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1. Introduction 

In recent years, adaptive filters are used in many applications, for example an echo 

canceller, a noise canceller, an adaptive equalizer and so on, and the necessity of their 

implementations is growing up in many fields. Adaptive filters require various 

performances of a high speed, lower power dissipation, good convergence properties, small 

output latency, and so on. The echo-canceller used in the videoconferencing requires a fast 

convergence property and a capability to track the time varying impulse response (Makino 

& Koizumi, 1988). Therefore, implementations of very high order adaptive filters are 

required. In order to satisfy these requirements, highly-efficient algorithms and 

architectures are desired. The adaptive filter is generally constructed by using the 

multipliers, adders and memories, and so on, whereas, the structure without multipliers has 

been proposed. 

The LMS adaptive filter using distributed arithmetic can be realized by using adders and 

memories without multipliers, that is, it can be achieved with a small hardware. A 

Distributed Arithmetic (DA) is an efficient calculation method of an inner product of 

constant vectors, and it has been used in the DCT realization. Furthermore, it is suitable for 

time varying coefficient vector in the adaptive filter. Cowan and others proposed a Least 

Mean Square (LMS) adaptive filter using the DA on an offset binary coding (Cowan & 

Mavor, 1981; Cowan et al, 1983). However, it is found that the convergence speed of this me-

thod is extremely degraded (Tsunekawa et al, 1999). This degradation results from an offset 

bias added to an input signal coded on the offset binary coding. To overcome this problem, 

an update algorithm generalized with 2’s complement representation has been proposed 

(Tsunekawa et al, 1999), and the convergence condition has been analyzed (Takahashi et al, 

2002). The effective architectures for the LMS adaptive filter using the DA have been 

proposed (Tsunekawa et al, 1999; Takahashi et al, 2001). The LMS adaptive filter using 

distributed arithmetic is expressed by DA-ADF. The DA is applied to the output calculation, 

i.e., inner product of the input signal vector and coefficient vector. The output signal is 

obtained by the shift and addition of the partial-products specified with the bit patterns of 

the N-th order input signal vector. This process is performed from LSB to MSB direction at 

the every sampling instance, where the B indicates the word length. The B partial-products 
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used to obtain the output signal are updated from LMB to MSB direction. There exist 2N 

partial-products, and the set including all the partial-products is called Whole Adaptive 

Function Space (WAFS). Furthermore, the DA-ADF using multi-memory block structure 

that uses the divided WAFS (MDA-ADF) (Wei & Lou, 1986; Tsunakawa et al, 1999) and the 

MDA-ADF using half-memory algorithm based on the pseudo-odd symmetry property of 

the WAFS (HMDA-ADF) have been proposed (Takahashi et al, 2001). The divided WAFS is 

expressed by DWAFS. 

In this chapter, the new algorithm and effective architecture of the MDA-ADF are discussed. 

The objectives are improvements of the MDA-ADF permitting the increase of an amount of 

hardware and power dissipation. The convergence properties of the new algorithm are 

evaluated by the computer simulations, and the efficiency of the proposed VLSI architecture 

is evaluated. 

2. LMS adaptive filter 

An N-tap input signal vector S(k) is represented as 

 
( ) ( ) ( ) ( ), 1 , , 1

T
k s k s k s k N=  − − +  S 

, (1) 

where, s(k) is an input signal at k time instance, and the T indicates a transpose of the vector. 
The output signal of an adaptive filter is represented as 

 ( ) ( ) ( )Ty k k k= S W , (2) 

where, W(k) is the N-th coefficient vector represented as 

 
( ) ( ) ( ) ( )0 1 1, , ,

T

Nk w k w k w k− =  W  , (3) 

and the wi(k) is an i-th tap coefficient of the adaptive filter. 
The Widrow’s LMS algorithm (Widrow et al, 1975) is represented as 

