
Hybrid Models and Biological Model Reduction with
PyDSTool

Robert Clewley*

Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America

Abstract

The PyDSTool software environment is designed to develop, simulate, and analyze dynamical systems models, particularly
for biological applications. Unlike the engineering application focus and graphical specification environments of most
general purpose simulation tools, PyDSTool provides a programmatic environment well suited to exploratory data- and
hypothesis-driven biological modeling problems. In this work, we show how the environment facilitates the application of
hybrid dynamical modeling to the reverse engineering of complex biophysical dynamics; in this case, of an excitable
membrane. The example demonstrates how the software provides novel tools that support the inference and validation of
mechanistic hypotheses and the inclusion of data constraints in both quantitative and qualitative ways. The biophysical
application is broadly relevant to models in the biosciences. The open source and platform-independent PyDSTool package
is freely available under the BSD license from http://sourceforge.net/projects/pydstool/. The hosting service provides links
to documentation and online forums for user support.
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Introduction

There are now many simulation and visualization software

packages available for individual application domains across the

biosciences, and several general purpose packages for analyzing

dynamical systems. However, less attention has been paid to the

tools needed to develop models for complex phenomena through

inference and reverse engineering of natural systems [1–3]. The

unique scientific focus of the PyDSTool software package [4]

(current version provided in Supplemental Text S4) is providing

integrated simulation, informatic, and diagnostic tools to support a

forward-looking modeling methodology for the biosciences. This

fills a niche in the biosciences where mathematical tools such as

dimension reduction, qualitative dynamical systems theory and

bifurcation analysis can be better integrated into modeling

workflows. To enhance this support, PyDSTool is open source,

and is extensible and inter-operable with existing application-

specific tools rather than competing with them. As such,

PyDSTool fills a niche that is between large-scale simulation

tools, capable of efficiently handling thousands of variables

(e.g., Neuron [5], NEST [6], VCell [7] or Bio-SPICE [8]),

graphically interactive environments that are better suited for

relatively small numbers of variables (e.g., XPPAUT [9], DsTool

[10] and CONTENT [11]), and lightweight scripting in Matlab

[12] or SciPy [13]. This niche is detailed below by considering

some unmet challenges to model development.

Model development in the biosciences requires tools such as

simulation, visualization, data analysis, diagnostics and validation,

sensitivity analysis, and parameter optimization [14]. There is no

rigorous methodology for combining these tools effectively,

making development an esoteric and often ad hoc process

that blends intuition and exploration [15]. In addressing this

shortcoming, systematic and computer-assisted approaches to

model development have received attention in the software

engineering and business management literature [16,17], but they

typically focus on graphically-designed workflows for integrating

large quantities of data analysis with large scale simulation, and on

management of sharing, collaboration, and provenance [18–20].

Previous work has suggested that a computer-assisted approach

to identifying models using qualitative representations can bridge

the scale from microscopic to macroscopic models and can

guide users to develop heterogeneous and multi-level representa-

tions that assist in comprehending complex mechanisms [21–31].

However, an integrated and general-purpose software environ-

ment has not yet emerged in response to this need. In response,

PyDSTool has been developed as a platform for prototyping

model development principles gleaned from other fields.

At a more technical level, PyDSTool provides a range of general

purpose simulation and analysis tools with similar functionality to

existing packages. A detailed feature comparison is provided on

the website [32] and is summarized here. A major difference from

other packages is the programmatic and interactive aspects of the

PyDSTool library within the Python environment. For instance,

PyDSTool provides high-level compositional model-building tools

involving symbolic expressions and modular component tem-

plates. This helps users construct large models efficiently and in a

mathematically natural fashion compared to graphical approaches

or de novo coding directly in C, Fortran, Java, Python, etc. The rich

representation of model structure also facilitates the sophisticated

manipulation of models both interactively and algorithmically.
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The symbolic tools provided allow Jacobian functions to be

defined automatically for smooth dynamical systems, making their

analysis more efficient. While computer algebra systems such as

Maple [33] and Mathematica [34] provide more advanced

symbolic tools, they do not provide fast numerical integration

and bifurcation tools, and they are not intended for intensive

numerical exploration of high-dimensional, nonlinear dynamical

systems.

