Chapter

Design of Low-Cost Reliable and
Fault-Tolerant 32-Bit One
Instruction Core for Multi-Core
Systems

Shashikivan Venkatesha and Ranjani Parvthasarathi

Abstract

Billions of transistors on a chip have led to integration of many cores leading to
many challenges such as increased power dissipation, thermal dissipation, occurrence
of faults in the circuits, and reliability issues. Existing approaches explore the usage of
redundancy-based solutions for fault tolerance at core level, thread level, micro-
architectural level, and software level. Core-level techniques improve the lifetime
reliability of multi-core systems with asymmetric cores (large and small cores), which
have gained momentum and focus among a large number of researchers. Based on the
above implications, multi-core system using one instruction cores (MCS-OIC) factor-
ing its features are proposed in this chapter. The MCS-OIC is an asymmetric multi-
core architecture with MIPS core as the conventional core and OICs as the warm
standby-redundant core. OIC executes only one instruction named ‘subleq _ subtract
if less than or equal to zero’. When there is one of the functional units (i.e., ALU) of
any conventional core fails, the opcode of the instruction is sent to the OIC. The OIC
decodes the instruction opcode and emulates the faulty instruction by repeated exe-
cution of the ‘subleq’ instruction, thus providing fault tolerance. To evaluate the idea,
the OIC is synthesized using ASIC and FPGA. Performance implications due to OICs
at instruction and application level are evaluated. Yield analysis is estimated for
various configurations of multi-core system using OICs.

Keywords: fault tolerance, reliability, one instruction core, multi-core, yield

1. Introduction

Researchers have predicted about an eight percent increase in soft-error rate per
logic state bit in each technology generation [1]. According to the International
Telecommunication Roadmap for Semiconductors (ITRS) 2005 and 2011, reduction in
dynamic power, increase in resilience to faults and heterogeneity in computing archi-
tecture pose a challenge for researchers. According to the International Roadmap for

1 IntechOpen

Fault Tolerance

1E+12 = . - - r

1E+11 + : _ -“.
E1e+10 { : B o7 -
g 1E+09 + Z E Li - "l. ;:# 1 failure/1.5 hour
T 1g+08 4= 4 Voltage sclinbuvs @22~ __“’///: 1 failure/1 day
] a R e w2~ : 1 failure/4 days
% 1E+07 o= i VI e -
g 16406 = : G = = 1 1 failure/month
£ 16405 4 & ':-/'/? : 1005 1 failure/year
o . . . : .
- 1404 4 = o : - : -
s : / . : s = Cores/Chip
uwi 1E+03 + - © z =4to6 = . -
§ 1E+02 o _/ Cores/ Chip 10:' i

1E+01 4 = s : : e

: 1Core/Chip * 2 Cores/Chip - Cores/:Chlp
1E+00 - - T - v r
180 130 90 65 a5 32 22 16
Technology Node(nm)
Figure 1.

SERs at various technology node.

Device and System (IRDS) roadmap 2017, device scaling will touch the physical limits
with failures reaching one failure per hour as shown in Figure 1. The soft error rate
(SER) is the rate at which a device or system encounters or is predicted to encounter
soft errors per unit of time, and is typically expressed as failures-in-time (FIT). It can
be seen, from Figure 1 [2-4] that, at 16 nm process node size, a chip with 100 cores
could come across one failure every hour due to soft errors.

This decrease in process node size and increase in integration density as seen in
Figure 1, has the following effects.

1.Number of cores per chip has increased. Due to increase in number of cores, size
of the last level cache (LLC) has increased. For example, NVIDIA’s GT200
architecture GPU did not have an L2 cache, the Fermi GPU, Kepler GPU,
Maxwell GPU has 768KB LLC, 1536KB LLC and 2048KB LLC respectively [5].
Similarly, Intel’s 22 nm Ivytown processor has a 37.5 MB static random-access
memory (SRAM) LLC (Rusu 2014) [6] and 32 nm Itanium processor had a
32 MB SRAM LLC (Zyuban 2013) [7]. Consequence of larger cache size has led to
exponential increase in SER.

2.Low swing interconnect circuits are being used in CMOS transmission system.
This has proved to be an energy efficient signalling system compared to
conventional full swing interconnects circuits. However, incorrect sampling of
the signals in low swing interconnect circuits together with interference and
noise sources can induce transient voltages in wires or internal receiver nodes
resulting in incorrect value being stored at receiver output latch [8].

This scenario can be envisaged as a "fault wall”. In order to surmount the fault wall
scenario, reliability has been identified as a primary parameter for future multi-core
processor design [9, 10]. Similarly, ITRS 2005 and 2011, have also identified increase
in resilience to faults as a major challenge for researchers. Hence, a number of
researchers have started focusing on resilience to faults and reliability enhancement in
multi-core processors. The chapter focuses on providing fault tolerance solutions for
processor cores in multi-core systems.

2

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

2. Motivation

As seen in Figure 1, the total FIT per chip increases with number of cores per chip
increasing. In order to accommodate higher number of cores per chip, (1) total FIT
per chip has to be maintained constant (or no change), and (2) SER per core needs to
be reduced. In the present-day processor cores, the frontend of the core comprises of
decode queue, instruction translation lookaside buffer, and latches. The backend of
the core comprises of arithmetic logic unit, register files, data translation lookaside
buffer, reorder buffers, memory order buffer, and issue queue. SER from backend and
the frontend of the core is 74.48% and 25.22% respectively. In the present processor
cores, latches are hardened [11, 12] cache and large memory arrays are protected using
error correcting codes (ECC) [13, 14]. The SER from backend of the processor is more
when compared to front end and is mainly due to arithmetic logic unit. The FIT from
the arithmetic logic unit of the processor core has started reaching higher levels which
needs robust fault mitigation approaches for present and future processors. Hence
addressing the reliability issues of the core (arithmetic logic unit in backend) is more
significant in improving the reliability of the multi-core system [15, 16]. Conventional
approaches to handle soft errors consumes more power and area. Hence, the chapter
focuses on using heterogeneous model with low cost (“low cost” denote low power
and lesser area of OICs) fault tolerant cores to improve reliability of multi-core
systems.

2.1 Chapter contributions
Contributions of the chapter are briefly presented below.

1. The microarchitecture consisting of control and data path for OIC is designed.
Four modes of operation in 32-bit OIC namely (a) baseline mode (b) DMR
mode (c) TMR mode and (d) TMR with self-checking subtractor (TMR + SCS)
are introduced.

2.The microarchitecture of 32-bit OIC and multi-core system integrated
with 32-bit OIC are implemented using Verilog HDL. The design is
synthesized in Cadence Encounter (R) RTL Compiler RC14.28 —-V14.20
(Cadence design systems 2004) using TSMC 90nm technology library
(tcbn90lphptc 150).

3.Dynamic power, area, critical path and leakage power for four modes of OIC are
estimated and compared.

4.Dynamic power and area of OIC and URISC++ are compared.
5.Area and power are estimated for multi-core system consisting of 32-bit OIC.

6.The OIC is synthesized using Quartus prime Cyclone IVE (Intel, Santa Clara,
CA) with device EP4CE115FE29C7. Number of logical elements and registers
are estimated.

7.Number of logical elements and registers in OIC and URISC++ are compared.

Fault Tolerance

8.Using Weibull distribution, the reliability for the four modes of OIC are
evaluated and compared.

9.Using Weibull distribution, the reliability for OIC and URISC++ are evaluated
and compared.

10. Performance overhead at instruction level and application level is estimated.
11.Yield analysis for proposed multi-core system with OICs is presented.
2.2 Chapter organization

The remaining portion of the chapter is organized as follows as: Section titled “3. An
Overview on 32-bit OIC” presents (a) an outline of 32-bit OIC (b) one instruction set of
OIC (c) modes of operation of OIC (d) microarchitecture of OIC (e) microarchitecture
of multi-core system consisting of OIC (f) instruction execution flow in multi-core
system using one instruction cores (MCS-OIC); Section titled “4. Experimental results
and discussion” presents power, area, register and logical elements estimation for OIC,
and power, area estimation for MCS-OIC; Section titled “5. Performance implications in
multi-core systems” presents performance implications at instruction level and applica-
tion level; Section titled “6. Yield analysis for MCS-OIC” presents yield estimates for the
proposed MCS-OIC; Section titled “7. Reliability analysis of 32-bit OIC” presents reli-
ability modelling of OIC and its estimate in different operational modes; the conclusion
of the chapter is presented in the Section titled “8. Conclusion”; the relevant references
are citated in the Section titled “References”.