 ( ) ( ) ( ) ( )1 2k k e k kµ+ = +W W S , (4) 

where, the e(k), μ and d(k) are an error signal, a step-size parameter and the desired signal, 

respectively. The step-size parameter deterimines the convergence speed and the accuracy 

of the estimation. The error signal is obtained by 

 
( ) ( ) ( )kykdke −= . (5) 

The fundamental structure of the LMS adaptive filter is shown in Fig. 1. The filter input 

signal s(k) is fed into the delay-line, and shifted to the right direction every sampling 

instance. The taps of the delay-line provide the delayed input signal corresponding to the 

depth of delay elements. The tap outputs are multiplied with the corresponding 

coefficients, the sum of these products is an output of the LMS adaptive filter. The error 

signal is defined as the difference between the desired signal and the filter output signal. 

The tap coefficients are updated using the products of the input signals and the scaled 

error signal. 
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Fig. 1. Fundamental Structure of the 4-tap LMS adaptive filter. 

3. LMS adaptive filter using distributed arithmetic 

In the following discussions, the fundamentals of the DA on the 2’s complement 

representation and the derivation of the DA-ADF are explained. The degradation of the 

convergence property and the drastic increase of the amount of hardware in the DA-ADF 

are the serious problems for its higher order implementation. As the solutions to overcome 

the problems, the multi-memory block structure and the half-memory algorithm based on 

the pseudo-odd symmetry property of WAFS are explained. 

3.1 Distributed arithmetic 
The DA is an efficient calculation method of an inner product by a table lookup method 
(Peled &Liu, 1974). Now, let’s consider the inner product 

 
1

N
T

i i
i

y a v
=

= =a v  (6) 

of the N-th order constant vector 

 ( )[ ]T
1N10 a,a,a −= a

 
(7) 

and the variable vector 

 ( )0 1 1, , T
Nv v v

−
 =  v  . (8) 

In Eq.(8), the vi is represented on B-bit fixed point and 2’s complement representation, that 
is, 

1v1 i <≤−  

and 

 
1

0

1

2
B

k k
i i i

k

v v v
−

−

=

= − + ,  0,1, , 1i N= − . (9) 
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In the Eq.(9), vik indicates the k-th bit of vi, i.e., 0 or 1. By substituting Eq.(9) for Eq.(6), 

 ( ) ( )
1

0 0 0
0 1 1 0 1 1

1

, , , , , , 2
B

k k k k
N N

k

y v v v v v v
−

−
− −

=

= −Φ + Φ   (10) 

is obtained. The function Φ which returns the partial-product corresponding argument is 
defined by 

 
( )

1

0 1 1
0

, , ,
N

k k k k
N i i

i

v v v a v
−

−

=

Φ ≡  . (11) 

Eq.(10) indicates that the inner product of y is obtained as the weighted sum of the partial-

products. The first term of the right side is weighted by -1, i.e., sign bit, and the following 

terms are weighted by the 2-k. Fig.2 shows the fundamental structure of the FIR filter using 

the DA (DA-FIR). The function table is realized using the Read Only Memory (ROM), and 

the right-shift and addition operation is realized using an adder and register. The ROM 

previously includes the partial-products determined by the tap coefficient vector and the 

bit-pattern of the input signal vector. From above discussions, the operation time is only 

depended on the word length B, not on the number of the term N, fundamentally. This 

means that the output latency is only depended on the word length B. The FIR filter using 

the DA can be implemented without multipliers, that is, it is possible to reduce the amount 

of hardware. 

 

 

Fig. 2. Fundamental structure of the FIR filter using distributed arithmetic. 

