

High frequency of *BTK* and *PLCG2* mutations in chronic lymphocytic leukemia patients on Ibrutinib therapy

0,37

BTK/PLCG2 WT

■ BTK/PLCG2 M

* Other genes M: at least one gene mutated among 7 genes tested (ATM, SF3B1, RPS15, BIRC3, POT1, NOTCH1, FBXW7)

Carole Fleury ¹, Anne Quinquenel ², Luc-Matthieu Fornecker ³, Loïc Ysebaert ⁴, Catherine Thieblemont ⁵, Jean-Marc Zini ⁵, Pierre Feugier ⁶, Lise Willems ⁷, Jean-François Collon ¹, Virginie Eclache ¹, Grégory Lazarian ¹, Rémi Letestu ¹, Florence Cymbalista ¹, Fanny Baran-Marszak ¹

¹ Biologic hematology department, Hôpital Avicenne, APHP, France; ² Hematology department, CHU Reims, France; ³ Hematology department, hôpitaux universitaires de Strasbourg, France; ⁴ Institut Universitaire du Cancer Toulouse-Oncopole, France; ⁵ Hemato-oncology department, Hôpital Saint-Louis, Paris, France; ⁵ Hematology department, CHU Nancy, France; ⁵ Hematology department, Hôpital Cochin, Paris, France

Background and objective

- Targeted therapies such as the BTK inhibitor lbrutinib profoundly changed the management of patients with CLL.
- BTK or PLCG2 mutations seem to be an important molecular mechanism underlying disease progression on Ibrutinib therapy, with a high frequency in resistant patients ¹.
- However, only limited data are available regarding *BTK* and/or *PLCG2* mutations in patients on Ibrutinib without evidence of disease progression ^{2,3}.

The objective of the study is to analyze the CLL genetic profile of patients on Ibrutinib after at least 3 years of treatment.

Patients and methods

- 70 CLL patients with relapsed refractory CLL and/or *TP53* alterations on Ibrutinib therapy for several years (median 3 years).
- BTK, PLCG2, ATM, SF3B1, RPS15, BIRC3, POT1, NOTCH1, FBXW7 mutations were investigated by NGS in 42 patients with a CLL cell count >0,5G/L.

References

- 1. Woyach, J. A. et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286–2294 (2014).
- 2. Woyach, J. A. et al. BTKC481S-Mediated Resistance to Ibrutinib in Chronic Lymphocytic Leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 35, 1437–1443 (2017).
- 3. Landau, D. A. et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat. Commun. 8, 2185 (2017).

- 22/42 patients (52%) showed at least one mutation of *BTK* and/or *PLCG2*, with no correlation between variant allele frequency (VAF) and lymphocyte count.
- Among progressive patients, 5/8 harbored mutations (VAF ranged from 5 to 53%, median 32%).
- Among non-progressive patients, 17/34 harbored mutations (VAF ranged from 0.2 to 72%, median 20%).

• We identified a total of 27 mutations in *BTK* and 7 in *PLCG2*, with a co-occurrence of several mutations (up to 4) in 36% cases (8/22).

1,0

0,9

8,0 0,7 0,6 0,5

0,3 0,4 0,2

- Mutations of *BTK* were mostly located in the cysteine 481 hotspot, with 4 different mutations: p.C481S (c.1442G> C or c.1441T> A), p.C481R and p.C481Y, with a combination of 2 mutations in 5/22 patients.
- We identified 4 different mutations in PLCG2: p.L845F, p.D993H, p.R665W and p.C849R, with a combination of 2 mutations in 3/4 patients.

Discussion and conclusion

Mutations of BTK and PLCG2 are frequent on Ibrutinib therapy, among patients with sustainable response to Ibrutinib.

→ Follow-up will determine if all these mutations are predictive of disease progression.

Mutations of *PLCG2* and *BTK* identified among progressive patients are frequently subclonal.

→ Further studies are needed to determine the mechanism by which these mutations can lead to progression.

<u></u>

0,45

0,55

(n=20)

(n=22)