3. An overview on 32-bit one instruction core

A 32-bit OIC [17] is designed to provide fault tolerance to a multi-core system with
32-bit integer instructions of conventional MIPS cores. OIC is an integer processor.
The terms “32-bit OIC” and “OIC” are interchangeably used in this thesis. OIC exe-
cutes only one instruction, namely, “subleq — subtract if less than or equal”. The OIC
has three conventional subtractors and an additional self-checking subtractor. A con-
ventional core that detects faults in one of the functional units (i.e., ALU) sends the
opcode with operands to the OIC. In this thesis, the OIC is designed to support the
instruction set of 32-bit MIPS core. However, it can be designed to support 32 bit x86/
ARM instruction set by making necessary changes in the instruction decoder. The OIC
emulates the instruction by repetitively executing the subleq instruction in a
predetermined manner. There are four modes of operation in OIC and they are (a)
baseline mode (b) DMR mode (c) TMR mode and (d) TMR + Self Checking
Subtractor (SCS) or TMR + SCS mode. TMR + SCS is the “high resilience mode” of
OIC. Baseline mode is invoked only when soft error detection and correction alone are
required.

3.1 One instruction set
“Subleq - subtract if less than or equal” is the only instruction executed by the OIC.

The syntactic construct of the subleq instruction is given below.
Subleq A, B, C; Mem [B] = Mem [B] - Mem [A]

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...

DOI: http://dx.doi.org/10.5772 /intechopen.102823

ADD a,a,b INC a MOV a, b RSB b, a, b
1.Subleq a, z,2 1.Subleq One, z,2 1.Subleq a, a,2 1.Subleq a, b,2
2.Subleq z, b,3 2.Subleq z, a,3 2.Subleq b, z,3 2 ret
3 Subleq z, z,4 3.Subleq z, z,4 3.Subleq z, a,4 DEC a
4 ret 4.ret 4.Subleq z, z,5 Subleq one, a
S.ret ret
Table 1.

Sequence of synthesized Subleq instruction.

; If (Mem [B] < 0) go to C;

It is interpreted as: “subtract the value at the memory location A from the value at the
memory location B; store the result at the memory location B; If the value at the memory
location B is less than or equal to zero, then jump to C.” The subleq instruction is Turing
complete. The instruction set of a core or processor is said to be Turing complete, if in
principle, it can perform any calculation that any other programmable computer can. As
an illustration, the equivalent synthesized subleq instructions for ADD, INC, MOV, DEC

and RSB (Reverse subtract) instructions are given in the Table 1.

3.2 Modes of operation

The OIC operates in four modes as mentioned above. They are (a) baseline mode
(b) DMR mode (c) TMR mode and (d) TMR + Self Checking Subtractor (SCS) or

TMR + SCS mode.

a. Baseline mode: In this mode, only the self-checking subtractor is operational. The

results from the subtractor are verified by the self-checker. If the results differ,
the subtraction operation is repeated to correct the transient faults. Transient
faults are detected and corrected in this mode. If the results do not match again,
a permanent fault is detected.

b. DMR mode: In this mode, only two subtractors are operational. The results of

the two subtractors are compared using a comparator. If the results differ, the
subtraction operation is repeated to correct the transient faults. The transient
faults are detected and corrected in this mode. If one of the two subtractors
fails, a permanent fault is detected, and the OIC switches to baseline mode.

. TMR mode: In this mode, all three subtractors are operational. The results from
the three subtractors are compared using three comparators. The voters check
the results from the comparators and perform majority voting. To correct the
transient faults, the operations are repeated. If anyone subtractor fails, the
faulty subtractor is disabled. In this mode, results from the redundant
subtractors are fed back on special interconnects to the inputs of the
multiplexer. OIC then switches to DMR mode. It is assumed that two
subtractors do not fail simultaneously. Occurrence of one permanent fault is
detected and tolerated in this mode.

. TMR + SCS mode: TMR + SCS mode is the initial mode of operation in OIC. In
this mode, all three subtractors and SCS are operational. Both permanent and

Fault Tolerance

transient faults are detected and corrected. The results of three subtractors and
SCS are compared using a comparator. If the results differ, then entire operation
is repeated to correct the transient faults. If results continue to differ, then OIC
switches to TMR mode.

3.3 Micro-architecture of OIC

The micro-architecture of the OIC is given in Figure 2. The micro-architecture of
the OIC can be divided into two parts: the control unit and data-path unit. The control
unit consists of a 12-bit program counter (PC), an instruction decoder, a 12-bit control
word memory register and control word memory. The control memory is safeguarded
by (12, 4) Hamming codes [18]. All single-bit errors are detected and corrected by
Hamming codes. The data-path unit consists of four multiplexers, one demultiplexer,
three subtractors, one self-checking subtractor (SCS), three comparators and one
voter unit. Normally, the register files occupy a large die area in a core and are
exposed to high energy particles. In the spheres of replication, the register files also
have high access latency and power overhead due to their fortification from ECC. The
OIC does not have large register files that are likely to propagate transient faults or
soft errors to other subsystems. The OIC uses very few registers. Once the operands
from faulty core are admitted, they are stored in the registers. The results computed
by the subtractors are compared and fed back on a separate interconnect line to the
respective multiplexers. The intermediate results are not stored in the registers.

=

Pl: (Inssucnion. EXE_Req) &&

(Operands Avail) nuzm num
#

gz
-sa
F

P3 Repetitive Subleg Execute && ' h 4 -
Results Equal) P4: e Y —
+ (Cemparatar Resulss Equal) && PC I |
mvoked J \f
oy ST
- % L — .
i VL ¢ L% &
Program counter i 32 bit 32 bit | b 0
;’ i Subuactor Subuactar Sabmacor Subtractor
===l || 1 ="
l “‘.—_ -
Bl 2w 32b 320 E 3
C-'l'-ilw!; y §| compmmer || compamser comparater :a
I
Infruction I Viotar o -

Hal Insructon && send
r=sult to REQ Core

i
i
E;

Figure 2.
Control unit and data path unit of 32-bit OIC.

6

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

3.4 Microarchitecture and instruction execution flow in MCS-OIC

A Multicore system comprising one 32-bit MIPS core and one 32 bit OIC occupying
the upper half and lower half portions respectively in the micro-architecture, is shown
in Figure 3. The MIPS core is a five-stage pipelined scalar processor. Instruction Fetch
(IF), Instruction Decode (ID), Execution (EXE), Memory access (MEM) and Write
Back (WB) are the five stages in the MIPS pipeline. IF/ID, ID/EXE, EXE/MEM, and
MEM/WB are the pipeline registers. PC is a program counter and LMD, Imm, A, B, IR,
NPC, Aluoutput, and Cond are temporary registers that hold state values between
clock cycles of one instruction. The fault detection logic (FDL) detects faults in all the
arithmetic instructions (except logical instructions) by concurrently executing the
instructions. The results of ID/EXE.Aluoutput and FDL are compared to detect the
fault. If a fault is found then the pipeline is stalled. The IF/ID.opcode (in IR) and
operands ID/EXE.A and ID/EXE.B are transferred to OIC as shown in Figure 4. The
IF/ID.opcode is decoded and concurrently ID/EXE.A and ID/EXE.B values are loaded
into the OIC registers (X & Y). The OIC.PC is initialized and simultaneously first
control word from memory is loaded into its control word register. During every clock
cycle, the control bits from control word register are sent to the selection lines of the
multiplexer that control the input lines to the subtractors. At every clock cycle,
subtraction is performed to emulate the instruction sent from the MIPS core. Finally,

FID e - EUNEM —] MEMWE
| M]
— L]
u|
]
1R6..10 ., X F‘
IR11.45 — :)
—f — : N i , X
+ s :‘
ras =1 Lo Kmmmn |
™ orenm [1| __ s
el el /' N Ee
llﬂ'lD.nmdo I Y l i J
P2 Dacods hamuctne &4 = !] - -
Dixin Prpm (oo — | . P) q{;—r_m
' i K.fl—v £y
Wil " / 3 am
k@;m Roa //
Camtol wand Magary } ¥ 1 ¥
BC | 328t i 1w DR |
J sewee || stmre || whose | | s
[i I
| C-ﬂénpl o = ! v X ;i\‘
Rasait X J
S l j— Comparators and Voters circuit /
— lomezes

Figure 3.
Multi-core system consisting of one 32-bit MIPS core and one 32-bit OIC.

