulosic biomass needs to be decomposed into its 

monomers in order to release fermentable sugars, and which is achieved by using diluted acids 

or enzymes. The cellulose in the biomass is scarcely affected by the diluted acid hydrolysis, 
requiring other physicochemical hydrolyses at higher temperatures to result in sugar decom-

position, which may lead to metabolic inhibition during fermentation [77]. Lignocellulosic 

biomass mainly consists of lignin, cellulose, hemicelluloses, and small amounts of extrac-

tives. Cellulose structure allows the formation of intermolecular and intramolecular hydro-

gen bonds, generating organized rigid crystalline regions. The biological role of hemicellulose 

is the cross-linked interaction with lignin and cellulose, which strengthens the cell wall and 

embedding of the crystalline cellulose elementary fibrils [78]. The close association between 

hemicellulose and lignin impedes enzyme access to hemicellulose, which in turn affects acces-

sibility to cellulose [79]. Thus, pretreatment by various technologies is a crucial prerequisite to 

break down the rigidity of the biomass prior to enzyme hydrolysis process. Soybean hulls are 

an agricultural residue produced during the processing of soybeans, and the lignocellulosic 

material contains a small proportion of lignin (1.4–2%) when compared to other biomass. 

Therefore, soybean hulls are an attractive source of fermentable sugars for cellulosic ethanol 
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production. Hickert et al. [74] investigated the conversion of pentoses and hexoses liberated 

from high osmotic pressure soybean hull hydrolysate into ethanol by various immobilized 

cerevisiae. The soybean hulls were hydrolyzed in a two-step sulfuric acid-enzyme pretreat-

ment, resulting in more than 72% of saccharification. The yields of bioconversion of soybean 
hulls into ethanol were 38–47%. Physicochemical pretreatments of soybean hulls for hemi-
cellulose removal were essential in order to improve the material digestibility at the enzy-

matic hydrolysis stage. Cassales et al. [80] investigated various acid concentrations in order 

to achieve high sugar release and low generation of toxic compounds. Yoo et al. [11] studied 

the pretreatment of soybean hulls by thermomechanical extrusion. Mielenz et al. [9] reported 

high yields of ethanol by simultaneous saccharification and fermentation of soybean hulls 
without pretreatment, because of the low lignin content. However, the time of fermentation 

was very long (about 9 days). Rojas et al. [10] reported a process for the recovery of proteins 

from soybean hulls, mainly as oligopeptides, and the production of ethanol from the remain-

ing lignocellulosic fraction. In addition to ethanol production from soybean hulls, Zhang and 

Hu [81] studied a new application of soybean hulls to be converted to fungal lipids for bio-

diesel production through solid-state fermentation. The results showed that the total final 
lipid reached 47.9-mg lipid from a 1-g soybean hull after the conversion, which is 3.3-fold 

higher as compared with initial lipid reserve in the soybean hulls. The solid-state fermenta-

tion is a more cost-effective process because of low-energy expenditure, its low capital cost, 
less expensive downstream processing, high volumetric productivity, low wastewater out-

put, and less fermentation space needed [82].

4.2. Bio-oil

Lignocellulosic biomass can be converted into useful form of energy using biochemical and 

thermochemical processes, but thermochemical conversion technology finds its dominance 
due to high efficient conversion to gas, liquid, and solid products under thermal conditions 
[83]. The liquid product called bio-oil is a complex mixture of water and organic chemicals,

which are alcohols, aldehydes, acids, ketones, esters, heterocyclic derivatives, and phenolic 

compounds [84]. There are two typical thermochemical processes to produce liquid product 

with high yield: pyrolysis and liquefaction. During the pyrolysis processes, the biomass feed-

stock is heated in the absence of air to a high temperature (400–1000°C), resulting in the for-

mation of bio-oils and gaseous products. Another important method to convert the biomass 

into liquid fuel is liquefaction in solvents (such as acetone, ethanol, water, or their mixtures) 

by heat. By the method, biomass can be decomposed into liquid at a mild temperature and a 

high pressure as compared with the pyrolysis process [85]. Oliveira et al. [86] studied soybean 

hull bio-oil produced by fast pyrolysis. The main components of the bio-oil were analyzed by 

gas chromatography/mass spectrometry (GC/MS). The results indicated that the soybean hull 
bio-oil can be used as an alternative source of chemical products with higher added value. As 

a result of the decomposition of cellulose, hemicellulose, and lignin, the soybean hull can be 

transformed into products having various molecular structures. The soybean hull bio-oil was 

proved to be a complex mixture of a variety of organic compounds (more than 60 compounds 