3.2 Derivation of LMS adaptive algorithm using distributed arithmetic 
The derivation of the LMS algorithm using the DA on 2’s complement representation is as 
follows. The N-th order input signal vector in Eq.(1) is defined as 

 ( ) ( )k k≡S A F . (12) 

Using this definition, the filter output signal is represented as 

 ( ) ( ) ( ) ( ) ( )T T Ty k k k k k= =S W F A W . (13) 
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In Eq.(12) and Eq(13), an address matrix which is determined by the bit pattern of the input 
signal vector is represented as 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

1 1 1

1 1 1

1 1

1 1

1 1

T

B B B

b k b k b k N

b k b k b k N
k

b k b k b k N− − −

 − − +
 

− − + =  
 

− − +  

A




   


, 

(14)

 

and a scaling vector based on the 2’s complement representation is represented as 

 
0 1 12 ,2 , ,2

TB− − = − F  , (15) 

where, bi(k) is an i-th bit of the input signal s(k). In Eq.(13), AT(k)W(k) is defined as 

 ( ) ( ) ( )Tk k k≡P A W , (16) 

and the filter output is obtained as 

 
( ) ( )kky T PF= . (17) 

The P(k) is called adaptive function space (AFS), and is a B-th order vector of 

 ( ) ( ) ( ) ( )0 1 1, , ,
T

Bk p k p k p k−=   P  . (18) 

The P(k) is a subset of the WAFS including the elements specified by the row vectors (access 

vectors) of the address matrix. Now, multiplying both sides by AT(k), Eq.(4) becomes 

     ( ) ( ) ( ) ( ) ( ) ( ){ }1 2T Tk k k k e k kµ+ = +A W A W A F
 

 ( ) ( ) ( ) ( ) ( )2T Tk k e k k kµ= +A W A A F . (19) 

Furthermore, by using the definitions described as

 

 ( ) ( ) ( )Tk k k≡P A W   

and 

 ( ) ( ) ( )1kk1k T +≡+ WAP , (20) 

the relation of them can be explained as 

 ( ) ( ) ( ) ( ) ( )1 2 Tk k e k k kµ+ = +P P A A F . (21) 

It is impossible to perform the real-time processing because of the matrix multiplication of 

AT(k)A(k) in Eq.(21). 

To overcome this problem, the simplification of the term of AT(k)A(k)F in Eq.(21) has been also 

achieved on the 2’s complement representation (Tsunekawa et al, 1999). By using the relation 
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 ( ) ( ) 0.25TE k k N  = A A F F , (22) 

the simplified algorithm becomes 

 ( ) ( ) ( )1 0.5k k Ne kµ+ = +P P F , (23) 

where, the operator E[ ] denotes an expectation. Eq.(23) can be performed by only shift and 

addition operations without multiplications using approximated μN with power of two, 

that is, the fast real-time processing can be realized. The fundamental structure is shown in 

Fig.3, and the timing chart is also shown in Fig.4. The calculation block can be used the 

fundamental structure of the DA-FIR, and the WAFS is realized by using a Random Access 

Memory (RAM). 

 

 

Fig. 3. Fundamental structure of the DA-ADF. 

 

 

Fig. 4. Timing chart of the DA-ADF. 
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3.3 Multi-memory block structure 
The structure employing the DWAFS to guarantee the convergence speed and the small 
 

 

Fig. 5. Fundamental structure of the MDA-ADF. 

 

 

Fig. 6. Timing chart of the MDA-ADF. 

hardware for higher order filtering has been proposed (Wei & Lou, 1986; Tsunakawa et al, 

1999). The DWAFS is defined for the divided address-line of R bit. For a division number M, 

the relation of N and R is represented as 

/R N M= . 
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The capacity of the individual DWAFS is 2R words, and the total capacity becomes smaller 

2RM words than the DA’s 2N words. For the smaller WAFS, the convergence of the algorithm 

can be achieved by smaller iterations. The R-th order coefficient vector and the related AFS 

is represented as 

 ( ) ( ) ( ) ( ) ( )0 1 1, , , T
m m m m Rk w k w k w k

−
 =  W  ,

 (24) 

  ( ) ( ) ( ) ( ) ( )0 1 1, , , T
m m m m Bk p k p k p k

−
 =  P  ,

 (25) 

( 0,1, , 1m M= − ; /R N M= ), 

where, the AFS is defined as 

 ( ) ( ) ( )T
m m mk k k≡P A W . (26) 

Therefore, the filter output signal is obtained by 

 
( ) ( )

1

M
T

m
m

y k F k
=

=  P , (27) 

where, the address matrix is represented as 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 0

1 1 1

1 1 1

1 1

1 1

1 1

T

m m m

m m m
m

m B m B m B

b k b k b k R

b k b k b k R
k

b k b k b k R
− − −

 − − + 
 

− − + 
=  
 

− − +  

A




   


. (28) 

The update formula of the MDA-ADF is represented as 

 
( ) ( ) ( )1 0.5 Rem mk k kµ+ = +P P F . (29) 

The fundamental structure and the timing chart are shown in Fig.5 and 6, respectively.  