7

Fault Tolerance

Benchmark Disassembly

bne
$t0,$zero,exit2 Arithmetic Logic unit

Y
sll $t1 r$51 ’2 Comparators result differ
add $t2,$a0,5t1 Fault Detection Logic [1] | s

Sends IF/ID.opcode, A B to

Iw $t3,0($t2) o am)
Iw $t4,4($t2) t
sit $t0,$t4,$t4 [2] Instruction Decoder decodes IF/ID_opcode,

Load A and B into x and y registers of OIC
[3] Program counter is initialized to starting
address of micro-sequence of control words

L [41Startine address

Read only
Memory

! Load Control words
Multiplexers (MUXs) . :

Control word register

Iy

Control inputs to subtractors

[5] set the selection lines of MUXs every clock

— cycle
Subtractor "—
101110101110 to execute subleq a,z
Subtractor [¢ 100011001010 to execute subleq z,b
-— 100001010000 to execute subleq z,z
Subtractor

[6] Every cycle, results from three subtractors are compared, if they
don’t differ, then result is loaded into MEM/WB . aluoutput register.

Figure 4.
Sequence of events from fault detection to loading of vesults into Mem/WB. Aluoutput register of MIPS core.

the computed result is loaded into MEM/WB.Aluoutput and the MIPS pipeline oper-
ation is resumed. The sequence of events from fault detection to results loaded into
MEM/WB.Aluoutput register of the MIPS core is shown in Figure 4.

4. Experimental results and discussion

The micro-architecture of the OIC is implemented using Verilog HDL and
synthesised in ASIC and FPGA platforms to estimate hardware parameters (area, criti-
cal path delay, leakage power, dynamic power) and number of logical elements, register

8

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

usage respectively. In the Section 4.1, comparison of area, power, registers and number
of logical elements of OIC with an approach named URISC proposed by [19] and URISC
++ proposed by [20] is presented. Notably, URISC/URISC++ implement one instruction
set. The URISC/URISC++, a co-processor for TigerMIPS, emulates instructions through
the execution of subleq instruction. TigerMIPS performs static code insertion in both
control flow and data flow invariants so as to detect faults by performing repeated
executions of subleq within the co-processor. Comparative analysis on hardware
parameters for different modes of OIC are discussed in Section 4.2.

ASIC simulation: The OIC given in Figure 2 and multi-core system in Figure 3
has been implemented using Verilog HDL and then synthesized in Cadence Encounter
(R) RTL Compiler RC14.28 -V14.20 (Cadence design systems 2004) using TSMC
90 nm technology library (tcbn90lphptc 150). The area, power (dynamic, leakage,
net, internal) and critical path delay are estimated for the OIC and tabulated in
Table 2.

FPGA synthesis: The OIC is synthesized using Quartus prime Cyclone IVE with
device EP4CE115FE29C7 and the results are illustrated in Tables 3 and 4.

Leakage power and dynamic power: Power dissipation shown in Table 2 is
understood as sum of dynamic power and static power (or cell leakage). Static power
is consumed when gates are not switching. It is caused by current flowing through
transistors when they are turned off and is proportional to the size of the circuit.
Dynamic power is a sum of net switching power and cell internal power. The net
switching power is the power dissipated in the interconnects and the gate capacitance.

Block name Area Leakage Internal Net (nW) Dynamic Critical path
(pm?) power (nW) (nW) power (nW) delay (ps)
Control path 590 39.87 79,498.48 21,881.40 10,1379.88
(Control path + 8122 704.08 10,51,631.88 346,487.45 13,98,115.34 8608
data path)
Sub blocks
Subtractor 581 67.98 41,676.83 6711 48,387.83
Comparator 615 67.04 42,457.83 9954.38 52,411.44
Table 2.

Implementation of 32 bit OIC results using 90 nm TSMC technology.

(A) blocks Logical elements Dedicated registers
OIC (TMR + SCS) 530 160
Subtractor (1) 33
Comparator (1) 43
(B) modes Logical elements
Baseline 100
DMR 303
TMR 486
Table 3.

FPGA synthesis results for OIC.

9

Fault Tolerance

Cores Logical elements Dedicated registers
OIC 530 160
URISC 15,019 5232
URISC++ 15,081 5233

Table 4.

FPGA synthesis results comparison.

The cell internal power is the power consumed within a cell by charging and
discharging cell internal capacitances. The total power is a sum of the dynamic power
and the leakage power.

Multi2sim (version 5.0): Multi2sim supports emulation for 32 bit MIPS/ARM
binaries and simulation for 32-bit x86 architectures. It performs both functional and
timing simulations. The performance loss is estimated for compute intensive and
memory intensive micro-benchmarks using a Multi2sim simulator. Performance loss
for micro-benchmarks listed in Table 6 are illustrated in Figures 6-11.

4.1 Comparative analysis: power, area, registers and logical elements

With the critical path delay at 8608 ps, the operating frequency of the circuit is 115
MHz with power supply at 1.2v. OIC is a low power core consuming 1.3 mW, with die
area of 8122 pm?. The die area of conventional MIPS core is 98,558 pm? which is 14.2x
larger than OIC core. The MIPS core consumes a total power of 1.153 W and the 32-bit
OIC consumes 1.39 mW; order of difference in powers of 10 is three. The registers in
OIC are PC and temporary registers which hold the operands. But they are not
designed and managed as a register file. Tables 3 and 4 provide the register count and
logical elements count for OIC and URISC++. The number of logical elements in OIC
is 3.51% and 3.52% of the logical elements in URISC and URISC++ respectively. The
number of registers in OIC is 3.05% of URISC++. URISC++ adds 62 logical elements
and one additional register to the architecture of URISC. The logical elements in
URISC++ consume 6.6 mW. URISC++ has 650 registers or 14.3% of registers in
TigerMIPS. URISC++ has two large register files. URISC++ altogether consumes
1.96 W. Thus, OIC consumes less power than URISC++.

4.2 Comparative analysis: four modes of OIC

The critical path delay, area, dynamic power and leakage power for the four modes
of OIC namely baseline mode, DMR mode, TMR mode and TMR + SCS mode are
normalized to baseline mode and shown in Figure 5. The area overhead of TMR + SCS
mode is 68.43% of the baseline, area overhead of TMR mode is 65.37% of the baseline
and for DMR mode it is 51.4%. The comparators and subtractors occupy 22.71% and
28.6% of TMR + SCS mode area respectively. The size of the voter is negligible in
TMR + SCS mode and TMR mode. In the critical path delay, 10% increase is noticed
from the baseline to TMR + SCS mode. The critical path traverses from the subtractor
input to the comparator, and then to the voter, passing through select logic and ends at
an input line. Delay would not differ much between TMR mode and TMR + SCS mode.

Both the dynamic power and leakage power for TMR mode and DMR mode
increase significantly due to redundant subtractors and comparators which are not in
the baseline. The dynamic power overhead of TMR mode and DMR mode is 60% and

10

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

; 35
R 34
25 1 25 1
2.4 24
® Normalized Leakage pawer
15 | ® Normalized Area 1.5
14 1
21 =1 .
o+ by
o MR

TMRISCS ™R Baseline sl L TS

(a) {c)

115 45 o
4 4

. 35 +

106 + 3]

1+ m Nomalized Critical Path 25 7
14 = Normalized dynamic power

=1 15 +

11

0g 4 - .
TMR4SCS MR DMF T
™R

Baseline i
(1]

Baseline DMR TMR+SCS

(b} (d)

Figure 5.
(a) Avea, (b) critical path delay, (c) leakage power and (d) dynamic power (y-axis—normalized values to
baseline).