PyDSTool exhibits superior performance in numerical integra-

tion over other high-level environments because it automatically

generates low-level C code from user model descriptions. The low-

level code is linked dynamically with C or Fortran solvers and

reloaded as a dynamic linked library for transparent user access

within Python. Comparable high-level programmatic environ-

ments such as Matlab or Python-based packages such as SciPy,

Brian [35], or PySCeS [36], rely on the less efficient high-level

implementation of model codes, the results of which are accessed

via an expensive ‘call-back’ interface from low-level integrators. In

addition, Matlab is neither free nor open source, and does not

provide convenient model description and analysis tools for

working with dynamical systems models.

This article describes an example of how the PyDSTool

environment supports flexible and extensible workflows to be

built over a class hierarchy designed for development and analysis

of dynamical models in scientific applications, as well as for inter-

operability between packages and algorithms. Example workflows

suited to this environment include: (1) model creation specified by

code that later adaptively modifies the model structure or

parameters (e.g., when interfaced with optimization algorithms);

(2) adaptive batches of simulations and analyses that post-process

simulation results to determine which simulations to perform next;

and (3) exploration of model properties and live prototyping

of model development code. Further examples are discussed

throughout the text.

Using hybrid systems for reduction
To illustrate some of the unique benefits of PyDSTool to the

modeler, we will discuss an example that combines elements of

the workflows (1) and (3) above using reduction techniques and

hybrid dynamical systems (see [37] and references therein). Hybrid

dynamical systems are defined later, but loosely speaking they are

made up of smooth vector fields (such as those defined by

differential equations) that are punctuated by discrete changes.

This makes them especially useful for modeling systems that

display modularity in functional state or inherent structure. We

will discuss a measurement of modularity in Results.

In contrast to dimension reduction methods that aim to increase

simulation efficiency (e.g., see [38]), reduction to hybrid system

models has been demonstrated as a tool for inferring the key causal

mechanisms underlying a high-dimensional or otherwise complex

phenomenon, and for validating the resulting hypotheses with a

dynamical system of lower dimension or greater simplicity (e.g.,

[39–42]). In lieu of a more developed qualitative theory of

nonlinear dynamics for hybrid systems, explicitly simulated

representations of the reduced dynamics are needed to ensure

that the hypotheses are both logically self-consistent and consistent

with experimental data. (E.g., see [43] for an example of exploring

this issue in biomechanical modeling.) In addition, algorithms have

recently been developed that assist with the inference of

mechanistic relationships in ordinary differential equation (ODE)

models, and also with the systematic and semi-automated

construction of the resulting reduced descriptions in terms of

hybrid systems [44–46].

A simple example of reducing an ODE in this way is the

replacement of a smooth sigmoidal function having a steep slope

with a piecewise-constant or piecewise-linear step function in

contexts that are not sensitive to the details of the smooth slope

(see [47]). This reduction can be understood in terms of functional

modularity because, in this situation, the strong nonlinearity of the

function ensures effective decoupling between the input and

output when the input is sub-threshold. The validation of the

reduction in an explicit context tests the hypothesis that the details

of the function’s transition were not mechanistically relevant. The

integrate-and-fire neuron described in Supplementary Text S1

uses a similar replacement of smooth spiking dynamics with a

discrete, instantaneous reset.

Multiple time scale systems such as the Van der Pol oscillator or

chemical reaction systems with explicit small parameters are

classic examples of systems that can be reduced to hybrid systems

[48–50]. The models are studied as singularly perturbed systems,

from which a quasi-steady state approximation and similar

techniques obtain a ‘fast-slow’ reduction. This reduction is

generally in the form of a set of differential-algebraic equations

(DAEs) with domain consistency conditions, and can be seen as a

piecewise-local dimension reduction of the model. Thus, it can

be simulated and numerically analyzed using a hybrid model

formalism [44].

We demonstrate hybrid model reduction in a scenario involving

the space-clamped Hodgkin-Huxley (HH) formalism for neural

action potentials (AP) [51]. This is a common biophysical model

based on the first-order kinetics of ion transport across a cell

membrane, and reflects an equation structure inherently similar to

many models in systems biology (two recent examples that use

PyDSTool can be found in [52,53]). Although the HH model has

been analyzed extensively by mathematical and numerical means,

PyDSTool provides a novel opportunity to algorithmically derive,

specify, analyze, and validate a reduced and explicit description

of an AP, from which we claim that superior insight into its

biophysical mechanism is possible.

Design and Implementation

The PyDSTool package is a library-based environment written

primarily in Python, utilizing the numpy [54], SciPy [13], and

matplotlib [55] packages. A few optional dependencies are a C

and Fortran compiler and the SWIG interfacing software (http://

swig.org), which are only necessary to run simulations at their

fastest or to run the bundled AUTO continuation software [56].

