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Abstract

We consider an optimization problem for spatial power distribution generated by an array
of transmitting elements. Using ultrasound hyperthermia cancer treatment as a motivating
example, the signal design problem consists of optimizing the power distribution across the
tumor and healthy tissue regions, respectively. The models used in the optimization problem
are, however, invariably subject to errors. To combat such unknown model errors, we
formulate a robust signal design framework that can take the uncertainty into account using
a worst-case approach. This leads to a semi-infinite programming (SIP) robust design prob-
lem, which we reformulate as a tractable convex problem that potentially has a wider range
of applications.
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1. Introduction

Local hyperthermia is a noninvasive technique for cancer treatment, in which targeted body

tissue is exposed to high temperatures to damage cancer cells, leaving surrounding tissue

unharmed. This technique is used both to kill-off cancer cells in tumors and as a means to

enhance other treatments such as radiotherapy and chemotherapy. Hyperthermia has the

potential to treat many types of cancer, including sarcoma, melanoma, and cancers of the head

and neck, brain, lung, esophagus, breast, bladder, rectum, liver, appendix, cervix, etc. [1–3].
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Hyperthermia treatment planning involves modeling patient-specific tissue, usingmedical imag-

ing techniques such as microwave, ultrasound, magnetic resonance or computed tomography,

and calculating the spatial distribution of power deposited in the tissue to heat it [4]. There exist

two major techniques to concentrate the power in a well-defined tumor region: electromagnetic

and ultrasound, each with its own limitations. The drawback of electromagnetic microwaves is

its poor penetration in biological tissue; while for ultrasound, the short acoustic wavelength

renders the focal spot very small. Using signal design methods, however, one can improve the

spatial power deposition generated by an array of acoustic transducers. Specifically, standard

phased array techniques do not make use of combining a diversity of signals transmitted at each

transducer. When this diversity is exploited, it is possible to dramatically improve the power

distribution in the tumor tissue, thus improving the effectiveness of the method and reducing

treatment time [5, 6]. Given a set of spatial coordinates that describe the tumor region and the

healthy tissue, respectively, the transmitted waveforms can be designed to optimize the spatial

power distribution while subject to certain design constraints.

One critical limitation, however, is the assumption of an ideal wave propagation model from

the transducers to a given point in the tissue. Specifically, model mismatches may arise from

hardware imperfections, tissue inhomogeneities, inaccurately specified propagation veloci-

ties, etc. Thus, the actual power distribution may differ substantially from the ideal one

designed by an assumed model. This results in suboptimal clinical outcome due to loss of

power in the tumor region and safety issues due to the possible damage of healthy tissue.

These considerations motivate developing robust design schemes that take such unknown

errors into account.

In this chapter, we derive a robust optimization method that only assumes the unknown

model errors to be bounded. The power is then optimized with respect to “worst-case” model

errors. By using a worst-case model, we provide an optimal signal design scheme that takes

into account all possible, bounded model errors. Such a conservative approach is warranted in

signal design for medical applications due to safety and health considerations. Our method

further generalizes the approach in [5] by obviating the need to specify a fictitious tumor center

point. The framework developed here has potential use in wider signal design applications

where the resulting transmit power distributions are subject to model inaccuracies. More

specifically, the design problem formulated in this chapter and the proposed robust scheme

can be exploited to robustify the spatial power distribution for applications that an array

equipped with multiple elements is used to emit waveforms in order to deliver power to an

area of interest in a controlled manner.

The core of this study is built upon exploiting waveform diversity which has been introduced

in multiple-input multiple-output (MIMO) radar literature [7], and later has been applied for

local hyperthermia cancer treatment improvement in [5]. In the MIMO radar field, robustness

studies have been carried out in different applications under varying design parameter uncer-

tainties, cf., [8, 9]. Recently, in [10], we have studied the robustification of the waveform

diversity methodology for MIMO radar applications. It should be highlighted that, in this

chapter, a more generic problem formulation has been studied with respect to those of [10],

where a new application area is considered to illustrate the performance of our proposed
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robust design. In the array processing literature, beamforming under array model errors has

also spawned extensive work, cf., [11–14].

