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Abstract

Cardiac magnetic resonance (CMR) imaging has been widely used to assess myocardial
perfusion and scar and is the noninvasive reference standard for identification of focal
myocardial fibrosis. However, the late gadolinium enhancement (LGE) technique is
limited in its accuracy for absolute quantification and assessment of diffuse myocardial
fibrosis by technical and pathophysiological features. CMR relaxometry, incorporating
T1 mapping, has emerged as an accurate, reproducible, highly sensitive, and quantita‐
tive technique for the assessment of diffuse myocardial fibrosis in a number of disease
states. We comprehensively review the physics behind CMR relaxometry, the evidence
base, and the clinical applications of this emerging technique.

Keywords: cardiac magnetic resonance, T1 mapping, myocardial fibrosis, cardiomy‐
opathy

1. Introduction

Cardiac Magnetic Resonance (CMR) imaging has been used widely to assess myocardial
perfusion and scar [1–5]. It is the noninvasive reference standard for left and right ventricu‐
lar quantitation, as well as the assessment and quantitation of focal myocardial fibrosis
(after infarction or due to other causes of cellular injury). Myocardial necrosis causes high
signal on late gadolinium enhancement (LGE) inversion recovery T1‐weighted images with
excellent signal‐noise ratios, and this has become the reference standard for noninvasive
scar imaging in cardiomyopathies of various causes [1–4]. However, LGE is limited in its
ability to assess and quantitate diffuse (nonfocal) myocardial injury and fibrosis. LGE is
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affected by inconsistencies in acquisition parameters, such as choice inversion time, and in
postprocessing when signal intensity thresholds may be arbitrarily applied to distinguish
normal myocardium from fibrotic tissue [6, 7]. Moreover, the critical issue with LGE is that
signal intensity is expressed on an arbitrary scale (relative signal intensity compared with
“nulled” normal myocardium). Detection of myocardial fibrosis using relative differences
between scar and normal myocardium tissue is therefore qualitative. Thus, in nonischemic
cardiomyopathies, such as hypertension or diabetes, LGE CMR is unable to detect signal
differential where the collagen deposition is diffuse and widespread throughout the myo‐
cardium [8].

2. CMR relaxometry

CMR is an evolving technique, providing valuable and comprehensive data on the anatomy
and functional integrity of both the heart and coronary blood vessels. Currently, CMR is
performed at magnetic field strengths of 1.5 or 3 T.

3. T1 mapping with Look–Locker

The initial technique to measure spin–lattice T1 relaxation time values was the eponymously
named “Look–Locker” sequence (also known as “TI scout”). It has been widely used to
estimate the optimal inversion time for assessment of myocardial LGE [9, 10]. It was originally
proposed by Look and Locker in 1968 and analyzed more fully in 1970 [11] and consists of an
initial inversion pulse, followed by a train of pulses with a constant, limited flip angle (7–15°).

The development of LL technique is summarized in Table 1.

The LL sequence has been widely applied in CMR due to its fast acquisition with minimal
breath‐hold requirements. The LL sequence has been used to measure T1 values in patients
with myocardial fibrosis [9]. However, it suffers from significant limitations: low flip angle RF
pulse exciting the magnetization and the two RR intervals in the LL sequence are not sufficient
for the magnetization to return to equilibrium. This causes underestimation of true T1 values
using LL. Furthermore, the LL T1 images with different TIs are acquired at different cardiac
phases. Therefore, images are “cine” with cardiac motion effect, which requires tedious manual
tracking of the myocardial borders for each phase, a labour‐intensive and error‐prone process,
which is challenging in clinical practice. The drawing of regions of interest “ROI” in myocardial
segments requires adjusting for cardiac motion, which results in including blood pool (partial
volume averaging) and artificially increasing the measured T1 [12].