The avoidance of non-Python external dependencies simplifies the

installation process on any operating system, which is described in

full via the ‘Getting Started’ link from http://pydstool.sourceforge.

net.

Core classes
PyDSTool is unique in providing a variety of high-level data

types (‘classes’) and library functions that closely mimic mathe-

matical counterparts in dynamical systems theory and provide

intuitive functionality. For example, domains and numeric

intervals are represented by the Interval class, for which

membership, intersection, endpoint testing, etc., are simple

operations. Similarly, numerical arrays are extended to become

Pointsets, incorporating several features: named fields instead

of indices for accessing variables, an associated independent

variable that may parameterize the data, and metadata labels

that can be indexed and cross-referenced. Pointsets are further

abstracted to Trajectories (parameterized, smooth curves),

which further add a transparent layer of domain checking and

Hybrid Reduced Models with PyDSTool

PLOS Computational Biology | www.ploscompbiol.org 2 August 2012 | Volume 8 | Issue 8 | e1002628



interpolation that allows numerically computed data to be treated

as continuous, when appropriate. Among others, such classes

provide intuitive abstractions that allow users to more efficiently

express their mathematical ideas in new algorithms, or to naturally

specify complex meta-model constraints.

At the lowest level, PyDSTool supports simulations of ordinary

differential equations (ODEs), differential-algebraic equations

(DAEs), and discrete mappings [57]. Few comparable dynamical

systems packages support DAEs, which are useful in hybrid

modeling, and rarely support hybrid dynamics beyond simple

case-based ‘switch’ or ‘if’ statements or Heaviside functions.

PyDSTool users can specify dynamics using evolution equations or

explicit functions of time or state. The range of possible formalisms

for specifying dynamics is supported by the Generator abstract

class, which creates Trajectory objects on demand. There are

several ODE solver implementations supported: the adaptive time

step solvers Dopri and Radau (an implicit solver that is well-suited

to stiff systems and also supports DAEs) [58], a 4th-order Runge-

Kutta fixed time-step method, and a wrapping of VODE (via

SciPy) [59]. All solvers support arbitrary-precision event detection

with a simple Event class, which is crucial for defining hybrid

systems and is missing from many application-specific simulators.

PyDSTool is modular and can be extended to support other

solvers.

Bundled toolboxes provide special functionality such as phase

plane analysis, model reduction, optimization, data analysis, and

templates and interfaces for application-specific modeling and

third-party software. For instance, users who install the PySCeS

[36] or SloppyCell [60] systems biology packages have the option

to create models by exporting from those packages (e.g., based on

SBML definitions [61]). Equally, with the NineML Python API

installed [62,63], many forms of neural models can be imported

directly. Alternatively, models can be prepared directly in

PyDSTool using modular constructors and symbolic expressions,

or by writing raw text definitions. An export option to the

ADOL-C periodic solver in Matlab is also provided [64].

Hybrid model implementation
We take a practical approach to implementing hybrid systems

(sometimes known as composite models in other fields) in

PyDSTool that is most applicable to biophysical models, where

smooth dynamics are primary and are punctuated by finite

numbers of discrete events. This differs from the majority of

existing simulation platforms, which typically focus on physical

models for engineering applications with many parallel discrete

event processes mixed with smooth dynamics. Hybrid models in

PyDSTool can be built from sub-models that mix discrete

mappings, ODEs, DAEs, preset trajectories, or any other

embedded code that can produce a Trajectory object.

There are many formalisms for hybrid systems, but the

6-tuple of Simić et al. is adequate for our purposes [65]:

H~ Q,E,D,X ,G,Rð Þ. We do not take a formal approach here,

and it is sufficient to describe these elements informally and direct

the reader to the reference for details. Q is a finite set of discrete

states of the system, which we will refer to as regimes. The regime

transition graph is given by nodes from Q and edges from E. In

each regime, a sub-model is defined from a corresponding n-

dimensional vector field from the set X over a domain from the set

D. Transition events for the edges in E are indicated by ‘guards’

from the set G, which are n{1 dimensional sub-manifolds in each

domain. We will define these guards by zero-crossing functions on

those domains. Finally, there is an optional resetting map

associated with each edge, taken from the set R, which discretely

changes the state variables on a regime transition. Consistent with

some formalisms, we allow a subset (often just one) of the n state

variables (known as ‘indicator’ variables) to be discrete and

therefore constant during each regime.