were identified) [86]. For the aqueous phase of the soybean hull bio-oil (acid extraction), the 
main compounds were pyridine (17.06%), acetic acid (9.12%), phenol (16.94%), pyrole (5.14%), 
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and acetamide (5.73%). The high acidity presented in the aqueous phase of soybean hull bio-oil 

is probably because of the thermal degradation of hemicelluloses, which produces acids as the 

final product of reactions involving the removal of acetyl groups [87]. Cellulose can be decom-

posed into levoglucosan at first, and then the levoglucosan can be generated by depolymeriza-

tion reactions, which produce small quantities of acids, such as propionic acid and acetic acid, 

as well as furans (furfural, furfuraldehydes, and pyrans) [88]. In the organic phase, the main 

compounds identified in soybean hull bio-oil were phenol (14.88%), 4-methylphenol (12.55%), 
and 2-methylphenol (7.59%) [86]. The phenol compounds and derivatives were obviously due 

to the decomposition products from lignin (and maybe hemicellulose and cellulose). Those 

phenolic compounds can be separated from soybean hull bio-oil by using vapor distillation, 

reverse osmosis membranes, and solvent extraction [89–91].

4.3. Polysaccharides

Polysaccharides are species of macromolecular substance existing widely in organisms. It has 
been reported that plant polysaccharides or their derivatives have strong antioxidant activi-

ties and can be explored as novel potential antioxidants [92]. Some of the polysaccharides 

have been targeted as important candidates for the development of effective and nontoxic 
medicines with strong free radical-scavenging and antioxidant activities [93]. The insoluble 

carbohydrate fraction in soybean hulls contains 50% hemicelluloses, 30% pectins, and 20% 

celluloses [94]. Therefore, the soybean hulls are potentially commercial source of polysaccha-

rides. Liu et al. [27] studied the extraction of soybean hull polysaccharides by hot-compressed 

water in a batch system. The results showed that a moderate temperature (160°C) and short 

extraction time (60 min) were suitable for the preparation of soybean hull polysaccharides. 

In the sugar composition of the polysaccharide products, arabinose constituted 35.6–46.9%. 

Nagata et al. [95] investigated the effects of soybean hull polysaccharides on serum immu-

noglobulin concentration and production of NO and interleukin-1β from peritoneal macro-

phages. The soybean hull polysaccharides consisted of arabinose, galactose, xylose, glucose, 

and rhamnose, and the molecular weight was 500,000. The investigation demonstrated that 

soybean hull polysaccharides enhanced humoral immunity and activation of macrophages, 

thereby leading to the augmentation of immune responses in rats.

4.4. Microfibrils

Microfibrillated cellulose developed for the first time in the early 1980s by Turbak and coau-

thors can be obtained through mechanical treatments such as refining and high-pressure 
homogenization [96]. Microfibrillar cellulose is a bio-based material with interesting intrinsic 
properties that make it attractive in many applications. It is characterized by a high specific 
surface area, flexibility, and crystallinity, and contains a large amount of hydroxyl groups 
[97], all of which influence its interactions in liquid dispersions or in solid films. Merci et al. 
[98] produced the microfibrillar cellulose from soybean hulls by using a simple method based 
on reactive extrusion. The reported microfibrillar cellulose produced from soybean hulls was 
composed of short and rod-shaped fibers, and had a cellulose content of 83.79% and crystal-
linity index of 70%. Miranda et al. [99] studied the kinetics of degradation process of cellu-

lose extracted from soybean hulls and compared its behavior to commercial microcrystalline 
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cellulose under inert environment. The results indicated that kinetic degradation behavior of 

soybean hull cellulose was more similar to commercial microcrystalline cellulose. However, 

the activation energy value of commercial microcrystalline cellulose was higher as com-

pared with soybean hull cellulose. Ferrer et al. [7] isolated cellulosic microfibrils (SMF) and 
brick-like microparticles (SMP) from soybean hulls by combining mechanical and chemical 
pretreatments. The SMF and SMP chemical compositions included residual polysaccharides 
and lignin that endow such biologically derived materials with properties typical of nanocel-

lulosics. As compared with those of micro- and nanofibrillated cellulose obtained from fully 
bleached wood fibers, the SMF and SMP exhibited enhanced crystallinity and thermal stabil-
ity. In addition, a strong shear-thinning behavior was observed for aqueous dispersions of 

SMF and SMP, revealing that cellulose microstructures are of interest for rheology modifica-

tion, coatings, and films. These SMF and SMP extracted from soybean hulls have been used 
in films and also combined with wood-based micro- and nanofibrillar cellulose in hybrid 
systems [100]. The hybrid films displayed similar strength and barrier performance to those 
of neat nanofibrillar cellulose films, thus offering an option for reduced cost while keeping 
a performance from synergistic contributions of the components. Furthermore, dense films 
with low porosity, a characteristic essential for barrier properties, can be easily produced by 

replacing up to 75% of micro- and nanofibrillar cellulose with SMF or SMP.