73% of the baseline. It is 75% for TMR + SCS mode. The static power or leakage power
is proportional to the size of the circuit. The TMR + SCS mode has leakage power
which is 76% more than the baseline. The TMR and DMR mode have leakage power
which is 72% and 50% more than the baseline. In Table 4 which depicts FPGA
synthesis results, it is observed that the number of logical elements in TMR + SCS
mode and DMR mode is 79% and 66% more than the baseline. From Tables 2 and 4, it
is observed that TMR mode with additional self-checking subtractor in TMR + SCS
mode costs more than the baseline, but still TMR + SCS/OIC will be a suitable fault
tolerant core for a low power embedded system.

4.3 Power and area estimation for MCS-OIC

The area and power for the micro-architecture of multi-core system (one MIPS
core with one OIC) shown in Figure 3, are estimated using ASIC simulation. The
multi-core system occupies a total area of 306,283 pm?” and consumes a total power of
1.1554 W. The FDL occupies an area of 6203 pm” which is 2% of the total area
occupied by the system. The OIC occupies an area of 8122 um” which is 2.6% of the
total area occupied by the system. The FDL consumes a power of 1.2 mW and OIC
consumes a power of 1.4 mW which are negligible when compared to the total power.
The redundancy-based core level fault mitigation techniques/approaches such as Slip-
stream [21], dynamic core coupling (DCC) approach proposed by [22], configurable
isolation [23], reunion is a fingerprinting technique proposed by Smolens et al. [24]
have nearly 100% area overhead and obviously larger power overhead.

5. Performance implications in MCS-OIC

For every instruction emulated on OIC, an additional three clock cycles are needed
for transfer of opcodes and operands, and two clock cycles are needed to resume the

11

Fault Tolerance

pipeline in the MIPS processor. The two terms defined below highlight the latency
that incur in instruction execution, presented in the following subsection.

5.1 Performance overhead at instruction level

Definitions: (a) The instruction execution time by emulation (IETE) is defined
as the number of cycles needed to execute the instruction on OIC. (b) Total execu-
tion time (TET) is defined as the sum of IETE and time (in clock cycles) to transfer
opcodes, operands (from MIPS to OIC) and results (from OIC to MIPS). In other
words, this indicates that time in clock cycles between pipeline stall and resumption of
pipeline. The TET and IETE for instructions are tabulated in Table 5.

5.2 Performance overhead at application level

In the previous section, performance loss at instruction level caused due to
transfer of operands and results back to host core is discussed. This would cause an
accumulative loss in performance of application and the same is discussed in this
section. The OIC supports 32 bit ISA of MIPS R3000/4000 processor operating at a
frequency of 250 MHz. OIC operates at a frequency of 115 MHz, thereby incurring a
performance loss while emulating the instructions from a faulty functional unit in
MIPS core. The Multi2sim, a cycle accurate simulator together with a cross
compiler, mips-linux-gnu-gec/mips-unknown-gnu-gcc is used to estimate the
simulation execution time for a set of micro-benchmarks. The emulation of only
arithmetic instructions on OIC is considered for estimating the performance loss as
they constitute nearly 60% of total instructions in integer application programs. The
compute intensive and memory intensive micro-benchmark programs considered are
listed in Table 6.

5.2.1. Memory intensive micro-benchmarks

The performance loss for memory intensive micro-benchmark programs, namely,
binary search, quicksort (using recursion), and radix sort, are given in Figures 6-8
respectively. The performance loss for CPU intensive micro-benchmark programs,
namely, matrix multiplication, CPU scheduling, and sieve of Eratosthenes, are given
in the Figures 9-11 respectively. The baseline indicates the simulated execution time

Instructions IETE TET Clock cycle in MIPS/LEON 2FT/3FT
ADD 4 9 1
MOV 5 10 1
INC 4 9 1
DEC 1 5 1
SUB 1 5 1
MUL 7 (per iteration) Min 12 6
DIV 5 (per iteration) Min 10 34
Table 5.

IETE and TET for instructions.

12

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

S. no Micro-benchmark CPU/memory Input Input size
intensive form

1 Matrix multiplication (single/ CPU Matrix [10 x 10], [100 x 100],
multithreaded) [1000 x 1000] elements

2 Binary search (single/ Memory Array 3000, 30,000, 300,000 elements
multithreaded)

3 Sieve of Eratosthenes CPU Array 1000, 10,000, 100,000 prime number

limit
4 CPU-scheduling CPU Array 1000, 10,000, 100,000 processes
5 Quicksort (recursion) Memory Array Sorted 100, 1000, 10,000 elements
for worst case analysis
6 Radix sort Memory Array 1000, 10,000, 100,000 elements
Table 6.

CPU intensive and memory intensive micro-benchmarks.

o
Eas

'_

s 4

3 35

w

a3

=

o 25

S 2

£

o 1.5

g=)

@ 1

=

EO° . . .
o 0

=

3000 30000 300000
M Raseline ®WADD

Figure 6.

Performance overhead in binary search by emulating ADD using subleq instruction.

of micro-benchmarks with no arithmetic instructions emulated on OIC. The perfor-
mance loss is quantified for micro-benchmarks with respect to simulated execution
time of the baseline (with varying input data sets/size).

As shown in Figure 6, Binary search with emulation of ADD instructions incurs
performance loss of 1.77x, 3.59x and 4.59 x with input size of 3000, 30,000 and
300,000 respectively, when compared to baselines. Significant proportion of ADD
instructions is associated with incrementing or decrementing counters and effective
addresses. OIC do not fetch operands or store results directly to main memory. Main
memory latency is not taken into account for performance loss estimation. The num-
ber of ADD instructions executing as a part of the algorithmic phase of program
execution does not increase exponentially with increase in input data sets. Hence,
performance loss impact is minimal in algorithmic phase and is higher during fetching
and storing of the input data sets. In case of multithreaded binary search, multi-core
setup consisting of two cores core-0 and core-1 each with single thread is used to
estimate the performance loss. The performance loss is similar to that of single

13

Fault Tolerance

oo

|

[=2]

o

=

[F8)

()

—_

100 1000 10000

Normalized Simulation Execution Time

=

M Baseline WADD

Figure 7.
Performance overhead in Quicksort by emulating ADD using subleq instruction.

7

[N w =~

Normalized Simulation Execution Time
=

1000 10000 100000

o=]

M Baseline WADD mDIV

Figure 8.
Performance overhead in Radix sort by emulating ADD and DIV using subleq instruction.

threaded binary search. It is due to the fact that majority of the ADD instructions are
associated with LOAD and STORE instructions.

Quicksort (with emulation of ADD instruction), implemented using recursion for
sorted data elements (worst case analysis) incurs performance loss of 3.85x, 6.31x,
and 6.99x for data size of 100, 1000 and 10,000 respectively as shown in Figure 7.
For best case analysis of quicksort for 10,000 elements, performance loss reduces to
1.008x. Due to recursion, majority of ADD instructions are associated with LOAD/
STORE instructions. In radix sort, occurrence of ADD instructions is more compared
to DIV instructions. Since it is memory intensive method of sorting, large number of

14

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

ADD instructions is used to increment counters and constants associated with LOAD/
STORE instructions. The performance loss due to emulation of ADD instructions for
radix sort is 2.45x, 4.79x, and 5.96 x for input sizes of 1000, 10,000 and 10,000 as
shown in Figure 8. For DIV instructions, performance loss is 1.4 x, 2.05x, and 2.37x
for input sizes of 1000, 10,000 and 10,000 elements.