PyDSTool uses three essential code elements to define a hybrid

model: (1) a hierarchy of component sub-models, (2) a mixture of

zero-crossing events and global self-consistency conditions, and (3)

transition rules between the sub-models that are applied on

occurrence of an associated event or condition failure. During

simulation of a sub-model, a terminal event may occur that stops

the trajectory generation (see the Tutorial in Supplemental Text

S1). In such a scenario, the transition rules for the stopped sub-

model are applied to the final state to choose the next sub-model.

The final state may also be mapped to a new value before

becoming the initial condition for the next sub-model.

A user may define a hybrid model with only one sub-model,

such that a terminal event or maximum elapsed time defined for

that sub-model’s regime will be associated with a transition back to

the same sub-model, typically after a discrete change to the state is

applied. An example of this is using a simple threshold-crossing

event to signal an action potential (AP) in an integrate-and-fire

neuron model [66], after which a discrete change is applied to

reset the membrane potential. (This model’s implementation is

described further in Supplemental Texts S1 and S2.)

Figure 1 summarizes the implementation structure of hybrid

models as a hierarchy of HybridModel objects: other HybridMo-

dels may reside at nodes while NonHybridModels (that are non-

hierarchical and can only wrap Generators) reside at the leaves of

the tree. In between sub-models and their parent are ModelInter-

face (MI) objects. MIs are generic wrappers that filter, transform

or otherwise post-process the output of a sub-model (Figure 2). For

the simplest hybrid models (see Text S1 for an example), MIs are

neutral and no external conditions are necessary, but their high

level of generality allows validation of hybrid model self-

consistency conditions (see Results) and facilitates qualitative

model optimization algorithms (see Future Directions). MIs do

these tasks by encoding data- and hypothesis-driven constraints.

Additionally, they can make optimization more robust using

internal failure recovery. For example, recovery code can

safeguard attempts by a standard optimization routine to test

parameter values in the model that may be inconsistent with its

definition. For instance, such code can catch a problem and return

special values of the objective function rather than an error

condition.

Results

Scaffolding concepts and implementation in PyDSTool
In this sub-section, we introduce a broad conceptual framework

for the established analytical approach of piecewise-reduced

models, and focus on the validation of the analysis by implement-

ing the result as a hybrid systems reduction within PyDSTool.

Modularity of systems (more accurately, ‘near decomposability’)

can be described as the occurrence of clusters of state variables

that are highly inter-coupled but sparsely or weakly coupled to

external variables [2,67,68]. Figure 3 schematically describes a

spatial or structural form of the conceptual reduction framework

used here, in which each inferred module can be analyzed,

reduced and tested separately, and then further tuned in the

context of the whole system. Following similar steps, Figure 4

summarizes the approach for a model that exhibits modular

functional patterns that change over time. The modules form the

basis of each sub-model of a hybrid model reduction. Reduction

approaches are complicated when the effective decoupling

between groups of variables is time- or state-dependent, as in

Hybrid Reduced Models with PyDSTool
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the singularly perturbed systems mentioned earlier, and in the

main example described below.

In its focus on supporting the exploration and understanding of

emergent dynamics across scales, PyDSTool permits embedding of

data playback, simplified model components, or even analytical

tools as surrogates inside MI objects, thereby creating a hybrid

model of heterogeneous component types. For instance, an

embedded optimization tool could interface with regular model

components to infer a low-dimensional characterization (e.g. a

functional curve fit or a reduced-order model) of the dynamics of

some part of a larger process [40,41] (Figures 3 and 4). This

exploratory approach can be described as ‘scaffolding,’ and

permits users to focus on developing specific parts of a model in

a contextually appropriate fashion. Some components may be

temporary placeholders while others are refined, e.g. fitted to

experimental data, such that the eventual goal may be to unify the

model as an entirely ODE-based (non-hybrid) model. Similarly,

scaffolding can allow model order reductions to be targeted to

specific temporal or state sub-domains, increasing the degree of

reduction possible. A more advanced example is replacing a

dynamic variable with a surrogate time series that plays back

experimental or simulated data (known as an ‘external input’

variable in PyDSTool) and ignoring feedback to it from other

coupled variables.

The scaffolding idea has not been exploited in computational

software previously, but is conceptually related to using code stubs

and testing with surrogate data in software engineering, and to the

mathematical ‘buffering’ principle for tackling complex models of

biochemical systems [69].

