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Abstract

Platinum and its alloys are regarded as best nanocatalysts for the electro-oxida-
tion of alcohol fuels especially in acidic conditions. The performance of nanocata-
lysts for alcohol fuel cells depends greatly on the support material. A good support 
material should have high surface area to obtain high metal dispersion. It should 
also bond and interact with the nanocatalysts to improve the activity of the overall 
electrode. Most importantly, the support material should offer great resistance to 
corrosion under the harsh fuel cell conditions. In this chapter, the use of carbon 
nanodots as support materials for Pt-Sn and Pt-TiO2 nanoparticles is discussed. The 
electrochemical activity of Pt/CNDs, Pt-Sn/CNDs and Pt/CNDs-TiO2 nanocata-
lysts was studied using cyclic voltammetry (CV) in acidic and alkaline conditions. 
Chronoamperometry (CA) was used to investigate the long-term stability of the 
nanocatalysts under the fuel cell environment. Electrochemical results demon-
strated that binary Pt nanocatalysts are more active compared to monocatalysts. It 
was also observed that carbon nanodots are better support materials than carbon 
black. Blending carbon nanodots with titanium dioxide (a ceramic material) 
improves the corrosion resistance of the nanocatalyst. Cyclic voltammetry results 
also proved that alcohol electro-oxidation is enhanced in alkaline conditions.

Keywords: nanocatalyst, platinum, carbon nanodots, alcohol fuel cell, 
electrooxidation

1. Introduction

A fuel cell is an electrochemical device that transforms the chemical energy 
from a fuel into electrical energy through an electrochemical reaction without 
combusting the fuel [1, 2]. Fuel cell technology is one of the innovative future 
energy technologies all over the world. Fuel cells are environmentally friendly and 
more efficient than combustion engines. They operate at low temperatures quietly 
without vibration or noise; hence, can be used for both stationary and mobile 
applications. There are numerous types of fuel cells, classified according to the type 
of the electrolyte they use which governs the operating temperature and the catalyst 
suitable for those conditions.

Among the numerous types of fuel cells, direct alcohol fuel cells (DAFCs) are 
the most attractive using liquid and renewable alcohols (ethanol and methanol) as a 
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fuel [3]. DAFCs are a very promising type when fuel consumption and feed strate-
gies are taken into consideration. Unlike hydrogen fuel cells, which have safety, 
storage, and distribution challenges, DAFCs employ a liquid fuel that can easily be 
kept and transported [4, 5]. The electro-oxidation of alcohol fuels occurs on the 
surface of the positive electrode (anode) whereas the reduction of oxygen takes 
place on the negative electrode (cathode). DAFCs electrodes are made of conductive 
support material with a high surface onto which platinum nanoparticles are depos-
ited. Platinum is the best electrocatalyst for alcohol oxidation reactions (AORs) in 
acidic conditions, nonetheless, it is expensive and it can effortlessly be poisoned 
by the intermediates that are formed during the AORs [6]. For these reasons, novel 
catalyst materials and catalyst preparation methods are still key topics studied in 
alcohol fuel cells. The efficiency of the electrocatalyst nanoparticles depends on the 
support material and its morphology [7]. Carbon nanomaterials have been consid-
ered for use as support materials because of their large surface area, great electrical 
conductivity, tensile strength, good thermal stability, corrosion resistance, ease of 
recovery and recyclability [8, 9]. In this chapter, the electrochemical performance 
of Pt/CNDs, Pt-Sn/CNDs and Pt/CNDs-TiO2 nanocatalysts is discussed. All the 
metal nanoparticles used in the studies reviewed were deposited on to the support 
materials by the alcohol reduction method.

2. Direct alcohol fuel cells (DAFCs)

DAFCs belong to either polymer electrolyte membrane (PEM) or alkaline fuel 
cells (AFCs) depending on the pH of the electrolyte. Low molecular weight alcohol 
fuels are more attractive compared to pure hydrogen because they can be handled 
and transported easily. The design of DAFCs is greatly simplified; no reformer or 
humidifier is required. Figure 1 shows a simple illustration of DAFC components.

Electrochemical reactions take place in the catalyst layers, which are attached 
to the sides of the membrane. The catalyst layers are designed in a way that can 
facilitate the movement of protons, electrons and reactants. The membrane serves 

Figure 1. 
Illustration of direct alcohol fuel cell components.
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as an insulator for electrons and promotes the movement of protons from the anode 
to the cathode. The alcohol fuel is fed into the anode compartment where it gets 
oxidised, at the cathode side oxygen is reduced, both reactions produce electrons 
that migrate along the circuit and serves an electric load. The protons and other ions 
combine to form by-products, water and carbon dioxide.