4.5. Peroxidase

The extraction of enzymes from agro-industrial residues is an alternative for reducing costs 

in biocatalyst production. Soybean hull peroxidase (SHP, E.C. 1.11.1.7) is a glycoprotein that 
belongs to plant peroxidase superfamily that also includes horseradish (HRP), peanut, and 
barley peroxidases [101]. Because of the high thermostability, broad pH stability, and cheap 

source for production from soybean hulls [102], SHP is a more promising biocatalyst for indus-

trial use as compared with the widely used HRP. SHP was previously used for the removal of 
aqueous phenols from wastewaters in stirred membrane reactor, as a bromination catalyst, for 

luminal oxidation, for the synthesis of polyaniline, and in organic solvents [103–106]. Then, 

higher-value commodities such as diagnosis tests and therapeutics would require more costly 

alternatives such as purified or recombinant peroxidases. Soybean hull peroxidase has a fer-

riprotoporphyrin IX prosthetic group located at the active site. The catalytic mechanism fol-

lows a peroxidase ping-pong mechanism involving the two-electron transfer from hydrogen 

peroxide to the heme, creating an oxidized form of the enzyme, “compound I.” Successive 

one-electron reductions return the enzyme to its native or reduced state via an intermediate 

oxidized form of the enzyme, “compound II” [107]. As compared with free enzymes, immobi-

lized enzymes offer more advantages, such as enhanced stability against various denaturing 
conditions, easier product and enzyme recovery, higher catalytic activity, continuous opera-

tion of enzymatic processes, reusability, and reduced susceptibility to microbial contamina-

tion [108, 109]. Chagas et al. [110] extracted peroxidase from soybean hulls and immobilized 

the enzymes on chitosan beads cross-linked with glutaraldehyde. The immobilized enzyme 

showed a potential of 50% in the oxidation of caffeic acid after four consecutive cycles.

4.6. Oligopeptides

Soybean oligopeptides produced by proteolysis or microbial fermentation techniques fol-

lowed by purification protocols are widely used in the food industry. The soybean hulls 
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may contain 11–15% of proteins, and the proteins can be transferred into oligopeptides by 

various techniques. Most commercial productions of oligopeptides use batch hydrolysis, 

which depends on various factors such as protein denaturation, hydrolysis temperature, and 

protease specificity [111]. The hydrolysate of protein is a complex mixture of peptides with 

various lengths. Molecular size of the peptides has a major effect on functional properties. 
In general, smaller peptides with less than six amino acids have the greatest impact on cell 

growth and production [112]. Rojas et al. [10] published the results concerning the recovery of 

proteins from soybean hulls by hydrolysis, mainly as oligopeptides, and subsequent ethanol 

production from the remaining lignocellulosic fraction. The results indicated that soybean 

hulls might be a promising feedstock for the production of a high-value protein hydrolysate 

composed mainly of low-molecular-weight oligopeptides.

5. Conclusion

Soybean hulls are a major by-product in the soybean-processing industry, and have a vari-

able chemical composition of cellulose (29–51%), hemicellulose (10–25%), lignin (1–4%), pec-

tin (4–8%), proteins (11–15%), and minor extractives. The low lignin content in soybean hulls 

makes the residues have a very wide variety of applications. Due to their compositions, the 

soybean hulls are widely used as animal feed and have demonstrated the advantages of using 

as an energy source for ruminants in replacement of corn. Adsorption of inorganic or organic 

pollutants in wastewater by soybean hulls has been limited and the hull modification is desir-

able to enhance adsorption, especially of metal ions. The soybean hulls are potentially com-

mercial source of ethanol production, dietary fiber, microfibrils, polysaccharides, and pectin. 
Soybean hulls can be converted into useful form of energy such as bio-oil by thermochemical 

processes. The extraction of peroxidase from soybean hulls is an alternative for reducing costs 

in biocatalyst production. The peroxidase has been used for the removal of aqueous phenols 

from wastewaters in stirred membrane reactor, as a bromination catalyst, for luminal oxida-

tion, for the synthesis of polyaniline, and in organic solvents. The protein content in soybean 

hulls has produced a high-value protein hydrolysate composed mainly of low-molecular-

weight oligopeptides.
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