As shown in Figure 9, matrix multiplication with emulation of ADD and MUL
instructions executing in the algorithmic phase of the program, incurs a performance
loss of <1.56x%, 4.09x, 4.0x> (for ADD) and <1.632x, 7.62x, 7.99x> (for MUL), for
input matrix sizes of 10 x 10, 100 x 100, and 1000 x 1000 respectively. In CPU
scheduling, ADD and SUB instructions emulation incur a performance loss of <2.45x,
4.79x, 5.96 x> and <1.4x, 2.05x%, 2.3x> for input data set of 1000, 10,000 and
100,000 processes respectively as shown in Figure 10. In sieve of Eratosthenes,
emulation of MUL and ADD instructions incur a performance loss of <1.89x, 5.03x,
7.63x> and <1.48x,2.9x%, 3.8 x> for input data set size of 1000, 10,000 and 100,000
respectively as shown in Figure 11.

I =
o o [

Normalized Simulation Execution Time
(%] (=2}

- mAN -I .

10X 10 100 X 100 1000 X 1000

m Baseline mADD wmMUL Two mips core with one OIC

Figure 9.
Performance overhead in matrix multiplication by emulating ADD and MUL using subleq instruction.

: -I. -I. -Il

1000 10000 100000

L

28] w

[ury

Normalized Simulation Execution Time
=

M Baseline W ADD ®SUB

Figure 10.
Performance overhead in CPU scheduling by emulating ADD and SUB using subleq instruction.

15

Fault Tolerance

Normalized Simulation Execution Time

: - - -
0
1000 10000 100000

M Baseline MUL ADD

Figure 11.
Performance overhead in Sieve of Eratosthenes by emulating MUL and ADD using subleq instruction.

For multithreaded matrix multiplication, multi-core configuration consisting of
two cores: core-0 and core-1 with single thread each is considered. The ADD and MUL
instructions of core-0 and core-1 are emulated on single OIC due to failures in adder
and multiplier units respectively. The performance loss is estimated as 2.04 x, 10.07x,
and 10.99x for matrix size of 10 x 10, 100 x 100, and 1000 x 1000 respectively as
shown in Figure 9. Since, simultaneous access to single OIC from two cores is not
permitted, performance loss includes the waiting time between subsequent ADD and
MUL instructions emanating from core-0 and core-1. Waiting time alone is greater
than 45% of the performance loss. In this multi-core configuration, consisting of two
MIPS cores with single OIC, it bears the brunt of multiple functional unit failures in
two cores. An Additional OIC would bring down the performance loss by 1.5x (for
matrix size of 10 x 10) and 7x (for matrix size of 100 x 100/1000 x 1000) and
eliminate the need for instructions to wait for execution on OIC. On 1:1 and 1: N basis
i.e., one MIPS core with one or more OICs can scale to 100 MIPS core with 100 or
more OICs.

It may be noticed that the performance loss does not vary when there is change of
mode in OIC from TMR + SCR to TMR, or TMR to DMR as the number of instructions
executed remains the same.

6. Yield analysis for MCS-OIC

This section examines the effect of fault tolerance provided in MCS-OIC on the
yield. As discussed in the section which presents design of OIC, it is assumed that two
subtractors do not fail simultaneously. In the TMR + SCR, TMR, and DMR modes,
OIC repeats the instruction execution if the results differ, to avoid transient failures.
The spatial and temporal redundancy to avoid permanent and transient faults in OIC
makes it defect tolerant. The arithmetic logic unit in MIPS is protected by functional
support provided by OIC. The remaining portion of MIPS are hardened and protected
by ECC. The die yield for proposed different configurations of MCS-OIC is estimated
using the equations presented below.

16

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

6.1 Terms and parameters
a. Original die: 1t is the die consisting of MIPS cores only.

b. Fault tolerant die: It is the die consisting of MIPS cores and OICs.

c. Regular dies per wafer: It is the number of original dies per wafer. The number of
regular dies per wafer is estimated using the Eq. (1).

diameter/2)’ diamet
Regular dies per wafer = #(diameter/2)” 7 x diameter (1)
Area V2 x Area

Where diameter refers to the diameter of the wafer, Area refers to the area of the die.

d. Die yield: Ignoring full wafer damage, the yield for single die is approximated
using negative binomial approximation as given in the Eq. (2).

. o
Die yield = (1 n defect dersjlty X Area) -

Where cp denotes cluster parameter or manufacturing complexity, defect
density denotes number of defects per unit area.

e. Regular working dies per wafer: It is die yield times the regular dies per wafer. It is
estimated using the Eq. (3).

. —cp
Regular working dies per wafer = <1 + defect der::;lty x Area) .
3
r(diameter/2) = X diameter (3)
Area V2 x Area

f. Regular fault tolerant dies per wafer:

The area of fault tolerant core is expressed as summation of area of original
die and area of OIC. If the area of OIC is expressed as §(0 < § < 1) times the
area of original design then ((1 + §) x area of the original design)) denotes
the area of the fault tolerant die. By substituting (1 + §) x area in the number

of regular fault tolerant cores per wafer can be estimated and is given in the
Eq. (4).

. 2 .
Regular fault tolerant dies per wafer = #(diameter/2) o diameter (4)
(1+0)Area /(2 (1+) Area)

g. Regular working fault tolerant dies per wafer: It is die yield times the regular fault
tolerant die. It is estimated using the Eq. (5).

17

Fault Tolerance

. . defect density x Area -
Regular working fault tolerant dies per wafer = | 1+ o
r(diameter/2)> _ m x diameter
(1+6)Area | /(2(1+ 6)Area)
(5)

6.2 Parametric evaluation and discussion

The die yield for the original die and fault tolerant die estimated for one MIPS core
with one/two/four/ OICs, two MIPS core with one/two/four/ OICs, four MIPS core
with one/two/four/ OICs, and eight MIPS core with one/two/four/six OICs is tabu-
lated in Tables 7-10 respectively. The defect density is varied from 9.5, 5.0, to 1.0 and
wafer diameters varied from 300 mm, 200 mm to 100 mm to estimate die yield of the
original die and fault tolerant die. The cp is fixed at 4.0. The die yield of the original
die at defect densities are 1.0, 5.0, and 9.5 are 0.9971, 0.9855, and 0.9727 respectively.
The die yields for three fault tolerant dies each consisting of one MIPS core with first
die with one OIC, second with two OICs, third with four OICs for 300 mm wafer with
defect density at 1.0 is <0.9970/0.9969/0.9967> respectively as shown in the Table 7,
which is slightly lesser than the yield of the original die. The average of the differences
between yield of original die and fault tolerant dies with defect density 1.0 is 0.0002
which is negligible value. Similarly, the average of the differences between yield of
original die and fault tolerant dies at defect density 5.0 and 9.5 are 0.0009 and 0.0017
respectively. It is observed that an increase in the defect density decreases the yield.

Wafer diameter 100 mm 200 mm 300 mm

Defect density 9.5 5.0 1.0 9.5 5.0 1.0 9.5 5.0 1.0

Number of regular dies 26,489 26,489 26,489 10,6781 10,6781 10,6781 24,0876 24,0876 24,0876
per wafers

Die yield of original die 0.9727 0.9855 0.9971 0.9727 0.9855 0.9971 0.9727 0.9855 0.9971

Number of regular 25,767 26,106 26,412 10,3870 10,5237 10,6470 23,4309 23,7391 24,0174
working dies per wafer

Number of One OIC 25,768 25,768 25,768 103,884 103,884 103,884 234,347 234,347 234,347

1
;:ﬁiar Two OICs 25,084 25,084 25,084 101,139 101,139 101,139 228,163 228,163 228,163
tolerant Four OICs 23,820 23,820 23,820 96,061 96,061 96,061 216,723 216,723 216,723
dies per
wafer

Die yield One OIC 0.9719 0.9851 0.9970 0.9719 09851 0.9970 0.9719 0.9851 0.9970

:liiﬂt Two OICs 0.9712 0.9847 0.9969 09712 09847 09969 0.9712 0.9847 0.9969
die Four OICs 0.9697 0.9839 0.9967 0.9697 0.9839 0.9967 0.9697 0.9839 0.9967
Number of One OIC 25,046 25385 25691 10,0974 10,2340 103,573 227,784 230,864 233,645
;ff:li?;g Two OICs 24,363 24,701 25,007 98,231 99,595 100,828 221,603 224,681 227,461
faultdies Four OICs 23,100 23,437 23743 93,157 94,518 95750 210,170 213243 216,021
per wafer

Table 7.