For hyperthermia therapy, the need for robust solutions when optimizing for phase and

amplitude of conventional phased array has been investigated in [15], considering perfusion

uncertainties, and in [16] considering dielectric uncertainties. The authors emphasize on the

role of uncertainty in such designs (hyperthermia planning) since it influences the calculation

of power distribution, and correspondingly temperature distribution.

The chapter is organized as follows: in Section 2, we describe the system model and the

relevant variables. In Section 3, the signal design problem is presented. First, we consider the

state-of-the-art method based on “waveform diversity” [5, 7, 17], then we generalize the design

problem by introducing a deterministic and bounded set of possible model errors which

results in an infinite number of constraints. Importantly, we show that this seemingly intracta-

ble problem can be equivalently formulated as a tractable convex optimization problem. In

Section 4, we evaluate the design scheme. We evaluate the performance of our proposed robust

power distribution scheme specifically for local hyperthermia breast cancer treatment. This

example application is motivated by the alarming statistics pointing to breast cancer as one of

the leading causes of death among women worldwide [18–20].1 The case of no model

mismatch is investigated first, and then the robust design scheme is applied, where its power

distribution in the worst-case model is evaluated and compared to the nonrobust formulation.

Notation: Boldface (lower case) is used for column vectors, x, and (upper case) for matrices, X.

∥a∥W ≜
ffiffiffiffiffiffiffiffiffiffiffiffiffi

aHWa
p

, where W≻ 0. xT and xH denote transpose and Hermitian transpose, respec-

tively. R � 0 signifies a positive semi-definite matrix and R1=2 signifies a matrix square-root,

e.g., Hermitian. The set of complex numbers is denoted by C.

Abbreviations: semi-infinite programming (SIP); multiple-input multiple-output (MIMO);

semidefinite program (SDP); linear matrix inequality (LMI).

2. System model

We consider an array of M acoustic transducers to heat target points. These transducers are

located at known positions θm, for m ¼ 1, 2,…,M, around the tissue at risk, cf., [5, 10]. We

parameterize an arbitrary point in 3D space using Cartesian coordinates r ¼ xyz½ �T .

Let xm nð Þ denote the baseband representation of narrowband discrete-time signal transmitted

at the mth transducer, at sample n ¼ 1,…, N. Then, the baseband signal received at a generic

location r equals the superposition of signals from all M transducers, i.e.,

1

Breast cancer is the most common cancer in the UK [18]. The risk of being diagnosed with breast cancer is 1 in 8 for

women in the UK and US [18, 19]. Breast cancer is also stated to be a leading cause of cancer death in the less developed

countries [20].
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y r; nð Þ ¼
X

M

m¼1

am rð Þxm nð Þ, n ¼ 1,…, N

¼ a
H

rð Þx nð Þ, n ¼ 1,…, N,

(1)

where the mth signal is attenuated by a factor am rð Þ which depends on the properties of

the transducers, the carrier wave, and the tissue. This factor is modeled as

am rð Þ ¼
e�j2πf cτm rð Þ

∥θm � r∥
1
2

, (2)

where f c is the carrier frequency, and τm rð Þ ¼ ∥θm�r∥
c is the required time for any signal to arrive

at location rwhere c is the sound speed inside the tissue. Note that the root-squared term in the

denominator of (2) represents the distance-dependent propagation attenuation of the acoustic

waveforms. In (1), the narrowband signals are represented in vector form x nð Þ ¼ x1 nð Þ…½

xm nð Þ…xM nð Þ�T ∈ C
M�1 and a rð Þ≜ a1 rð Þ…am rð Þ…aM rð Þ½ �T ∈ C

M�1 is the array steering vector as

a function of r.

At a generic location r in the tissue, the power of the transmitted signal, i.e., the transmit

beampattern, is given by

p rð Þ ¼ E y r; nð Þj j2
n o

¼ a
H
rð ÞRa rð Þ, (3)

where

R≜E x nð ÞxH nð Þ
� �

is the M�M covariance matrix of the signal x nð Þ. As Eq. (3) suggests, the transmit

beampattern is dependent on the waveform covariance matrix R and the array steering

vector a rð Þ. In the following, we analyze how one can form and control the beampattern by

optimizing the covariance matrix R, so as to heat up the tumor region of the tissue while

keeping the power deposition in the healthy tissue minimal. In this work, we consider

schemes which allow for the lowest possible power leakage to the healthy area.