Example: The Hodgkin-Huxley action potential
We present a hybrid system implementation of the reduced

Hodgkin-Huxley (HH) action potential (AP) derived from a

‘dominant scale’ analysis [70]. Previously, rigorous mathematical

approaches to this system have yielded asymptotically-valid DAEs

with only implicit dynamics for some slow variables, whereas we

derive a fully explicit reduced-order model of the dynamics

throughout an AP [46,71]. Details of the ODEs for this system and

their analysis can be found in these references, and for reasons of

space we briefly summarize the mathematical setup. Coding

details of this hybrid model specification can be found in

Supplemental Texts S1 and S3.

There are four state variables in the HH model: v for the

membrane potential and three ionic channel gating variables,

two for the fast sodium (m, h) and one for delayed-rectifier

potassium (n). These are given by differential equations for their

first order kinetics, and are only coupled with the equation for v

in a hub-like graph with non-symmetric coupling rules. The

validity of a reduced regime determined by dominant scale

analysis is determined by the truth of the defining assumptions.

These include controls on the relative time scales of the

variables (each available in explicit algebraic form) and the

relative scales of dominance calculated as the quantities Ys for

s[C~fm,h,n,l,ag, which includes the passive input terms for the

leak conductance and an applied current Iapp (l and a are

dummy variables that are 0 or 1 depending on their inclusion in

a regime). The Ys are essentially sensitivities of the quasi-static

resting potential of v with respect to changes in each other

variable, and are available in explicit algebraic form. The

‘active’ set of variables in a regime can now be defined as A(C

such that maxs[A(Ys)=mins[A(Ys){sv0 for some user-defined

scale tolerance sw1. A terminal event will indicate that a

variable has left A during the regime when the above inequality

becomes an equality (a zero-crossing), with a similar event for

variables joining A. Post-processing of trajectories is required to

determine exactly which variable left or joined A (see Supple-

mental Text S1).

Dominant scale analysis of a periodic orbit indicated four

reduced regimes that capture the essential dynamics

of qualitatively distinct parts of the AP cycle relative to v

[70]. The sub-models for the regimes do not need to be

decomposed further into sub-models, and so are implemented

by NonHybridModels containing single Generator objects.

Figure 1. Class containment diagram for a hybrid model in
PyDSTool. iMI1...n represent ‘internal’ model interface objects that
wrap n sub-models (n§1). If global consistency conditions are applied
to these sub-models, then n ‘external’ model interface objects, eMI1...n ,
may also be provided. Each iMI may either contain a non-hybrid or
another hybrid model object (an example is shown). Non-hybrid models
combine with a GeneratorInterface to make a thin wrapper for
Generator objects, ensuring API-compatibility with hybrid model
objects and other MIs and thus promoting interchangeability.
Conditions in each eMI specify a target combination of truth or falsity
of one or more constituent features. The features measure properties of
the corresponding iMI and compare them to those in some external
data such as a user-imposed logical template or experimental data.
doi:10.1371/journal.pcbi.1002628.g001

Figure 2. Structure of a ModelInterface (MI) class. An MI wraps a
hybrid or non-hybrid model, providing users an option to add pre- and
post-simulation code to validate input and output, or otherwise filter or
transform the data flow. The control structure also permits failure
recovery in the model to be added.
doi:10.1371/journal.pcbi.1002628.g002

Hybrid Reduced Models with PyDSTool
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Each sub-model contains v and a different set of active inputs

requiring ODEs for zero or more truly dynamic state variables,

resulting in a DAE. The simplified equations and their

consistency conditions form the scaffolding for this sub-model.

There is no coupling to v from the variables not in the active

set, but we must track any changes they make because they are

‘slaved’ to v. The validation method requires that we simulate

the non-active ‘shadow variables’ in order to correctly

determine when the sub-model’s assumptions become incon-

sistent with the original model [44]. For this situation,

PyDSTool naturally supports sub-models having differing

dimension by allowing dummy variables to be included in a

sub-model. Thus all sub-models must formally include all state

variables in one form or other.

Taken together as a hybrid model, the piecewise-local

reductions form a formal hypothesis about the key mechanistic

relationships between variables during an AP. The inferred

mechanistic description is formalized as a sequence of domain

and transition rules called a ‘template’ (e.g., see Table 1 of

[46]). Such clear and specific insights give an advantage for

hybrid modeling over other forms of model reduction. For

parameters corresponding to a fast inhibitory interneuron, the

trajectories computed with this hybrid model are almost

indistinguishable from that of the full model over a wide range

of applied currents. For instance, the periods of oscillation

match closely (Figure 5) as Iapp is increased, except around the

onset of AP oscillations from a steady state (Iapp&0:3). Figure 6

summarizes the similarity of APs in a more sophisticated

dominant scale analysis that determined hybrid models from

four HH-type neurons all matching the same template, thereby

validating the proposed mechanism [46]. Greater mismatches

between reduced and original model trajectories indicate

weakening self-consistency conditions in the reductions and

provide a diagnostic focus for refinement of the mechanisms at

work.