3.4 Half-memory algorithm using pseudo-odd symmetry property  

It is known that there exists the odd symmetry property of the WAFS in the conventional 
DA-ADF on the offset binary coding (Cowan et al, 1983). Table 1 shows the example of the 
odd symmetry property in case of R=3. The stored partial-product for the inverted address 
has an equal absolute values and a different sign. Using this property, the MDA-ADF is can 
be realized with half amount of capacity of the DWAFS. This property concerned with a 
property of the offset binary coding. However, the pseudo-odd symmetry property of 
WAFS on the 2’s complement representation has been found (Takahashi et al, 2001). The 
stored partial-product for the inverted address is a nearly equal absolute value and a 
different sign. The MDA algorithm using this property is called half-memory algorithm, and 
the previous discussed MDA algorithm is called full-memory algorithm. The access method 
of the DWAFS is represented as follows (Takahashi et al, 2001). 
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Address Stored partial-product 

000 -0.5w0 -0.5w1-0.5w2 

001    -0.5w0 -0.5w1+0.5w2 

010 -0.5w0 +0.5w1-0.5w2 

011      -0.5w0 +0.5w1+0.5w2 

100     +0.5w0 -0.5w1-0.5w2 

101 +0.5w0 -0.5w1+0.5w2 

110 +0.5w0 +0.5w1-0.5w2 

111 +0.5w0 +0.5w1+0.5w2 

Table 1. Example of the odd-symmetry property of the WAFS on the offset binary coding. 
This property is approximately achieved on the 2’s complement representation.  

 
Read the partial-products 

begin 

for i:=1 to B do 

begin 

if addressMSB = 0  then 

Read the partial-product using R-1 bits address; 

if  addressMSB = 1 then 

Invert the R-1 bits of address; 

Read the partial products using inverted R-1 bits address; 

Obtain the negative read value; 

end 

end 
Update the WAFS 

begin 

for  i:=1  to  B  do 

begin 

if  addressMSB = 0  then 

                 Add the partial-product and update value; 

if  addressMSB = 1  then 

                  Invert the R-1 bits of address; 

                 Obtain the negative update value; 

                 Add the partial-product and the negative update value; 

end 

end 

 
The expression of “addressMSB” indicates the MSB of the address. Fig.7 shows the 

difference of the access method between MDA and HMDA. The HMDA accesses the WAFS 

with the R-1 bits address-line without MSB, and the MSB is used to activate the 2’s 

complementors located both sides of the WAFS. Fig. 8 shows the comparison of the 

convergence properties of the LMS, MDA, and HMDA. Results are obtained by the 

computer simulations. The simulation conditions are shown in Table 2. Here, IRER 
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represents an impulse response error ratio. The step-size parameters of the algorithms were 

adjusted so as to achieve a final IRER of -49.5 [dB]. It is found that both the MDA(R=1) and 

the HMDA(R=2) achieve a good convergence properties that is equivalent to the LMS’s one. 

Since both the MDA(R=1) and the HMDA(R=2) access the DWAFS with 1 bit address, the 

DWAFS is the smallest size and defined for every tap of the LMS. The convergence speed of 

the MDA is degraded by increasing R (Tsunekawa et al, 1999). This means that larger 

capacity of the DWAFS needs larger iteration for the convergence. Because of smaller 

capacity, the convergence speed of the HMDA(R=4) is faster than the MDA(R=4)’s one 

(Takahashi et al, 2001). The HMDA can improve the convergence speed and reduce the 

capacity of the WAFS, i.e., amount of hardware, simultaneously. 