Once an optimal covariance matrix R has been determined, the waveform signal x nð Þ can be

synthesized accordingly. One simple approach is x nð Þ ¼ R
1=2

w nð Þ, wherew nð Þ is a sequence of

independent random vectors with mean zero and covariance matrix I. For detailed discussion

see [21–23, Ch. 14].

A significant challenge to this approach, however, is that the true steering vector a rð Þ in (3)

does not exactly match the model in (2) for a host of reasons: array calibration imperfections,

variations in transducing elements, tissue inhomogeneities, inaccurately specified propagation

velocity, etc. We will therefore consider the aforementioned design problem subject to model

uncertainties in the array steering vector at any given point r. We refer to this approach as

robust waveform diversity.
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3. Problem formulation

The waveform-diversity-based technique [5, 7, 10, 22, 24] have been used for designing

beampatterns (3) subject to practical constraints. In general, we aim to control and shape the

spatial power distribution at a set of target points while simultaneously minimizing power

leakage in the remaining area. By exploiting a combination of different waveforms in (1), the

degrees of freedom increase for optimizing the beampattern under constraints.

After reviewing the standard waveform diversity approach, we focus on the practical scenario

where the assumed array steering vector model is subject to perturbations. In the subsequent

section, the proposed robust technique is evaluated by numerical simulations, comparing the

performance with and without robustified solution under perturbed steering vectors.

3.1. Waveform-Diversity-based Ultrasound System

In the MIMO radar literature, sidelobe minimization is a beampattern design problem that has

been addressed by using the waveform diversity methodology, cf., [7, 21, 22, 24]. This design

problem can be thought of as an optimization problem, where the probing waveforms covari-

ance matrix R is the optimization variable to be chosen under positive semi-definiteness

assumption and with a constraint on the total power. The waveform-diversity-based scheme

for ultrasound system has been introduced and explained in detail in [5] based on the transmit

beampattern design technique for MIMO radar systems [7, 24].

In the following, we consider the practical power constraint, where all array elements have the

same power. Therefore, the covariance matrix R belongs to the following set R:

R≜ RjR � 0;Rmm ¼
γ

M
;m ¼ 1; 2;…;M

n o

, (4)

where γ is the total transmitted power and Rmm is the mth diagonal element of R

corresponding to the power emitted by mth transducer. The healthy tissue and the tumor

regions are represented by two sets of discrete control points r:

ΩS ¼ r1; r2;…; rNS
f g (5)

ΩT ¼ r1; r2;…; rNT
f g, (6)

where NS and NT denote the number of points in the healthy tissue region and the tumor

regions, respectively. Without loss of generality, let r0 be a representative point which is taken

to be the center of the tumor region ΩT . The objectives for this optimization problem can be

summarized as follows: design the waveform covariance matrix R so as to

• maximize the gap between the power at the tumor center r0 and the power at the control

points r in the healthy tissue region ΩS;

• while guaranteeing a certain power level for control points r in the tumor region ΩT .

Mathematically, this problem is formulated as (see [5])
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max
R, t

t

s:t: aH r0ð ÞRa r0ð Þ � aH rð ÞRa rð Þ ≥ t, ∀r∈ΩS

aH rð ÞRa rð Þ ≥ 1� δð ÞaH r0ð ÞRa r0ð Þ, ∀r∈ΩT

aH rð ÞRa rð Þ ≤ 1þ δð ÞaH r0ð ÞRa r0ð Þ, ∀r∈ΩT

R∈R

(7)

where t denotes the gap between the power at r0 and the power at the control points r in the

healthy region ΩS. The parameter δ is introduced here to control the required certain power

level at the control points in the tumor region. For instance, if we set δ ¼ 0:1, then we aim for

having power at the tumor region ΩT to be within 10% of p r0ð Þ, i.e., the power at the tumor

center. This is an SDP problem which can be solved efficiently in polynomial time using any

SDP solver, e.g., CVX [25, 26].

3.2. Robust waveform-diversity-based ultrasound system

The convex optimization problem (7) and consequently its optimal solution, i.e., the optimal

covariance matrix R, are functions of the steering vectors a rð Þ. In practice, however, the

assumed steering vector model used to optimize R is inaccurate. Hence, using nominal

steering vectors â rð Þ based on an ideal model, in lieu of the unknown true steering vectors

a rð Þ in (7), may result in undesired beampatterns with low power at the tumor region and

damaging power deposition in the healthy tissue region. Such health considerations in

medical applications motivate an approach that is robust with respect to the worst-case

model uncertainties.