Availability and Future Directions

The software and its source code are publicly available,

anonymously and for free, under the BSD license: http://

sourceforge.net/projects/pydstool/. The download is accompa-

nied by a test suite, documentation of the API, and a link to online

documentation at http://pydstool.sourceforge.net. Sourceforge

provides user forums for feedback about software use, bug

reporting, etc. Interfaces to specialized modeling and simulation

packages will continue to be developed in collaboration with

interested users.

Figure 4. Schematic of the temporal aspects of model
reduction with hybrid systems. This example assumes a model
with hub-like connectivity, exhibiting multiple scale dynamics, and a
periodic behavior (period T ), but a similar process can be described for
non-periodic dynamics. State variables are shown by boxes and their
inter-coupling by lines. A) Dominant scale analysis identifies Regime I
over some time window ½t0,t1) (indicated on the blue time axis) within
which a subset of the variables (yellow oval) are the most influential on
the system’s output; the other connections are effectively weak (dashed
lines). B) The internal dynamics of the resulting sub-model for the
regime (yellow puzzle piece) is analyzed in the context of known input
and output conditions alongside the full model under equivalent
conditions, and the parameters and contextual conditions for the
reduction are tuned to maximize the accuracy of this representation
over ½t0,t1). C) The consistency of the sub-model with the full dynamics
beyond t[½t0,t1) is tested for the generation of accurate cyclic behavior

over a period ½t0,T̂T) for T̂T&T , allowing for further refinement. D) The
process in A–C is repeated for other regimes, creating four consecutive
sub-models in this example. These should form a self-consistent cycle of
entry and exit conditions (indicated by matching puzzle pieces) such
that from the composition emerges a periodic behavior closely
matching that of the full model.
doi:10.1371/journal.pcbi.1002628.g004

Figure 3. Schematic of model reduction methodology with
hybrid systems using spatial decomposition. A) The complex
model involves many inter-dependent state variables (black boxes),
depicted in a connectivity graph. Analysis of a particular model
behavior indicates that some inter-dependencies are effectively weak
(dashed lines), suggesting a functional decomposition into sub-model
components. One such sub-model is highlighted by the yellow oval. B)
The internal dynamics of the sub-model is analyzed in the context of
known input and output conditions, and a reduced model of the
dynamics is derived that closely mimics the original sub-model. The
puzzle piece indicates that the reduced model is derived under certain
explicit constraints and assumptions that relate to the broader context
of the original model. C) Further testing of the reduced component
involves embedding it back into the full system as a surrogate for the
original sub-model, possibly fine-tuning reduced model parameters to
maximize the overall model output similarity under various conditions.
If successful, the reduced component represents an abstracted
description of the mechanism of that part of the model under these
conditions. D) This process can be repeated for other sub-models,
building a global hypothesis of the whole mechanism.
doi:10.1371/journal.pcbi.1002628.g003

Hybrid Reduced Models with PyDSTool
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This work reinforces the idea that a reduction should take place

in the context of a particular phenomenon that the model captures,

and that constraints from that context can be imposed as part of a

computational reduction process. The hybrid model reduction

methodology has determined an explicit mechanistic model for the

sodium and potassium dynamics of the action potential process

using a sequence of low-dimensional approximations with no a

priori assumptions or formal asymptotic limits. This decomposi-

tional approach is intended to facilitate a more sophisticated

investigation of underlying mechanisms in complex dynamics than

the comparatively naive approaches of brute-force parameter

sweeps and large-scale simulation. It also expected to lead to more

effective methods of designing complex dynamics in continuous

dynamical systems.

The design of PyDSTool facilitates qualitative and multi-

objective optimization techniques, which are increasingly recog-

nized as important aspects of biological modeling [3,72,73]. Work

in progress extends the use of PyDSTool classes to develop the

concept of scaffolding further into model optimization and analysis

applications [74].

Supporting Information

Text S1 Tutorial for Hybrid Model Implementation in PyD-

STool.

(PDF)

Text S2 Syntax-highlighted code for the demonstration script

IF_squarespike_model.py.

(PDF)

Text S3 Syntax-highlighted code for the demonstration script

HH_DSSRTtest.py.