Die yield for fault tolerant die consisting of one MIPS core with one/two/four OICs.

18

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

Wafer diameter 100 mm 200 mm 300 mm

Defect density 9.5 5.0 1.0 9.5 5.0 1.0 9.5 5.0 1.0

Number of regular 13,159 13,159 13,159 53,220 53,220 53,220 120,182 120,182 120,182
dies per wafers

Die yield for original 0.9463 0.9713 0.9942 0.9463 0.9713 0.9942 0.9463 0.9713 0.9942
die

Number of regular 12,454 12,782 13,082 50,368 51,694 52,911 113,740 116,736 119,484
working dies per
wafer

Number One OIC 12,977 12,977 12,977 52,487 52,487 52,487 118,529 118,529 118,529

of regular

Fault Two OICs 12,494 12,494 12,494 50,544 50,544 50,544 114,150 114,150 114,150
tolerant Four OICs 12,459 12,459 12,459 50,403 50,403 50,403 113,833 113,833 113,833
dies per

wafer

Die yield One OIC 0.9456 0.9709 0.9941 0.9456 0.9709 0.9941 0.9456 0.9709 0.9941

for fault
tzlre;‘lt Two OICs 0.9449 0.9705 0.9940 0.9449 0.9705 0.9940 0.9449 0.9705 0.9940
die Four OICs 0.9428 0.9693 0.9937 0.9428 0.9693 0.9937 0.9428 0.9693 0.9937
Number One OIC 12272 12,600 12,900 49,636 50,962 52,177 112,091 115,085 117,830
fjﬁﬁ?r Two OICs 12,095 12,423 12,723 48,924 50,249 51,464 110,486 113,478 116,222
fault Four OICs 11,592 11,919 12,219 46,900 48,222 49,435 105,923 108,908 111,650
tolerant
dies per
wafer

Table 8.

Die yield for fault tolerant die consisting of two MIPS core with one/two/four OICs.

The die yield of the fault tolerant dies each consisting of two MIPS cores with <
one/two/four> OICS with defect density 1.0 is <0.9941, 0.9940, 0.9937> respectively
as shown in Table 8. The die yield of the original die at defect densities 1.0, 5.0, and
9.5is 0.9942, 0.9713, and 0.9463 slightly higher than yield of fault tolerant dies. The
average of the differences between yield of original die and fault tolerant dies is
0.00026. The average of the differences between yield of original die and fault toler-
ant dies increases by 0.0009 and 0.0018 for defect density 5.0 and 9.5 respectively.

The die yields of the original die at defect densities 1.0, 5.0, and 9.5 are 0.9884,
0.9436, and 0.8963 respectively. From Table 9, the die yield of the fault tolerant dies
each consisting of four MIPS cores with <one/two/four> OICS with defect density 1.0
are <0.9883, 0.9882, 0.9880> respectively. It is observed that average of the differ-
ences between yield of the original die and fault tolerant dies at varying defect
densities is similar with other alternatives discussed above.

From Table 10, the die yield of the fault tolerant dies each consisting of eight MIPS
cores with <one/two/four/six> OICS with defect density 1.0 is <0.9769, 0.9767,
0.9765, 0.9764> respectively. The die yield of the original die at defect densities 1.0,
5.0, and 9.5 is 0.9769, 0.8912, and 0.8057 respectively. The average of the differences
between the original die and fault tolerant dies with defect density of 9.5 is 0.0031, is
the highest among the averages. From this data, it is inferred that larger chips with
increasing redundancy widens gap between the yield of the original dies and fault

19

Fault Tolerance

Wafer diameter 100 mm 200 mm 300 mm
Defect density 9.5 5.0 1.0 9.5 5.0 1.0 9.5 5.0 1.0
Number of regular dies 6519 6519 6519 26,489 26,489 26,489 59,910 59,910 59,910
per wafers
Die yield for original die 0.8963 0.9436 0.9984 0.8963 0.9436 0.9984 0.8963 0.9436 0.9984
Number of regular 5843 6152 6444 23,744 24997 26,182 53,700 56,536 59,216
working dies per wafer
Number of One OIC 6474 6474 6474 26,305 26,305 26,305 59,495 59,495 59,495
king fault
WOrking AUl n 0 0ICs 6428 6428 6428 26,124 26,124 26,124 59,085 59,085 59,085
tolerant dies
per wafer Four OICs 6340 6340 6340 25,768 25,768 25,768 58,282 58,282 58,282
Die yield for One OIC 0.8956 0.9433 0.9883 0.8956 0.9433 0.9883 0.8956 0.9433 0.9883
fault tol t
dj: O Two OICs 0.8949 0.9429 0.9882 0.8949 0.9429 0.9882 0.8949 0.9429 0.9882
Four OICs 0.8929 0.9417 0.9880 0.8929 0.9417 0.9880 0.8929 0.9417 0.9880
Number of One OIC 5798 6106 6398 23,561 24,814 25,998 53,288 56,122 58,800
1
regr At Two OICs 5753 6062 6353 23,381 24,633 25,817 52,881 55713 58,391
working fault
tolerant dies Four OICs 5623 5930 6221 22,855 24,104 25,286 51,694 54,520 57,195
per wafer
Table 9.
Die yield for fault tolevant die consisting of four MIPS core with one/two/four OICs.
Wafer diameter 100 mm 200 mm 300 mm
Defect density 9.5 5.0 1.0 9.5 5.0 1.0 9.5 5.0 1.0
Number of regular dies per 3217 3217 3217 13,159 13,159 13,159 29,827 29,827 29,827
wafers
Die yield for original die 0.8057 0.8912 0.9770 0.8057 0.8912 0.9770 0.8057 0.8912 0.9770
Number of regular working dies 2592 2867 3143 10,603 11,728 12,856 24,034 26,584 29,141
per wafer
Number of One OIC 3205 3205 3205 13,113 13,113 13,113 29,723 29,723 29,723
regular fault
. Two OICs 3194 3194 3194 13,068 13,068 13,068 29,620 29,620 29,620
tolerant dies per
wafer Four OICs 3172 3172 3172 12,977 12,977 12,977 29,415 29,415 29,415
Six OICs 3150 3150 3150 12,888 12,888 12,888 29,214 29,214 29,214
Die yield for fault One OIC 0.8051 0.8909 0.9769 0.8051 0.8909 0.9769 0.8051 0.8909 0.9769
tolerant die
Two OICs 0.8040 0.8902 0.9767 0.8040 0.8902 0.9767 0.8040 0.8902 0.9767
Four OICs 0.8028 0.8895 0.9765 0.8028 0.8895 0.9765 0.8028 0.8895 0.9765
Six OICs 0.8016 0.8888 0.9764 0.8016 0.8888 0.9764 0.8016 0.8888 0.9764
Number of One OIC 2581 2856 3131 10,559 11,683 12,810 23,933 26,481 29,037
regular working
N Two OICs 2559 2833 3109 10,470 11,592 12,719 23,732 26,277 28,831
fault tolerant dies
per wafer Four OICs 2537 2811 3087 10,382 11,503 12,629 23,535 26,075 28,628
Six OICs 2516 2790 3065 10,296 11,415 12,541 23,340 25,877 28,428
Table 10.

Die yield for fault tolerant die consisting of eight MIPS core with one/two/four/six OICs.

20

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

tolerant dies. Thus, a trade-off exists between the die yield and fault tolerance pro-
vided by the design alternatives (discussed above) having redundancy ranging
between 2% and 11%.