The commercialisation of the DAFC technology has been hindered by (i) the 
inflated cost of the system, (ii) slow electro-oxidation reaction kinetics and fuel 
crossover. Platinum is the best electrocatalyst particularly in acid media, but it is 
very expensive. It is required in both electrodes of the fuel cell. Methanol is oxidised 
to produce CO, which poisons the platinum electrocatalyst. The poisoning of the 
platinum catalyst surface by carbon monoxide results in sluggish electro-kinetics 
of methanol electro-oxidation and this increases the rate of methanol crossover 
through the membrane. Carbon monoxide is the most stable intermediate formed 
during methanol electro-oxidation. It strongly adsorbs on the surface of the elec-
trocatalyst, therefore preventing further methanol electro-oxidation. The removal 
of CO is the slowest reaction, hence, becomes the rate-limiting step. Ethanol is 
incompletely oxidised in acidic media producing intermediates such as CH3CHO and 
CH3COOH liberating only 2 and 4 electrons, respectively, in alkaline conditions it is 
selectively oxidised to acetate, this greatly reduces the overall fuel cell performance. 
Fuel crossover is a challenge, especially in acidic conditions. The simultaneous 
electro-oxidation of fuel and the reduction of oxygen at the cathode results in mixed 
potential and reduces the cell voltage. The fuel crossover also results in fuel wastage. 
In addition to this, the platinum surface gets poisoned by intermediates produced 
from alcohol electro-oxidation. All these factors diminish the overall fuel cell output.

2.1 Direct alcohol fuel cell working principle

At the anode side, alcohol fuel (methanol, ethanol) is oxidised with the aid of 
the electrocatalyst, generating electrons (e−) and protons (H+) according to the 
following equations:

In acidic conditions

   CH  3   OH +  H  2   O →  6H   +  +  6e   −  +  CO  2    (1)

   C  2    H  5   OH +  3H  2   O →  2CO  2   + 12  H   +  + 12  e   
−
   (2)

In alkaline conditions

   CH  3   OH +  8OH   −  →   CO  3     2−  +  6e   −  +  6H  2   O  (3)

   C  2    H  5   OH + 12  OH   −  →  2CO  2   + 12  e   −  +  9H  2   O  (4)

Electrons migrate to the cathode side through the external circuit, resulting in 
an electrical current. The protons diffuse to the cathode through the electrolyte and 
oxygen is reduced by these electrons to form anions, which react with the protons 
(H+) to form water according to the following equations:

In acidic conditions

   3O  2   + 12  H   +  + 12  e   −  →  6H  2   O  (5)
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In alkaline conditions

   O  2   +  4e   −  +  2H  2   O →  4OH   
−
   (6)

2.2 Support materials for fuel cell nanocatalysts

Support materials play a vital role in fuel cells as they strongly impact on the per-
formance, stability and effectiveness of the electrocatalyst. Support materials can 
be classified as either primary or secondary. Primary supports are novel nanostruc-
tured carbon based such carbon nanotubes and carbon nanodots whereas secondary 
supports are metal oxides, which have been used mainly to modify, promote the 
primary supports and improve corrosion resistance. Corrosion of carbon support 
material is one of the major problems hindering the commercialization of direct 
alcohol fuel cells. A good support material must exhibit the following properties:

• High surface area to obtain maximum and uniform metal dispersion.

• Satisfactory electrical conductivity so that it can serve as a path for the move-
ment of electrons.

• Suitable porosity to boost electrolyte flow.

• Electrochemical stability in the fuel cell environment.

• Availability and low cost.

• Suitable functional groups to enable bonding and interaction with the nano-
catalysts to increase the activity and durability of the metal nanoparticles.