To address these shortcomings, several myocardial T1 mapping sequences have been created,
including modified Look‐Locker inversion (MOLLI) recovery.
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Author  Year Summary of research findings

Look & Locker 1968 Initial proposition of Look–Locker technique

Look & Locker 1970 Fully analyzed NMR pulse sequence to measure a spin–lattice T1 relaxation time

Kaptein et al.  1976 LL was co‐opted to quickly sample the recovery after a preparation pulse during the recovery

period

Gerumann  1987 T1 by Multiple Readout Pulses (TOMROP) was proposed through which the multiple samples

of a particular recovery after RF preparation each correspond to a separate image

Hinson and

Sobol

 1988 LL method was applied without preparation pulse

Crawley and

Henkelman

 1988 Compared (LL, saturation recovery, inversion recovery, and stimulated echo) and concluded

that LL was almost as efficient

Brix et al.  1990 TMPROP was used with 32 gradient echoes in a total acquisition time of 4 min

Kay  1991 LL single‐shot IR method has been optimized and refined

Gowland  1992 LL single‐shot IR method has been optimized and refined

Been et al.  1988 Improved RF preparation pulses

Gowland et al. 1989 Improved RF preparation pulses

Ordidge et al.  1990 Echo‐planar imaging (EPI) was incorporated into the inversion recovery LL‐based method

Gowland and

Mansfield

 1993 EPI was applied in vivo in less than 3 s

Freeman et al.  1998 An entire image was acquired at each point on a single recovery of longitudinal magnetization

after a saturation pulse

Karlsson and

Nordell

 1999 EPI‐ with LL method has found application in pharmacokinetic modeling in the head

Daniel et al.  2004 Modified Look–Locker inversion recovery is proposed to overcome the limitations of the

conventional LL approach for cardiac applications

Daniel et al.  2006 Studied the single breath‐hold myocardial MR T1 mapping with MOLLI technique with high

spatial resolution at 1.5 T MR‐reproducibility study

Daniel et al.  2007 Investigated optimization and validation of a fully integrated pulse sequence for (MOLLI) T1

mapping of the heart

Iles et al.  2008 Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance

contrast‐enhanced T1 mapping

Table 1. Summary of development of Look–Locker technique.
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4. T1 mapping with Modified Look-Locker Inversion “MOLLI” recovery

Currently, the most evaluated sequence for myocardium T1 mapping is a modified Look‐
Locker inversion recovery (MOLLI) sequence [13, 14]. The T1 mapping identifies a significant
variation between normal and abnormal myocardium. It demonstrates the myocardial fibrosis
among different myocardial disorders include ischemia [15], acute/chronic infraction [16],
amyloidosis [17], diabetic [18], dilated and hypertrophic cardiomyopathy [19], and heart
failure [8].

MOLLI is a CMR pulse sequence that is used for accurate T1 mapping of myocardium with
high spatial resolution. MOLLI is an ECG‐gated pulse sequence scheme and uses three
prepared Look–Locker experiments consecutively within one breath‐hold over 17 heartbeats
to reconstruct 11 images with different inversion times. Three successive ECG‐triggered LL
experiments (LL1, LL2, and LL3) are carried out with three, three, and five single‐shot readouts,
respectively, at end diastole of consecutive heartbeats to sample the recovery of longitudinal
magnetization after the inversion pulse. MOLLI pulse sequence scheme is illustrated in
Figure 1. T1 maps can be generated any time before or after contrast agent (e.g., gadolinium)
administration [12].

Figure 1. T1 map of a healthy volunteer: Using 17 heartbeats to reconstruct 11 images with different inversion times at
end of diastole phase. By merging these images into one data set, T1 values are computed for every pixel with three
parameters curve fitting. A reconstructed T1 map with parametric color scale is produced for these pixel values and
the segmental and global T1 times can be estimated.

The MOLLI sequence has been described, optimized, tested, and retested in phantoms and in
large cohorts of healthy volunteers [12, 14] as well as being applied in cardiomyopathies [8,
15, 17, 19, 20]. In addition, the T1 mapping with MOLLI has been validated against histopa‐
thology for assessment of myocardial fibrosis. It demonstrated that the precontrast “native T1”
has a linear correlation with the percentage of myocardial fibrosis as measured histologically
on invasive myocardial biopsy. T1 times postcontrast administration (10–15 min) had an
inverse linear relationship with collagen content in myocardial fibrosis subjects [8, 21, 22].

• Precontrast “Native” T1 = predominant signal from myocytes (replacement fibrosis or
intracellular accumulation, e.g., Fabry disease)

• Postcontrast T1 = predominant signal from interstitial space (interstitial fibrosis)
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T1 mapping can be generated for different segments of the myocardium (base, mid‐cavity, and
apex) within a single breath‐hold of about 15–20 s. However, the apex T1 values with MOLLI
are slightly higher than basal and mid‐cavity. The increasing in T1 values may be caused by
partial volume effect and some degree of overestimation effect in apical level of left ventricle
[23–25].