In order to formulate the robust design problem mathematically, we parameterize the steering

vector uncertainties as follows. Let the true steering vector for the transducer array be

a rð Þ ¼ â rð Þ þ ~a rð Þ, where ~a rð Þ is an unknown perturbation from the nominal steering vector.

The deterministic perturbation at any generic point r belongs to the uncertainty set Er that is

bounded

Er ≜ ~a rð Þ j ∥~a rð Þ∥2W ≤ εrg,
�

(8)

where W is a M�M diagonal weight matrix with positive elements. The weight matrix W can

be derived based on the type of uncertainty. UsingW, the set Er indicates an ellipsoidal region.

The bound er for the set can be a constant or a function of r, i.e., er ¼ f rð Þ. This set enables

parameterization of element-wise uncertainties in the nominal steering vector â rð Þ at each r.

Besides this consideration, we generalize the problem formulation (7) further by setting a uni-

form bound (power level) P across the tumor regionΩT as an optimization variable to which the

power of all the control points in the healthy region ΩS are compared. This is in contrast to (7)

and the robust formulation in [10], where the power levels of all the healthy grid points ΩS are

compared with the power of only a single reference point at fictitious tumor center r0. There is no
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need to limit our problem to a single point as a reference power level. Rather, the desired

tightness of the power level acrossΩT is specified by the parameter 0 ≤ δ < 1. This generalization

also improves the efficiency when it comes to solving the robust design problem.

With these considerations, the robust beampattern design problem can be formulated as

max
R, t,P

t subject to

P� â rð Þ þ ~a rð Þð ÞHR â rð Þ þ ~a rð Þð Þ ≥ t, ∀~a rð Þ∈ Er, r∈ΩS

â rð Þ þ ~a rð Þð ÞHR â rð Þ þ ~a rð Þð Þ ≥ 1� δð ÞP,∀~a rð Þ∈ Er, r∈ΩT

â rð Þ þ ~a rð Þð ÞHR â rð Þ þ ~a rð Þð Þ ≤ 1þ δð ÞP,∀~a rð Þ∈ Er, r∈ΩT

R∈R,

(9)

where t is the gap between the desired power levels set across ΩT and power deposition in the

healthy tissue ΩS, similar to (7). Note that we take into account every possible perturbation

~a rð Þ∈ Er.

In contrast to the optimization problem (7), which is a tractable convex problem, the robust

problem (9) is an SIP problem. For a given R in (9), there are infinite number of constraints in

terms of ~a rð Þ to satisfy which makes the problem non-trivial. However, in the following

theorem, extending the approach in [10], we reformulate the robust power deposition problem

as a convex SDP problem whose solution is the optimally robust covariance matrix.

Theorem 1. The robust power deposition for an M-element transducer array with the probing signal

covariance matrix R∈R and the perturbation vector ~a rð Þ∈ Er, i.e., the solution of (9), is given as a

solution to the following SDP problem

max
R, t,P, βi, βj,1, βj,2

t subject to

ΩS :

βiW� R �Râ rið Þ

�â rið ÞHR P� t� â rið ÞHRâ rið Þ � βiεri

" #

� 0,

ΩT :

βj,1Wþ R Râ rj

� �

â rj

� �H
R â rj

� �H
Râ rj

� �

� 1� δð ÞP� βj,1εrj

2

4

3

5 � 0,

ΩT :

βj,2W� R �Râ rj

� �

�â rj

� �H
R 1þ δð ÞP� â rj

� �H
Râ rj

� �

� βj,2εrj

2

4

3

5 � 0,

R∈R, βi, βj,1, βj,2 ≥ 0, i ¼ 1,…, NS, j ¼ 1,…, NT :

(10)

Proof: See Appendix A.

Observe that the notations ΩS and ΩT indicate that the corresponding linear matrix inequal-

ities (LMIs) should be satisfied for the points ri ∈ΩS and rj ∈ΩT , respectively. Note that

the robust SDP problem in this chapter, which is stated in Theorem 1, can be solved more
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efficiently than the SDP problem in [10] since the matrices R and W in the current formulation

have half of the size of the matrices involved in the latter problem. This occurs due to the

generalization of the robust problem by using the uniform power level as a benchmark.