7. Reliability analysis of 32-bit OIC

In order to assess the endurance for the four modes of OIC, reliability is evaluated
and compared. The reliability, denoted by R(t), is defined as the probability of its
survival at least until time t, which is estimated using Weibull distribution and can be
determined in the following manner:

R(t)=P(T>t)=e¢* (6)

where f is the shape parameter, T denotes the lifetime and 4 denotes the failure rate
of a component. Defect induced faults occur in the early stage of the lifetime, but the
wear-out induced faults increase in the tail end of the lifetime. § < 1, is used to model
infant mortality and it is a period of growing reliability and decreasing failure rate.
When g = 1, the R(t) of Weibull distribution and exponential distribution are identi-
cal. § > 1, is used to model wear out and the end of useful life where failure rate is
increasing. The initial failure rate is computed using the failure rate formula:

A= (Clﬂ,'Tﬂ'V + Czﬂ.’E)ﬂ'Qﬂ'L (7)

here, Cy, C; are the complexity factors, 71, 7y, 7g, 7q, 71, are temperature, voltage
stress, environment, quality and learning factors respectively. Failure rate 4 is
assumed as a function of the number of logical elements in the micro-architectural
components.

The reliabilities of the four modes of OIC given in the Egs. (8)—(11) are expressed
in terms of Rgelect logic (£)> Rsub (£)> Rsub—sc(£)s Reomp (t) Ryoter Which denote the reliabilities
of select logic, subtractor, SCS, comparator and voters logic respectively.

TMR + SCS mode reliability is expressed as:

Rrriscs(t) = Rt Rets o0 Rcomp(O0Ror)3) (R 1) (1 R (1)

4
=2

(8)
TMR mode reliability is expressed as:

i \!

3
Rroae () = Rectet togic (1) Reomp (1) Rvorer (1) <3> (Raup(t))" (1= Raun(®))*™ (9)

DMR mode reliability is expressed as:
2 /2 . .
Row(6) = Rt toeOReamp(®) Y- (1) (Ra(0) (1= Ranl@)7 (10
i=1
Baseline mode reliability is expressed as:

21

Fault Tolerance

Rbaseline (t) = Rselect logic (t)Rsub—sc (t) (11)

The reliabilities are plotted for TMR + SCS, TMR, DMR and Baseline modes in
Figure 12 for = 0.9 and 1.0, (which denote defect induced fault phase) and in
Figure 13 for § = 1.1 and 1.2 (which denote wear out induced fault phase). 1 is a
function of number of logical elements as given in the Table 3.

In all these cases, TMR + SCS mode is observed to have a better failure tolerance
when compared to all other modes. For f§ = 1.2, the reliabilities of TMR mode and
DMR mode are less than that of TMR + SCS mode during the interval 3 x 10* to
15 x 10* hours, as illustrated in Figure 13. The levels of reliability of TMR modes
decline far below DMR, and baseline modes in wear out induced fault phase due to the

1.00000000E+00

9.80000000E-01

9.60000000E-01

9.40000000E-01
9.20000000E-01
9.00000000E-01

RELIABILITY

8.80000000E-01

8.60000000E-01

8.40000000E-01

0 30000 60000 90000 120000 150000 180000210000

=== BASELINE ={i=DMR =dr=TMR =&=TMR+5CS

(a)

1.000000000E+00 —
9.000000000E-01
8.000000000E-01
7.000000000E-01
6.000000000E-01
5.000000000E-01
4.000000000E-01
3.000000000E-01
2.000000000E-01
1.000000000E-01
0.000000000E+00

B=1.0

RELIABILITY

PSS SS S

w=@=BASELINE =ll=DMR =sbe=TMR ==e=TMR+5CS

(b)

Figure 12.
Reliability vs. time for (a) p = 0.9 and (b) p = 1.0.

22

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

1.0000000000E+00
9.0000000000E-01
8.0000000000E-01
7.0000000000E-01
6.0000000000E-01
5.0000000000E-01
4.0000000000E-01
3.0000000000E-01
2.0000000000E-01
1.0000000000E-01
0.0000000000E+00

RELIABILITY

SRS o o o O
S & S

= BASELINE =@=DMR =r=TMR == TMR+SCS

(a)

1.000000000E+00
9.000000000E-01
8.000000000E-01
7.000000000E-01
6.000000000E-01
5.000000000E-01
4.000000000E-01
3.000000000E-01
2.000000000E-01
1.000000000E-01 .
0.000000000E+00 _—

= o@g (00@0 Q@@

=g BASELINE == DMR =e=TMR =i TMR+SCS

p=1.2

RELIABILITY

(b)

Figure 13.
Reliability vs. time for (a) p = 1.1 and (b) p = 1.2

fact that a single component reliability is below 0.5 and that the redundancy does not
have any merit in the TMR mode. In Table 11, reliability of subtractor goes below 0.5
att = 180,000 h or 20.5 years and reliability gap between TMR and DMR widens
endorses the above argument.

7.1 Comparative analysis: OIC and URISC/URISC++

In this section, reliability of OIC is compared with that of URISC++. The reliability
function of Weibull distribution with A as a function of number of logical elements is
used to estimate the reliability of URISC/URISC++. The number of logical elements in

23

Fault Tolerance

t (h) R (subtractor) R (comparator) R (TMR) R (DMR)

120,000 (13.7 years) 0.6256 0.6948 0.16931 0.2112

150,000 (17.12 years) 0.5417 0.6226 0.09060 0.1272

180,000 (20.5 years) 0.4663 0.5545 0.04633 0.07706
Table 11.

Reliabilities of components in OIC for p = 1.2.

B=0.9
1.02000000E+00
1.00000000E+0D0
9.80000000E-01
9.60000000E-01
9.40000000E-01
9.20000000E-01

RELIABILITY

9.00000000E-01
8.80000000E-01
8.60000000E-01

8.40000000E-01
0 30000 60000 90000 120000 150000 180000 210000

e URISC++ i 0| C

Figure 14.
B = 0.9 reliability vs. time (hours).

1.200000000E-+00 B=1.0
1.000000000E+00
8.000000000E-01

6.000000000E-01

RELIABILITY

4.000000000E-01
2.000000000E-01

0.000000000E+00
0 30000 60000 90000 120000150000180000210000

@ | RISC++ == 0IC

Figure 15.
P = 1.0 reliability vs. time (hours).

OIC and URISC++ are given in Table 4. In the defect induced fault phase (f = 0.9 and
f =1.0), a drastic fall in the URISC++ reliability is observed as shown in Figures 14
and 15. OIC continues to maintain a reliability of 0.96, unlike URISC++ with endur-
ance reaching 0.87 after 210,000 hours. In the wear-out induced fault phase, the

24

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

B=1.1

1.2000000000E+00
1.0000000000E+00
8.0000000000E-01

6.0000000000E-01 @ URISC++
0| C

RELIABILITY

4.0000000000E-01
2.0000000000E-01

0.0000000000E+00
0 30000 60000 90000 120000 150000 180000 210000

Figure 16.
B = 1.1 reliability vs. time (hours).

B=1.2
1.200000000E+00
1.000000000E+00
. 8.000000000E-01
=
=
"q:' 6.000000000E-01 e | |RISC++
5 e (| C
o

4.000000000E-01
2.000000000E-01

0.000000000E+00
0 30000 60000 90000 120000 150000 180000 210000

Figure 17.
P = 1.2 Reliability vs. time (hours).

reliability gap widens between 32-bit OIC and URISC++ when f = 1.1 (Figure 16) after
60,000 hours or 6.84 years. The reliability levels of OIC fall below that of URISC++
because single component reliability reduces below 0.5 after 23.4 years as shown in
Figure 17 and the redundancy in the OIC does not have any merit thereafter.

8. Conclusion

1.Power, area and total power for OIC and for its contender URISC++ are
evaluated. OIC consumes less power and area compared to its contender. The
registers count in OICs is significantly less compared to URISC++. It is observed
that two large register files in URISC++ consume more power, unlike OIC which
does not maintain register files.

25

Fault Tolerance

26

2.The performance overheads at instruction level and application level are
evaluated. In terms of performance overhead, based on the analysis in the
Section 5, performance loss is incurred in compute intensive and memory
intensive micro-benchmarks mainly due to MUL and DIV instructions in the
programs. But the performance loss will not be high in programs with right mix
of arithmetic instructions.

3.In 1:1 configuration of multi-core system with OICs i.e., one conventional core
with one OIC, all the emulation request from the conventional core is handled by
OIC. In 2:1 configuration (two cores and one OIC), simultaneous failures in two
conventional cores results in higher performance loss for the application
executing in the system. This performance loss can be reduced by augmenting
the multi-core configuration with an additional OIC. That is, 1:1 model proves to
be a viable solution with minimal performance loss. This is validated by the
simulation results presented in this chapter. On 1:1 and 1: N basis i.e., one MIPS
core with one or more OICs can scale to 100 MIPS core with 100 or more OICs.
Hence, MCS-OIC model is a scalable design alternative.