 

 

Fig. 7. Comparison of the access method for the WAFS. (a) Full-memory algorithm (b) Half-
memory algorithm. 

 

 

Fig. 8. Comparison of the Convergence properties. 
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Simulation Model System identification problem 

Unknown system 128 taps low-pass FIR filter 

Method LMS, MDA, and HMDA 

Measurement Impulse Response Error Ratio(IRER) 

Number of taps 128 

Number of address-line 1, 2, 4 for MDA, 2 and 4 for HMDA 

Input signal White Gaussian noise, variance=1.0, average=0.0 

Observation noise White Gaussian noise independent to the input signal, 45dB 

Table 2. Computer simulation conditions. 

4. New algorithm and architecture 

The new algorithm and effective architecture can be obtained by applying the following 

techniques and ideas. 1) In the DA algorithm based on 2’s complement representation, the 

pseudo-odd symmetry property of WAFS is applied to the new algorithm and architecture 

from different point of view on previously proposed half-memory algorithm. 2) A pipelined 

structure with separated output calculation and update procedure is applied. 3) The delayed 

update method (Long, G. Et al, 1989, 1992; Meyer & Agrawal, 1993; Wang, 1994) is applied. 

4) To reduce the pitch of pipeline, two partial-products are pre-loaded before addition in 

update procedure. 5) The multi-memory block structure is applied to reduce an amount of 

hardware for higher order. 6) The output calculation procedure is performed from LSB to 

MSB, whereas, the update procedure is performed with reverse direction. 

4.1 New algorithm with delayed coefficient adaptation 
To achieve a high-speed processing, the parallel computing of the output calculation and the 

update in the MDA-ADF is considered. It is well known that the delayed update method 

enables the parallel computation in the LMS-ADF permitting the degradation of the 

convergence speed. This method updates the coefficients using previous error signal and 

input signal vector in the LMS-ADF. 

Now, let’s apply this method to the MDA-ADF. In the MDA and the HMDA, both of the 

output calculation and the update are performed from LSB to MSB. However, in this new 

algorithm, the output calculation procedure is performed from LSB to MSB, whereas, the 

update procedure is performed with reverse direction. Here, four combinations of the 

direction for the two procedures exist. However, it is confirmed by the computer 

simulations that the combination mentioned above is the best for the convergence property 

when the large step-size parameter close to the upper bound is selected. Examples of the 

convergence properties for the four combinations are shown in Fig.9. In these simulations, 

the step-size of 0.017 is used for the (a) and (c), and 0.051 is used for the (b) and (d) to 

achieve a final IRER of -38.9 [dB]. Both the (b) and (d) have a good convergence properties 

that is equivalent to the LMS’s one, whereas, the convergence speed of the (a) and (c) is 

degraded. This implies that the upper bound of the (a) and (c) becomes lower than the (b) , 

(d) and LMS’s one. 
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Fig. 9. Comparison of the convergence characteristics for the different combinations of the 

direction on the output calculation and update. The step-size of 0.017 is used for the (a) and 

(c), and 0.051 is used for the (b) and (d). 

 

 

Fig. 10. Relation of the timing between read and write of the DWAFS. 

In the HMDA-ADF, the activation of the 2’s complementor is an exceptional processing for 

the algorithm, that is, the processing time increases. The new algorithm is performed 

without the activation of the 2’s complementor by use of the pseudo-odd symmetry 

property. This is realized by using the address having inverted MSB instead of the 2’s 

complementor. This new algorithm is called a simultaneous update algorithm, and the 

MDA-ADF using this algorithm is called SMDA-ADF. Fig. 10 shows the timing of the read 

and write of the DWAFS. The partial-product is read after writing the updated partial-

products. 