Note that other robust problems with similar objectives can also be addressed using the above

approach which are outlined in the following subsection.

3.3. Alternative robust formulations

Similar robust problems to that of (9) can be formulated in many different ways. For example,

by restricting the power level outside the tumor in a weighted fashion.

min
t,R

t subject to

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ ≤ tw rð Þ, ∀~a rð Þ∈ Er, r∈ΩS

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ ≥ 1� δð ÞP,∀~a rð Þ∈ Er, r∈ΩT

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ ≤ 1þ δð ÞP,∀~a rð Þ∈ Er, r∈ΩT

R∈R

(11)

where P, δ are fixed and w rð Þ is a weighting function constructed, e.g., so that the energy

bound close to the tumor is less restrictive.

One could also construct problems that minimize the sum of the energy in the non-tumor area,

where t rð Þ denotes the energy at r:

min
t rð Þ,R

X

r∈ΩS

t rð Þ subject to

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ ≤ t rð Þ, ∀~a rð Þ∈ Er, r∈ΩS

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ ≥ 1� δð ÞP,∀~a rð Þ∈ Er, r∈ΩT

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ ≤ 1þ δð ÞP,∀~a rð Þ∈ Er, r∈ΩT

R∈R:

(12)

Both of the alternative formulations described above can be addressed following the steps

derived in Appendix A by using S-lemma, since we are still dealing with quadratic constraints.

In the next section, we illustrate the reference performance of a nominal scenario where the

steering vectors are perfectly known. Then, we observe how much power can leak to the

healthy tissue and cause damages when subject to uncertain steering vectors. Finally, we

evaluate the proposed robust scheme in terms of improving the power deposition along our

stated design goals.

4. Numerical results

To illustrate the performance of the proposed robust scheme, we consider a 2D model of the

organ at risk. Here, similar to [5], we focus on the ultrasonic hyperthermia treatment for breast
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cancer where a 10-cm-diameter semicircle is assumed to model breast tissues with a 16-mm-

diameter tumor embedded inside. The tumor center is located at r0 ¼ 0 34½ �T mm. Figure 1

shows this schematic model. We consider a curvilinear array withM ¼ 51 acoustic transducers

and half wavelength element spacing. Acoustic waveforms used to excite the array have the

carrier frequency of 500 kHz. The acoustic wave speed for the breast tissue is considered as

1500 m/s.

To characterize (discretize) the healthy tissue regionΩS and the tumor regionΩT , two grid sets

with the spacing 4 mm are considered. For optimization, a rectangular surface of the dimen-

sion 64� 42 in mm is assumed symmetric around the tumor to model the healthy region ΩS,

while the grid points belonging to the circular tumor region are excluded from this surface and

they modelΩT . Overall, 174 and 13 number of control points are considered to characterizeΩS

and ΩT in order to optimize the array beampattern.

The total transmitted power is constrained to γ ¼ 1. For simplicity, the uncertainty set Er is

modeled with W ¼ IM and with er � e for all r, where e ¼ 0:25. Furthermore, the tightness of

the desired power level in the across tumor region, δ, is set to 0:7. Note that for the small values

of δ and/or large values of e, the problem may turn infeasible. In general, the feasibility of the

problem depends on the value of the tightness bound δ relative to the size of the existing

uncertainty in the system, i.e., the volume of the uncertainty set e, and the number of grid

points NS and NT used to control the beampattern at the area of interest. When δ is too small,

the desired power level across ΩT is close to uniform and there may not exist enough degrees

of freedom for the design problem to have a solution.