2.2.1 Carbon supports

Carbon is unique among all elements in the periodic table. It exists in radically 
different forms with variable micro-textures. This makes carbon an attractive material 
suitable for wide ranges of electrochemical applications [9]. Carbon is usually used 
for supporting nano-sized electrocatalyst particles for fuel cells owing to its excel-
lent electrical conductivity, huge surface area, pore diameter and pore volume [10]. 
Carbon exists in many allotropic forms owing to its valency of 4 electrons. The most 
common types of carbon are carbon black, fullerenes, diamond, graphene and carbon 
nanotubes. Carbon black, graphene and carbon nanotubes have been extensively used 
as supports for fuel cell nanocatalysts. Carbon black is amorphous, usually contains 
spherical shaped graphite particles, characteristically with sizes below 50 nm. These 
particles combine to form aggregates and agglomerates with diameters around 250 nm 
[8]. Carbon black is mainly manufactured by the “furnace black” process, this process 
involves fractional oxidation of petrochemical or coal tar oils [11]. There are many 
varieties of carbon blacks, the most common types are vulcan XC-72, ketjen black and 
acetylene black. These carbon blacks exhibit good physicochemical properties such as 
surface functional groups, electrical conductivity, porosity and a reasonable amount 
of surface area. Carbon black is commonly used as electrocatalyst support material 
in fuel cells but still suffers from stability issues that reduce the electro-activity of the 
electrode [12, 13]. Carbon black is very unstable in highly acidic/alkaline media of 
a fuel cell, it gets corroded resulting in agglomeration and detachment of platinum 
catalyst, this decreases the overall fuel cell performance [14, 15].
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Carbon nanotubes (CNTs) are cylindrical and hollow graphite layers with closed 
ends. They exist as either single wall or multi-walled nanotubes, with thicknesses of 
a few nanometres and lengths of about 1 mm [8]. A fascinating property of carbon 
nanotubes is their capability to capture other elements/nanocatalysts inside their 
wall structure. CNTs (single or multi-walled) are also used as catalysts supports 
in low-temperature fuel cells [16–19]. SWCNTs have huge surface areas whereas 
MWCNTs are better electrical conductors than SWCNTs [20]. CNTs have chemi-
cally unreactive surfaces making it difficult to deposit metal nanoparticles on their 
surfaces, hence, metal nanoparticles on CNTs generally have poor dispersion and 
large particle sizes, this decreases the electro-activity of the nanocatalyst [21]. 
Researchers have developed functionalisation methods in order to incorporate 
oxygen-containing groups on CNTs so as to improve their reactivity and interaction 
with nanocatalysts [15, 40]. These functionalisation methods include impregna-
tion [22], acid treatment (such as a mixture of HNO3 and H2SO4) [23, 24], polyol 
processing [25], ion-exchange [26] and electrochemical deposition [27].

Carbon nanofibers (CNFs) are industrially produced by the decomposition and 
graphitization of rich organic carbon-containing polymers. CNFs are also used as 
catalysts supports in fuel cells [28–30]. They have a thin cavity and some CNFs have 
no hollow cavity. CNFs are much thicker than CNTs. They can be classified into six 
types according to their structures which are; ribbon-like, platelet, herringbone, 
tubular, faceted tubular and faceted tubular multiwall [31]. Herringbone CNFs 
exhibit intermediate features of parallel and platelet types, thus providing higher 
catalytic activity and better durability than the other types [32].

The major difference between CNFs and CNTs is the exposure of reactive edge 
planes. Anchoring sites for the nanocatalysts resulting from the edge planes are 
exposed in CNFs while the basal planes are exposed in CNTs. Recent studies reveal 
that platinum electrocatalyst supported on CNFs show lower poisoning rates than 
platinum electrocatalyst supported on carbon black [31].

2.2.2 Carbon nanodots

Carbon nanodots (CNDs) are a newest type in the carbon nano family with particle 
diameters less than 10 nm. They were first obtained during the purification of SWCNTs 
through preparative electrophoresis in 2004 [33]. CNDs have gradually attracted too 
much attention because of their availability and inexpensive nature. Carbon nanodots 
core is sp2 conjugated and it contains multiple oxygen moieties such as the carboxyl 
(▬COOH), hydroxyl (▬OH), and aldehyde (▬COH) groups [34]. Synthesis of carbon 
nanodots can be categorised into two groups namely; top down (chemical) and bottom 
up (physical) methods [35, 36]. Top-down method employs treating starting materials 
such as graphitic powder or MWCNTs in harsh chemical conditions [36]. Bottom-up 
approaches include ultra-sonication [37], microwave pyrolysis [38] and hydrothermal 
treatment of small molecules such as starch [39], citric acid [40] glucose [37] and leeks 
[41]. Carbon nanodots used in the studies described in this chapter were prepared by 
the pyrolysis of oats grains [42]. Pyrolysis is a bottom up (physical) method.

In the same study we used the freshly prepared CNDs to deposit Pt nanoparticles. The 
prepared Pt/CNDs electrocatalyst outperformed the platinum nanoparticles supported 
on carbon black. Wei et al. prepared naked palladium nanoparticles supported on carbon 
nanodots for methanol electro oxidation. It was observed that freshly prepared CNDs act 
as reductants resulting in attachment of metal nanoparticles on their surfaces [37].