The SMDA algorithm is represented as follows. The filter output is obtained as the same 
manner in the MDA-ADF. The m-th output of the m-th DWAFS is 

 
( ) ( )

1

1 , 1
0

'
B

T
m B i m B i

i

y k k
−

− − − −

=

= F P . (30) 
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The output signal is the sum of these M outputs, and this can be expressed as 

 
( )

1

( )
M

m
m

y k y k
=

=  . (31) 

The scaling vectors are 

 ( ) ( ) ( )' 0 ' 1 ' 1
0 1 12 ,0, ,0 , 0,2 , ,0 , , 0,0, ,2T T B T

Bk k k− − +
−

     = = =     F F F    . (32) 

The address matrix including the inverted MSB for the output calculation is represented 

as 

 ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 0

1 1 1

1 1 1

1 1

1 1

1 1

T

m m m

m m mout
m

m B m B m B

b k b k b k R

b k b k b k R
k

b k b k b k R
− − −

 − − +
 

− − + 
=  
 

− − +  

A




   


. (33) 

This algorithm updates the two partial-products according to the address and its inverted 

address, simultaneously. When the delays in Fig.10 is expressed by d, the address matrix for 

the update procedure is represented as 

 ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 0

1 1 1

1 1 1

1 1

1 1

1 2

1 2

T

m m m

m B d m B d m B dup
m

m B d m B d m B d

m B m B m B

b k b k b k R

b k b k b k R
k

b k b k b k R

b k b k b k R

− − − − − −

− − −

− − −

 − − +
 
 
 − − +
 =  − − −
 
 
 

− − −  

A

   



  


. (34) 

The update formulas are 

 ( ) ( ) ( ) '
, ,1 0.5 Re 1m i m i ik k kµ+ = + −P P F , (35) 

 ( ) ( ) - '
, ,1 0.5 Re( 1)m i m i ik k kµ+ = −P P F , (36) 

( dB,,1,0i;M,,2,1m −==  ),  

and 

 
( ) ( ) ( ) '

ii,mi,m 2kReμ5.0k1k FPP −+=+ , (37) 

 
( ) ( ) '

ii,mi,m )2kRe(μ5.0k1k FPP −=+ - , (38) 

( 1B,,1dBi;M,,2,1m −−−==  ).
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The error signal is obtained by 

( ) ( ) ( )kykdke −=
. 

In Eq.(36) and Eq.(38), P
_

m,i(k) is the AFS specified by the inverted addresses. 

4.2 Evaluation of convergence properties 
The convergence properties are evaluated by the computer simulations. Table 3 shows the 

simulation conditions, and Fig.11 shows the simulation results. The step-size parameters of 

the algorithms were adjusted so as to achieve a final IRER of -49.8 [dB]. The SMDA and the 

HMDA (Takahashi et al, 2001) with R=2 achieve a good convergence properties that is 

equivalent to the LMS’s one. The convergence speed of the DLMS (LMS with 1 sample 

delayed update) degrades against the LMS’s one because of the delayed update with 1 

sample delay, whereas, in spite of the delayed update with 1 and 2 sample delays, the 

SMDA with R=2 can achieve a fast convergence speed. 

4.3 Architecture 
Fig.12 shows the block diagram of the SMDA-ADF. Examples of the sub-blocks are shown 
in Fig.13, Fig.14, and Fig.15. In Fig.12, the input signal register includes (2N+1)B shift-
registers. The address matrix is provided to the DWAFS Module (DWAFSM) from the 
input register. The sum of the M-outputs obtained from M-DWAFSM is fed to the Shift-
Adder. 
After the shift and addition in B times, the filter output signal is obtained. The obtained two 

error signals, the e(k-1) and the - e(k-1), are scaled during reading the partial-products to be 

updated. In Fig.13, the DWAFSM includes the 2R+2 B-bit register, 1 R-bit register, 2 

decoders, 5 selectors, and 2 adders. The decoder provides the select signal to the selectors. 

The two elements of DWAFS are updated, simultaneously. Fig.16 shows the timing chart of 

the SMDA-ADF. The parallel computation of the output calculation and update procedure 

are realized by the delayed update method. 