For reference, the optimal covariance matrix when no uncertainty is taken into account, Rnr, is

obtained by solving problem (9) using only nominal steering vectors ba rð Þ, i.e., ~a rð Þ � 0. The

optimal robust covariance matrix, denoted R⋆, is obtained by solving (10), where ~a rð Þ∈ Er. For

Figure 1. A schematic 2-D breast model with a 16-mm embedded tumor at 0; 34ð Þ as a reference geometry. A curvilinear

ultrasonic array with 51 transducers is located near to the organ at risk. The ultrasonic array is used for hyperthermia

treatment.
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performance evaluation, we consider the power deposition in the tissue under the worst-case

perturbations of the steering vectors. This scenario provides a lower bound to the achievable

performances of all steering vector perturbations ~a rð Þ, which belong to the deterministic

uncertainty set Er. In other words, for the points r in the healthy region ΩS, the worst-case

performance is rendered by the steering vectors which provide the highest power; whereas, for

the points r in the tumor region ΩT , those steering vectors which attain the lowest power are

the ones which contribute in the worst-case performance. They are collectively referred to as

the worst steering vectors. Therefore, for a given R, either Rnr or R
⋆, the worst steering vectors

for the control points r inΩS andΩT are obtained by maximizing and minimizing the transmit

beampattern (3), respectively. Observe that finding the worst steering vectors for the points in

the tumor region ΩT equals solving the following convex minimization problem at each

r∈ΩT , i.e.,

min
∥~a rð Þ∥2 ≤ ε

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ (13)

using CVX [25, 26]. Whereas, for finding the worst steering vectors for the points in the healthy

region ΩS, we obtain a local optimum for the following nonconvex maximization problem at

each r∈ΩS, i.e.,

max
∥~a rð Þ∥2 ≤ ε

ba rð Þ þ ~a rð Þð Þ
H
R ba rð Þ þ ~a rð Þð Þ, (14)

using semidefinite relaxation techniques from [27].

We evaluate the designed beampatterns (3) plotting the spatial power distribution in decibel

scale, i.e., 20log10 p rð Þð Þ. Two different scenarios are considered, namely nominal and perturbed,

to evaluate the proposed robust power distribution scheme for the ultrasonic array. In the first

scenario, nominal, we assume that the array steering vectors are precisely modeled, i.e.,

~a rð Þ ¼ 0. In Figure 2, the beampattern generated by the array is plotted for the nominal

Figure 2. Power distribution (transmit beampattern in dB) for the nominal scenario, i.e., using Rnr and ~a rð Þ � 0.
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scenario. This figure represents how power is spatially distributed over the organ at risk in an

idealistic situation. Here, the covariance matrix of the waveforms is optimized under the

assumption that the steering vectors are accurately modeled by (2), and the performance

is evaluated using exactly the same steering vectors without any perturbations. The power is

noticeably concentrated in the tumor region and importantly the power in the healthy tissue is

several decibels lower.

In the second scenario, perturbed, the idealistic assumptions are relaxed and model uncer-

tainties and imperfections are taken into account. The second scenario represents the case,

where the true steering vectors are perturbed versions of the nominal steering vectors ba rð Þ, i.e.,

the true steering vector equals ba rð Þ þ ~a rð Þ where ~a rð Þ∈ Er. The perturbation vectors ~a rð Þ are

unknown but deterministically bounded. In the following, we illustrate the worst-case

Figure 3. Power distribution (transmit beampattern in dB) for the perturbed scenario, i.e., using Rnr and ~a rð Þ∈ Er.

Figure 4. Power distribution (transmit beampattern in dB) for the perturbed scenario, i.e., using R⋆ and ~a rð Þ∈ Er.
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performance, i.e., using the worst steering vectors to calculate the power distribution at each

point. We start by illustrating the beampattern for the nonrobust covariance matrix Rnr under

the worst steering vectors. Figure 3 shows how steering vector errors can degrade the array

performance. Notice that in the worst-case, there is a substantial power leakage that occurs in

the healthy tissue surrounding the tumor compared to Figure 2. While, in Figure 4, the robust

optimal covariance matrix R⋆, i.e., the solution to (10), is used to calculate the power for the

worst steering vectors. Comparing Figures 3 and 4, we see that by taking model uncertainties

into account it is possible to obtain a noticeable increase in power in the tumor region for the

worst-case, and importantly, dramatic reductions of power deposited in the healthy tissue.

To finalize the numerical analysis, we provide a quantitative description for the performance

of our proposed scheme summarized in Table 1. It shows the average power calculated in dB

received at the tumor region ΩT and at the healthy region ΩS.

5. Conclusion

The robust transmit signal design for optimizing spatial power distribution of a multi-antenna

array is investigated. A robustness analysis is carried out to combat against inevitable uncer-

tainty in model parameters which results in performance degradation. Such degradation

occurs in practice quite often due to relying on imperfect prior and designs based upon them.