(PDF)

Text S4 Complete source code for the PyDSTool package

(version 0.88.120504). Includes API documentation and help files

linking to web pages. This file is identical to the current public

release on Sourceforge.net.

(ZIP)
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Figure 5. AP firing period comparison. The graph compares the period of regular AP firing in the original Hodgkin-Huxley model (‘x’ markers)
and the hybrid reduction (‘o’ markers) as a function of applied current Iapp . Zero period indicates no APs (steady state).
doi:10.1371/journal.pcbi.1002628.g005

Figure 6. Voltage trace fits for various hybrid AP models.
Voltage traces versus time summarize the qualitative fit of four smooth
biophysical models of APs (solid lines) with their hybrid counterparts
(dashed lines). The four sub-model regimes of the AP are indicated with
Roman numerals, with onsets indicated by solid square or circular
markers. A) The fast interneuron model studied here. B) Original
Hodgkin-Huxley parameters. C) A Wang-Buzsáki form of interneuron. D)
A heart interneuron model with a larger set of sub-threshold and AP
ionic currents. Adapted from Figure 7 of Clewley [46], in which full model
and analysis details can be found.
doi:10.1371/journal.pcbi.1002628.g006
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Provenance in scientific workow systems. IEEE Data Eng Bull 30: 44–50.

19. Görlach K, Sonntag M, Karastoyanova D, Leymann F, Reiter M (2011)
Conventional workow technology for scientific simulation. In: Yang X, Wang L,
Jie W, editors. Guide to e-science. Springer-Verlag.

20. The myGrid team. Taverna: open source and domain independent workow
management system. Available: http://www.taverna.org.uk. Accessed 10 June
2012.

21. Abelson H (1990) The bifurcation interpreter: a step towards the automatic
analysis of dynamical systems. Computers Math Applic 20: 13–35.

22. Bradley E, Easley M, Stolle R (2001) Reasoning about nonlinear system
identification. Artif Intell 133: 139–188.

23. Bratko I, Suc D (2003) Learning qualitative models. AI Mag 24: 107–119.

24. Coiera E (1992) The qualitative representation of physical systems. Know Eng
Rev 7: 55–77.

25. Chou IC, Voit E (2009) Recent developments in parameter estimation and
structure identification in biochemical and genomic systems. Math Biosci 219:
57–83.

26. Fishwick PA, Narayanan NH, Sticklen J, Bonarini A (1994) A multimodel
approach to reasoning and simulation. IEEE Trans Sys Man Cyber 24: 1433–
1449.

27. Gomez-Cabrero D, Compte A, Tegner J (2011) Workow for generating
competing hypotheses from models with parameter uncertainty. Interface Focus
1: 438–449.

28. Lee WW, Kuipers B (1993) A qualitative method to construct phase portraits. In:
National Conference on Artificial Intelligence (AAAI-93). Menlo Park, Calif.:
American Association for Artificial Intelligence. pp. 614–619.

29. Li J, Kevrekidis PG, Gear CW, Kevrekidis IG (2007) Deciding the nature of the
coarse equation through microscopic simulations: The baby-bathwater scheme.
SIAM Rev 49: 469–487.

30. Talbi EG (2009) Metaheuristics: From Design to Implementation. New York:
Wiley.

31. Yip K (1987) Extracting qualitative dynamics from numerical experiments. In:
National Conference on Artificial Intelligence (AAAI-87). Menlo Park, Calif.:
American Association for Artificial Intelligence. pp. 665–670.

32. Clewley R (2010) PyDSTool Project Overview. Available: http://www.ni.gsu.
edu/,rclewley/PyDSTool/ProjectOverview.html. Accessed 10 June 2012.

33. Cornhill JM, Testud P (2001) An Introduction to Maple V. Berlin: Springer.

34. Wolfram Research. Mathematica. Available: http://www.wolfram.com/
mathematica/. Accessed 10 June 2012.

35. Goodman DFM, Brette R (2009) The Brian simulator. Front Neurosci 3: 192–
197.

36. Olivier BG, Rohwer JM, Hofmeyr JHS (2004) Modelling cellular systems with
PySCeS. Bioinformatics 21: 560–561.

37. Carloni L, DiBenedetto M, Pinto A, Sangiovanni-Vincentelli A (2004) Modeling
techniques, programming languages, and design toolsets for hybrid systems.
Technical report, IST-2001-38314 WPHS, Columbus Project.