4.As expected, it is observed from the reliability analysis of OIC that an increase in
the number of subtractors results in higher reliability. Alternatively, it can be
understood that replication of functional units improves reliability of the OIC
significantly. Hence, TMR + SCS mode has higher reliability compared to the
other modes.

5.The yield of the fault tolerant die is slightly lesser than the original die for all the
design alternatives of MCS-OIC. It is inferred that larger chips with increasing
redundancy widens gap between the yield of the original dies and fault tolerant
dies. Thus, a trade-off exists between the die yield and fault tolerance provided
by the design alternatives (discussed above) having redundancy ranging
between 2% and 11%.

6.Reliability of OIC and URISC++ are evaluated and compared. Evaluation results
indicate that OIC is more reliable than URISC++ both in the defect induced phase
and the wear out induced phase. It can be understood that the level of
redundancy is significantly less in URISC++ compared to OIC.

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...
DOI: http://dx.doi.org/10.5772 /intechopen.102823

Author details
Shashikiran Venkatesha'* and Ranjani Parthasarathi?
1 Vellore Institute of Technology, Vellore, Tamil Nadu, India

2 Department of Information Science and Technology, College of Engineering
Guindy, Anna University, Chennai, Tamil Nadu, India

*Address all correspondence to: shashikiran.annauniv@gmail.com

IntechOpen

© 2022 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

27

Fault Tolerance

References

[1] Borkar S. Designing reliable systems
from unreliable components: The
challenges of transistor variability and
degradation. IEEE Micro. 2005;25(6):
10-16

[2] Shivakumar P, Kistler M,

Keckler SW, Burger D, Alvisi L.
Modeling the effect of technology trends
on the soft error rate of combinational
logic. In: Proceedings of International
Conference on Dependable Systems and
Networks. IEEE Explorer. 2002.

pp- 389-398. DOI: 10.1109/
DSN.2002.1028924

(3] Feng S, Gupta S, Ansari A, Mahlke S.
Shoestring: Probabilistic soft error
reliability on the cheap’. ACM SIGARCH
Computer Architecture News. 2010;
38(1):385-396

[4] Li T, Ambrose JA, Ragel R,
Parameswaran S. Processor design for
soft errors: Challenges and state of the
art. ACM Computing Surveys. 2016;
49(3):1-44

[5] Mittal S. A survey of techniques for
managing and leveraging caches in
GPUs. Journal of Circuits, Systems, and
Computers. 2014;23(08):1430002

(6] Rusu S, Muljono H, Ayers D, Tam S,
Chen W, Martin A, et al. 5.4 Ivytown: A
22 nm 15-core enterprise Xeon®
processor family. In: 2014 IEEE
International Solid-State Circuits
Conference Digest of Technical Papers
(ISSCC). IEEE Explorer; 2014. pp. 102-
103. DOI: 10.1109/ISSCC.2014.6757356

[7] Zyuban V, Taylor SA, Christensen B,
Hall AR, Gonzalez CJ, Friedrich J, et al.
IBM POWER?7+ design for higher
frequency at fixed power. IBM Journal of
Research and Development. 2013;57(6):
1-1

28

[8] Postman], Chiang P. A survey
addressing on-chip interconnect: Energy
and reliability considerations.
International Scholarly Research Notices.
2012;2012:1-9. Article ID: 916259. DOI:
10.5402/2012/916259

[9] Nassif SR, Mehta N, Cao Y. A
resilience roadmap. In: 2010 Design,
Automation & Test in Europe
Conference & Exhibition (DATE 2010).
IEEE Explorer; 2010. pp. 1011-1016.
DOI: 10.1109/DATE.2010.5456958

[10] Karnik T, Tschanz J, Borkar N,
Howard J, Vangal S, De V, et al.
Resiliency for many-core system on a
chip. In: 2014 19th Asia and South Pacific
Design Automation Conference (ASP-
DAC). IEEE Explorer; 2014. pp. 388-389.
DOI: 10.1109/ASPDAC.2014.6742921

[11] Gaisler]. A portable and fault-
tolerant microprocessor based on the
SPARC v8 architecture. In: Proceedings
International Conference on Dependable
Systems and Networks. IEEE Explorer;
2002. pp. 409-415. DOI: 10.1109/
DSN.2002.1028926

[12] Lin S, Kim YB, Lombardi F. Design
and performance evaluation of radiation
hardened latches for nanoscale CMOS.
IEEE Transactions on Very Large-scale
Integration Systems. 2010;19(7):
1315-1319

[13] Slayman CW. Cache and memory
error detection, correction, and
reduction techniques for terrestrial
servers and workstations. IEEE
Transactions on Device and Materials
Reliability. 2005;5(3):397-404

[14] Pomeranz I, Vijaykumar TN.
FaultHound: Value-locality-based soft-
fault tolerance. In: Proceedings of the
42nd Annual International Symposium

Design of Low-Cost Reliable and Fault-Tolerant 32-Bit One Instruction Core for Multi-Core...

DOI: http://dx.doi.org/10.5772 /intechopen.102823

on Computer Architecture. ACM Digital
Library; 2015. pp. 668-681. DOI: 10.1145/
2749469.2750372

[15] Meaney PJ, Swaney SB, Sanda PN,
Spainhower L. IBM 2990 soft error
detection and recovery. IEEE

Transactions on Device and Materials
Reliability. 2005;5(3):419-427

[16] Stackhouse B, Bhimji S, Bostak C,
Bradley D, Cherkauer B, Desai], et al. A
65 nm 2-billion transistor quad-core
Itanium processor. IEEE Journal of Solid-
State Circuits. 2008;44(1):18-31

[17] Venkatesha S, Parthasarathi R. 32-Bit
one instruction core: A low-cost, reliable,
and fault-tolerant core for multicore
systems. Journal of Testing and
Evaluation. 2019;47(6):3941-3962. DOL:
10.1520/JTE20180492. ISSN 0090-3973

(18] Hamming RW. Error detecting
and error correcting codes’. The Bell
System Technical Journal. 1950;29(2):
147-160

[19] Rajendiran A, Ananthanarayanan S,
Patel HD, Tripunitara MV, Garg S.
Reliable computing with ultra-reduced
instruction set co-processors. In: DAC
Design Automation Conference 2012.
ACM Digital Library; 2012. pp. 697-702.
DOI: 10.1145/2228360.2228485

[20] Ananthanarayan S, Garg S, Patel
HD. Low-cost permanent fault detection
using ultra-reduced instruction set co-
processors. In: 2013 Design, Automation
& Test in Europe Conference &
Exhibition (DATE). IEEE Explorer;
2013. pp. 933-938. DOI: 10.7873/
DATE.2013.196

[21] Sundaramoorthy K, Purser Z,
Rotenberg E. Slipstream processors:
Improving both performance and fault
tolerance’. ACM SIGPLAN Notices.
2000;35(11):257-268

29

[22] LaFrieda C, Ipek E, Martinez JF,
Manohar R. Utilizing dynamically
coupled cores to form a resilient chip
multiprocessor. In: 37th Annual IEEE/
IFIP International Conference on
Dependable Systems and Networks
(DSN’07). IEEE Explorer; 2007. pp.
317-326. DOI: 10.1109/DSN.2007.100

[23] Aggarwal N, Ranganathan P,
Jouppi NP, Smith JE. Configurable
isolation: Building high availability
systems with commodity multi-core
processors. ACM SIGARCH Computer
Architecture News. 2007;35(2):470-481

[24] Smolens JC, Gold BT, Falsafi B, Hoe
JC. Reunion: Complexity-effective
multicore redundancy. In: 2006 39th
Annual IEEE/ACM International
Symposium on Microarchitecture
(MICRO'06). IEEE Explorer; 2006. pp.
223-234. DOI: 10.1109/MICR0O.2006.42