Particularly, in this chapter, the transmit signal design is based on exploiting the waveform

diversity property, but where errors in the array steering vector are taken into account. These

errors are modeled as belonging to a deterministic set defined by a weighted norm. Then, the

resulting robust signal covariance optimization problem with infinite number of constraints is

translated to a convex problem which can be solved efficiently by using the S-procedure.

Designs that are robust with respect to the worst-case are particularly vital in biomedical

applications due to health risks and possible damage. Herein, we have focused on local

hyperthermia therapy as one of the cancer treatments to be used either individually or along

with other treatments such as radio/chemotherapy. Specifically, we consider hyperthermia

treatment of breast cancer motivated by the fact that breast cancer is a major global health

concern. The proposed robust signal design scheme aims to reduce unwanted power leakage

into the healthy tissue surrounding the tumor while guaranteeing certain power level in the

tumor region itself.

Scenarios ΩT ΩS

Nominal, R0 �16:54 �29:78

Perturbed, R0 �36:40 �11:69

Perturbed, R⋆
�27:17 �17:43

Table 1. Average power for different regions.
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We should emphasize on the fact that the robust design problem formulation and the analysis

carried out herein yielding to the robust waveforms are general enough to be exploited

whenever spatial power distribution is a concern to be addressed in real world scenarios

dealing with uncertainties, e.g., for radar applications.

Numerical examples representing different scenarios are given to illustrate the performance of

the proposed scheme for hyperthermia therapy. We have observed significant power leakage

into the healthy tissue that can occur if the design is based on uncertain model parameters.

Importantly, we have shown how such damaging power deposition can be avoided using the

proposed robust design for optimal spatial power distribution.
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A. Appendix

A.1. Proof of Theorem 1

We start the proof by first stating the S-Procedure lemma, which helps us to turn the optimi-

zation problem (6) with infinitely many quadratic constraints into a convex problem with finite

number of LMIs.

Lemma 1. (S-Procedure ([28], Lemma 4.1): Let f k xð Þ : Cn ! R, k ¼ 0, 1, be defined as

f k xð Þ ¼ xHAkxþ 2Re bH
k x

� �
þ ck, where Ak ¼ AH

k ∈C
n�n,bk ∈C

n, and ck ∈R. Then, the statement

(implication) f 0 xð Þ ≥ 0 for all x∈C
n such that f 1 xð Þ ≥ 0 holds if and only if there exists β ≥ 0 such that2

A0 b0

bH
0 c0

� �
� β

A1 b1

bH
1 c1

� �
� 0, (15)

if there exists a point bx with f 1 bxð Þ > 0.

The constraints in the optimization problem (9) can be rewritten as the following functions of

~a rð Þ for r∈ΩS and r∈ΩT . For notation simplicity, we only specify the set from which the

control points are drawn, and we also drop r.

2

Note that S-Procedure is lossless in complex space for the case of at most two constraints [29].
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ΩS :
f 0 ¼ �~aHR~a � 2Re â

H
R~a

	 


� â
H
Râ � tþ P ≥ 0

f 1 ¼ �~aHW~a þ εr ≥ 0

8

<

:

ΩT :
f 0 ¼ ~aHR~a þ 2Re â

H
R~a

	 


þ â
H
Râ � 1� δð ÞP ≥ 0

f 1 ¼ �~aHW~a þ εr ≥ 0

8

<

:

ΩT :
f 0 ¼ �~aHR~a � 2Re â

H
R~a

	 


� â
H
Râ þ 1þ δð ÞP ≥ 0

f 1 ¼ �~aHW~a þ εr ≥ 0

8

<

:

(16)

Now, according to the S-Procedure lemma, each pair of the quadratic constraints above is

replaced with an LMI for each grid points in the pre-defined sets. In other words, all these

quadratic constraints are satisfied simultaneously if we find βi for i ¼ 1,…, NS, βj,1 and βj,2

for j ¼ 1,…, NT, for which the mentioned LMIs in Theorem 1 holds. Thus, the problem

boils down to the SDP problem (10) with 2NT þNS LMIs of the size Mþ 1ð Þ � Mþ 1ð Þ as

the constraints. □
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