What makes carbon nanodots superior?

• They are easy to synthesise from various starting materials such as carbohy-
drates and waste carbonaceous sources such paper and avocado seed.
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• No need to functionalise-they contain oxygen content of about 10% wt.

• Unlike carbon nanotubes, carbon nanodots are non-toxic and 
non-carcinogenic.

• They are biocompatible.

• Due to their small particle sizes (below 10 nm) they provide high surface area 
which enhances metal nanoparticle dispersion.

• Carbon nanodots also bond with the metal nanoparticles; thus, improving the 
interaction between the catalyst and the support material.

2.2.3 Inorganic support materials

Inorganic metal oxides such as TiO2 [15, 43–47], WO3 [48–50], CeO2 [29, 30, 51], 
Al2O3 [52] SnO2 [53] and MoO3 [54] are very stable under the harsh fuel cell envi-
ronment. These ceramic materials are not good conductors of electricity; hence, 
they can be only utilized as secondary support materials; they cannot be used on 
their own as nanocatalyst supports.

2.2.3.1 Titanium dioxide (TiO2)

Titanium dioxide commonly referred to as “titania” is a naturally occurring 
oxide of titanium. Titanium oxides have been employed in numerous applications 
that depend on its photo-electrochemical, catalytic and outstanding corrosion 
resistance in both alkaline and acidic media. Titania generally exists in three 
major forms which are; anatase, rutile, and brookite crystallography. Each of 
these structures exhibits unique physical properties which make them suitable for 
different applications. It has been reported that the anatase crystallography is more 
effective as an electrocatalyst than rutile titania. The chemical and physical proper-
ties displayed by these crystallographic forms depend on the synthesis route [55]. 
Titanium dioxide nanoparticles can be produced by approaches such as the sol-gel 
technique [55, 56], microwave assisted hydrolysis [57], hydrothermal method 
[58], co-precipitation route [59], flame combustion method [60, 61] and chemical 
vapour deposition (CVD) [62].

3. Nanocatalysts for direct alcohol fuel cells

3.1 Platinum (Pt) electrocatalyst

Platinum monometallic catalyst has been widely used in fuel cells and has shown 
good results for both DMFC and DEFC in acidic media [63–69]. This is because 
platinum shows better activity, selectivity, stability and resistance to poison than 
other metals. Platinum catalyst allows chemical bonds to cleave but weakly enough 
to yield the product when the reaction has taken place, this is a required property 
for a good heterogeneous catalyst [70]. However, the crystalline orientation of 
platinum is a very important factor that governs the activity and poisoning rates of 
the electrode.

Platinum crystallises in face-centred cubic structure (FCC) and the shape of 
the resulting facet is predicted using Wulff ’s rule [71]. The surface energy increases 
as follows; Pt (111) < Pt (110) < Pt (100). The (111) orientation is the energetically 
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favourable growth plane of platinum crystals. Polycrystalline platinum is prone 
to oxidation due to the symmetric polycrystalline structure. Reactant molecules 
adsorb strongly on the Pt (111) orientation, hence, it has a lower electrocatalytic 
activity compared to the Pt (110) and Pt (100) orientations. On the other hand, 
Pt (111) orientation has a lower poisoning rate than the Pt (110) and Pt (100) 
orientations [72, 73]. The desired crystal orientations can be obtained by adding 
a shape-directing agent to modify the crystallisation process. Many researchers 
have reported that platinum is the best electrocatalyst in acidic media. However, 
contrary results have been observed when using carbon nanodots as supports. It was 
observed that the Pt/CNDs electrocatalyst in alkaline media yields more current 
compared to acidic conditions as can be seen from Figure 2.

Gwebu et al. [42] went on to study the electro-oxidation of ethanol on the Pt/
CNDs electrode in both acidic and alkaline solutions. A similar trend was observed; 
high current densities were recorded in alkaline conditions. The results are shown in 
Figure 3.