 

Simulation Model System identification problem 

Unknown system 128 taps low-pass FIR filter 

Method LMS, DLMS, SMDA , and HMDA 

Measurement Impulse Response Error Ratio(IRER) 

Number of taps 128 

Number of address-line 2 and 4 for DA method 

Input signal White Gaussian noise, variance=1.0, average=0.0 

Observation noise White Gaussian noise independent to the input signal, 45dB 

Table 3. Simulation conditions. 
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Fig. 11. Comparison of the convergence properties. 

 

 

Fig. 12. Block Diagram of the SMDA-ADF.  

 

 

Fig. 13. Example of the DWAFS module for R=2. 
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Fig. 14. Example of the multi-input register and shift-adder. 

 

 

Fig. 15. Example of the input registers for B=4 and R=2. The (a) is for output calculation, and 
the (b) is for update. 

 

 

Fig. 16. Timing chart of the SMDA-ADF. The sampling period is equal to the word length of 
the input signal. The current update procedure begins after delays. 

4.3 VLSI evaluations 
The VLSI architecture of the SMDA is evaluated with comparison to the previous proposed 
methods using the multipliers, the MDA (Tsunakawa et al, 1999), conventional LMS, pipelined 
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DLMS (Meyer & Agrawal, 1993), pipelined LMS structure (Harada et al, 1998), and pipelined 
NCLMS (Takahashi et al, 2006). Table 4 shows the evaluation conditions. The result for the 
SMDA and MDA are shown in Table 5, and the others using the multipliers are shown in 
Table 6. These results were obtained by a VLSI design system PARTHENON (NTT DATA 
Corporation, 1990). It is found that the SMDA can achieve the high-sampling rate of 380% and 
small output latency of 67% against the MDA, whereas, the power dissipation and the area are 
increased. However, the improvement of the sampling rate and latency exceed the 
degradation of the power dissipation and the area. The methods in Table 6 need both of the 
very large amount of gates and the area against the SMDA. From these results, it is found that 
the SMDA has advantages of small amount of hardware, a sampling rate close to the LMS. 
 

Methods LMS, Pipelined-DLMS, Pipelined-LMS, Pipelined-NCLMS, SMDA 

Number of taps 128 

Word length 16 bit 

Division number 64 

VLSI library 0.8 micron CMOS standard cell, 5V 

Adder Carry look-ahead adder 

Multiplier Booth’s encode algorithm, Wallace tree, Carry look-ahead adder 

Table 4. The condition of the VLSI evaluation. 

 

 MDA SMDA 

Machine cycle [ns] 31 21 

Sampling rate [MHz] 0.79 3.00 

Latency [ns] 713 479 

Power dissipation [W] 6.40 16.47 

Area [mm2] 36 54 

Number of gates 175,321 258,321 

Table 5. Comparison of the VLSI evaluations for the MDA and the SMDA. 

 

 LMS Pipe-DLMS Pipe-LMS Pipe-NCLMS 

Machine cycle [ns] 297 63 131 61 

Sampling rate [MHz] 3.37 15.87 7.63 16.39 

Latency [ns] 214 8,064 131 61 

Power dissipation [W] 6.23 25.79 27.33 18.20 

Area [mm2] 297 205 429 187 

Number of gates 1,570,084 997,760 2,082,304 916,893 

Table 6. Comparison of the VLSI evaluations for ADFs employing multipliers. 

5. Conclusions 

In this chapter, the new LMS algorithm using distributed arithmetic and its VLSI 

architecture have been presented. According the discussions, we conclude as follows: 

1. The SMDA-ADF can achieve the good convergence speed, higher sampling rate and 
small output latency than the conventional MDA-ADF. 
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2. The small amount of hardware is the feature of the SMDA-ADF against the ADFs 
employing the multipliers. 

3. In spite of the delayed adaptation, the convergence speed is equivalent to the LMS’s one. 
4. The convergence property depends on the combination of the direction of the output 

and update procedure. The output calculation from LSB to MSB and the update 
procedure with reverse direction is the best, when the step-size parameter is close to the 
upper bound. 
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