38. Rathinam M, Petzold LR (2003) A new look at proper orthogonal
decomposition. SIAM J Numer Anal 41: 1893–1925.

39. Bose A, Manor Y, Nadim F (2001) Bistable oscillations arising from synaptic
depression. SIAM J Appl Math 62: 706–727.

40. Clewley R (2011) Inferring and quantifying the role of an intrinsic current in a
mechanism for a half-center bursting oscillation: A dominant scale and hybrid
dynamical systems analysis. J Biol Phys 37: 285–306.

41. Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and
synchronization in the presence of conduction delays. Proc Nat Acad Sci U S A
95: 1259–1264.

42. Spardy L, Markin SN, Shevtsova NA, Prilutsky BI, Rybak IA, et al. (2011) A
dynamical systems analysis of afferent control in a neuromechanical model of
locomotion: I. rhythm generation. J Neural Eng 8: 065003.

43. Edwards D (2010) Neuromechanical simulation. Front Behav Neurosci 4: pii:40.
44. Clewley R, Rotstein HG, Kopell N (2005) A computational tool for the

reduction of nonlinear ODE systems possessing multiple scales. Multiscale
Model Simul 4: 732–759.

45. Clewley R, Soto-Treviño C, Nadim F (2009) Dominant ionic mechanisms
explored in the transition between spiking and bursting using local low-
dimensional reductions of a biophysically realistic model neuron. J Comput
Neurosci 26: 75–90.

46. Clewley R (2010) Encoding the fine-structured mechanism of action potential
dynamics with qualitative motifs. J Comput Neurosci 30: 391–408.

47. Lincoln P, Tiwari A (2004) Symbolic systems biology: Hybrid modeling and
analysis of biological networks. In: Alur R, Pappas G, editors. Hybrid Systems:
Computation and Control HSCC. Springer. pp. 660–672.

48. Deuhard P, Heroth J (1996) Dynamic dimension reduction in ODE models. In:
Keil F, Mackens W, Voß H, Werther J, editors. Scientific Computing in
Chemical Engineering. Springer-Verlag. pp. 29–43.

49. Jones C (1994) Geometric singular perturbation theory. In: Arnold L, editor,
Dynamical systems. Montecatini Terme, Berlin: Springer-Verlag, Lecture notes
in mathematics. pp. 44–118.

50. Maas U, Pope SB (1992) Simplifying chemical kinetics: Intrinsic low dimensional
manifolds in composition space. Combust Flame 88: 239–264.

51. Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions
through the membrane of the giant axon of Loligo. J Physiol 117: 500–544.

52. Hong T, Xing J, Li L, Tyson JJ (2011) A mathematical model for the reciprocal
differentiation of T helper 17 cells and induced regulatory T cells. PLoS Comput
Biol 7: e1002122.

53. Kidd PB, Wingreen NS (2010) Modeling the role of covalent enzyme
modification in Escherichia coli nitrogen metabolism. Phys Biol 7:16006.

54. Oliphant TE (2006) Guide to NumPy. Provo, UT. Available: http://www.
tramy.us/. Accessed 10 June 2012.

55. Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9:
90–95.

56. Doedel E, Keller HB, Kernevez JP (1991) Auto. Int J Bifurc Chaos 1: 493.
57. Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems,

and Bifurcations of Vector Fields. Applied Mathematical Sciences. New York:
Springer-Verlag.

58. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I:
Nonstiff Problems. Berlin: Springer-Verlag.

59. Hindmarsh AC, Serban R (2008) User documentation for CVODE v2.6.0.
Technical Report UCRLSM- 208108, LLNL.

60. Myers CR, Gutenkunst RN, Sethna JP (2007) Python unleashed on systems
biology. Comput Sci Eng 9: 34–37.

61. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The systems
biology markup language (SBML): A medium for representation and exchange
of biochemical network models. Bioinformatics 9: 524–531.

62. INCF Multiscale Modeling Task Force (2011). NineML. Available: http://
software.incf.org/software/nineml. Accessed 10 June 2012.

63. INCF Multiscale Modeling Task Force (2011). Python API for NineML.
Available: http://phobos.incf.ki.se/. Accessed 10 June 2012.

64. Guckenheimer J, Meloon B (2000) Computing periodic orbits and their
bifurcations with automatic differentiation. SIAM J Sci Stat Comp 22: 951–985.

65. Simic SN, Johansson KH, Lygeros J, Sastry S (2005) Towards a geometric
theory of hybrid systems. Dynam Contin Discrete Impuls Systems, Series B 12:
649–687.

66. Lapique L (1907) Recherches quantitatives sur l’excitation électriques des nerfs
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