3.2 Platinum-tin (Pt-Sn) electrocatalyst

Researchers have demonstrated that tin (Sn) enhances the electrocatalytic 
performance of platinum towards ethanol oxidation and works even better than 
ruthenium. Among the platinum-based binary catalysts, the Pt-Sn/C electrocatalyst 
is the most promising for EOR; due its low cost, and high current densities at low 
potentials. Neto et al. [3] synthesised Pt-Sn/C and Pt-Ru/C by the alcohol reduc-
tion process using water and ethylene glycol as the solvent and reducing agent 
respectively. The activity for methanol and ethanol electro-oxidation was studied at 
room temperature. The Pt-Sn/C electrocatalyst yielded current values higher than 
those of Pt-Ru/C for both ethanol and methanol oxidation. The superior activity 
of the Pt-Sn/C nanocatalyst is brought by the “bifunctional” mechanism where Sn 
provides oxygen-containing species to react with the CO poisoning intermediates 
on the platinum sites [74–78].

Spinacé et al. [79] studied the effect of the synthesis method and atomic com-
position of Pt and Sn. They synthesised Pt-Sn/C nanocatalysts with Pt:Sn ratios of 
50:50 and 90:10 by the alcohol reduction method, using ethylene glycol as a reducing 
agent, and by borohydride reduction. The Pt-Sn/C nanocatalysts prepared by the 

Figure 2. 
Comparable CV for Pt/C and Pt/CNDs in (a) 0.5 CH3OH in 0.5 M H2SO4 and (b) 0.5 M CH3OH in 
NaOH. Reproduced with permission from Gwebu et al. [42]. Copyright 2017, ESG.
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alcohol reduction method had smaller sizes compared to the Pt-Sn nanocatalysts 
prepared by borohydride method. The difference in particle sizes was attributed to 
the stabilising influence of ethylene glycol that minimises nanoparticle growth. The 
best activity for the electro-oxidation of ethanol was observed for the electrocatalyst 
containing 50:50 Pt:Sn prepared by the alcohol reduction method. For the borohy-
dride method, higher current densities were observed for the electrocatalyst contain-
ing Pt:Sn in the ratio 90:10. Lamy and co-workers [80] demonstrated that Pt-Sn/C 
nanocatalysts perform better than Pt-Ru/C nanocatalysts for ethanol oxidation. For 
nanocatalysts synthesized by co-impregnation hydrogen reduction and Bönneman 
methods, they found that the optimal tin composition was between 10 and 20%.

Zhou and co-workers [81, 82] prepared Pt-Ru/C and Pt-Sn/C nanocatalysts by a 
polyol method and tested for ethanol oxidation. They observed that the activities of 
the Pt-Ru/C nanocatalysts were inferior to those of Pt-Sn/C nanocatalysts. They also 
observed that Pt-Sn/C nanocatalysts with Pt:Sn atomic ratios of 60:40 and 50:50 are 
more electroactive than nanocatalysts with 75:25 and 80:20 atomic ratios. Some sci-
entists have reported that methanol electro-oxidation is low or insignificant on the 
Pt-Sn/C electrocatalysts. In actual fact, such observations were later found to be due 
to other intervening factors than the effect of Sn on methanol oxidation, normally 
involving “ensemble” effects [83]. Colmati et al. [74] reported that the adsorption-
dehydrogenation of methanol turns out to be more difficult due to alloying of Sn 
with Pt and methanol electro-oxidation occurs only at reasonable alloying ratios.

The performance of Pt-Sn/C nanocatalysts greatly depends on their preparation 
procedure and composition. Carbon nanodots have been used as support materi-
als for Pt-Sn nanoparticles. It has been found that carbon nanodots supported 
nanocatalysts show greater electroactivity and slow poisoning rates compared to 
carbon black supported nanocatalysts as shown in Figure 4 [84]. The electrochemi-
cal activity is usually assessed by cyclic voltammetry and the poisoning rates are 
normally studied by chronoamperometry.

3.3 Pt-TiO2 composites

Chemical blending a carbon support material such as a CNTs, CNDs, etc., with 
TiO2 helps to improve the anti-poisoning and anti-corrosion properties of the 
electrode. The synergistic interaction between the carbon support, TiO2 and the Pt 
catalyst enhances the electroactivity of the catalyst as it changes the Pt-d electronic 
and geometric properties [65]. This synergistic effect causes the contraction of Pt-Pt 

Figure 3. 
CV graphs for Pt/C and Pt/CNDs in (a) 3 M CH3CH2OH in 0.1 M H2SO4 and (b) 2 M CH3CH2OH in 0.1 M 
NaOH. Reproduced with permission from Gwebu et al. [42]. Copyright 2017, ESG.
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bond length leading to a condition favourable for the alcohol electro-oxidation reac-
tions [44]. Titanium dioxide is a semiconductor, hence the quantity of TiO2 and the 
crystallography (anatase/rutile) governs the degree of the interaction between the 
electrocatalyst components [85]. Previous X-ray photoelectron spectroscopic studies 
reveal that when Pt nanoparticles are supported on CNDs-TiO2 the electronic struc-
ture of Pt is altered by titanium from the composite support. The binding energy for 
pure Pt0 is around 71.12 eV, however, upon addition of TiO2 the binding energy of 
4f7/2 Pt0 shifts to 71.53 eV. The positive shift indicates a strong metal-support interac-
tion (SMSI) between the support material and the platinum catalyst [86] (Figure 5).

The enhanced electrochemical performance provided by metal oxides is brought 
by their hydrophilic nature due to the availability of H2O molecules within the oxide 
network. The water molecules act as a continuous reversible membrane resulting 
in enhanced hydroxide transfer [43]. Bedolla-Valdez et al. [45] prepared a Pt/CNT/
TiO2 composite for methanol electro-oxidation using the sonochemical method. They 
concluded that the TiO2 surface area can offer sites to adsorb water to form hydroxyl 
groups, which then react with CO adsorbed on the Pt surface to form CO2. They recom-
mended that the functionalisation of CNT should be optimized. Gwebu et al. [86] pre-
pared a novel Pt/CNDs-TiO2 nanocatalyst for methanol and ethanol electro-oxidation 

Figure 4. 
Cyclic voltammograms showing low onset potentials and high current densities yielded by the Pt-Sn/CNDs 
nanocatalyst (a), and chronoamperometry curves showing improved poisoning of the Pt-Sn/CNDs nanocatalyst 
(b). Reproduced with permission from Gwebu et al. [84]. Copyright 2018, Wiley.
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in acidic media. Observed results proved that blending carbon nanodots with TiO2 not 
only improves the electroactivity of the nanocatalyst but also enhances the tolerance to 
poisoning and resistance to corrosion. Figure 6 shows the durability curves for the Pt/
CNDs-TiO2 nanocatalyst against Pt/CNDs and Pt/C nanocatalysts.

After exposure to 50 cycles, the Pt/CNDs-TiO2 nanocatalyst retained the highest 
current indicating great tolerance to poisoning and resistance to acidic conditions of 
the fuel cell. The improved resistance to poisoning and corrosion was credited to the 
presence of ceramic TiO2 nanoparticles which promote the oxidation of poisoning 
species at the same time minimising the detachment of Pt nanoparticles from the 
CNDs-TiO2 composite support.

4. Conclusion

In this chapter, the use of carbon nanodots as primary support materials for 
direct fuel cell nanocatalysts is discussed. Other carbon nanomaterials such as 

Figure 6. 
Stability curves for the Pt/CNDs-TiO2 nanocatalyst. Reproduced with permission from Gwebu et al. [86]. 
Copyright 2018, Elsevier.

Figure 5. 
Pt 4f XPS spectra for Pt/CNDs-TiO2. Reproduced with permission from Gwebu et al. [86]. Copyright 2018, Elsevier.
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CNTs and CNFs were also reviewed. After their discovery in 2004, carbon nanodots 
have not been extensively used in fuel cells. This chapter demonstrated that carbon 
nanodots are potential support materials for direct alcohol fuel cells operating in 
both acidic and alkaline conditions. It is demonstrated that platinum nanoparticles 
supported on carbon nanodots are better anode nanocatalysts compared to plati-
num nanoparticles supported on carbon black. Alloying platinum with a cheaper 
metal such a tin modifies the face centred cubic structure of platinum resulting in a 
geometry which favours alcohol electrooxidation. The binary Pt-Sn catalyst yielded 
higher current density at low potentials compared to the mono Pt/CNDs nanocata-
lyst. It is revealed that incorporating TiO2 into the Pt/CNDs nanocatalyst improves 
the nanocatalyst’s electroactivity and resistance to corrosion by acidic electrolytes. 
Chronoamperometry results proved that Pt, Pt-Sn and Pt-TiO2 nanoparticles 
supported on carbon nanodots are more resistant to poisoning compared to Pt 
nanoparticles supported on carbon black.

From the recent studies conducted, it was observed that carbon nanodots are 
easily synthesized by the bottom-up (physical) methods. However, in most cases 
CNDs prepared by these methods are amorphous, this compromises their resistance 
to corrosion under the harsh fuel cell conditions. Further work should be done 
to develop top-down methods for synthesizing carbon nanodots. Owing to great 
catalytic activity exhibited by Pt binary catalysts, ternary and quaternary catalysts 
should be developed to improve performance and reduce platinum loading.
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