T1 mapping with MOLLI has a greater reproducibility, accuracy, and an excellent overall inter‐
and intra‐observer agreement over a wide range of TIs as compared with the traditional LL
sequence [13, 14].

However, the T1 mapping with MOLLI sequence is sensitive to extremes of heart rate (brady‐
cardia or tachycardia) [14] leading to a slight underestimation of T1 values. This may be
corrected though heart rate correction by changing the timing of the readouts with respect to
the inversion pulses at different heart rates.

Moreover, MOLLI is also limited by long breath‐hold for about 15–20 s (17 heartbeats to
acquire the final T1 maps). This may be difficult for elderly and pulmonary compromised
patients and generates respiratory and motion artifacts [26]. Modern in‐line processing
provides registration tools to reduce motion artifacts before the computation of final T1 maps
(motion‐corrected or “MoCo MOLLI”) [27]. A shortened Modified Look‐Locker inversion
recovery (shMOLLI) with shorter breath‐holds has been validated and recently applied for
cardiomyopathies [28, 29].

5. MRI field strength

At 1.5 T, the pre‐ and postcontrast (10 mins) T1 times of normal myocardium are 980 ± 53 ms
and 470 ± 26 ms, respectively [14]. Precontrast T1 values of myocardial fibrosis (Infarction scar)
are significantly longer than those of normal myocardium (1060 ± 61 ms vs. 987 ± 34 ms) [20].
The postcontrast T1 times (10 mins) were significantly shorter in chronic infarct scar compared
with normal myocardium at 0.15 mmol/kg (390 ± 20 ms vs. 483 ± 23 ms, respectively) [20].

3 T: T1 mapping at higher magnetic field (3 T) has been reported in a few studies of interstitial
myocardial fibrosis, but minimal data exist for ultra‐high field at 7 T. 3 T data are similar to
1.5 T, the precontrast T1 was longer, and postcontrast T1 was shorter in myocardial fibrosis
patients compared with normal myocardium. Puntmann et al. [30] reported higher precontrast
T1 values for hypertrophic and nonischemic dilated cardiomyopathies at 3 T compared with
controls (Hypertrophic 1.254 ± 43 ms, and nonischemic dilated cardiomyopathy 1.239 ± 57 ms
vs. healthy 1.070 ± 55 ms). Also, the postcontrast T1 values (10 mins) at 3 T were shorter in
hypertrophic and dilated cardiomyopathies compared with healthy (hypertrophic:
307 ± 47 ms, dilated cardiomyopathies: 296 ± 43 ms vs. controls: 402 ± 58 ms) [30].

There are studies published for normal and diffuse myocardial fibrosis of myocardium T1
values, as described comprehensively in Tables 2 and 3:
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First author (Ref.#)   Sample 

size

T1/T2* mapping sequence Result of T1 or

T2* mapping (ms)

Wacker et al. [31] 5 srTFL, segmented

T2* gradient

echo pulse

T1 = 1219 ± 72 ms

T2* = 35 ± 3 ms

Sebastian et al. [32] 12 LL T1 = 1033 ± 126 ms

T2* = NA

Messroghli et al, [33] 15 MOLLI T1 = 980 ± 53 ms

T2* = NA

Messroghli et al. [34] 20 MOLLI T1 = 939 ± 63 ms

T2* = NA

Sparrow et al, [35] 15 MOLLI T1 = 980 ± 53 ms

T2* = NA

Iles et al. [8] 20 VAST T1 = 975 ± 62 ms

T2* = NA

Li et al. [36] 13 2 echo times GRE T1 = NA

T2* = 33 ± 6.5 ms

Reeder et al. [37] 5 Multi echo GRE T1 = NA

T2*= 38 ± 6 ms

Anderson et al. [38] 15 Multi echo GRE T1 = NA

T2*= 52 ± 16 ms

Positano et al. [39] 15 Multi echo GRE T1 = NA

T2* = 38 ± 9.2 ms in

endocardial sectors,

and 33.1 ± 8.4 ms in

epicardial sectors

Messroghli et al. [40] 20 Multi echo GRE T1 = NA

T2* = 27.9 ± 3.4 ms in

anteroseptal and 23.1 ± 5.2 ms

in inferolateral

Piechnik et al. [28] 342 shMOLLI T1 = 962 ± 25 ms

T2* = NA

Heart rate only physiologic

factors effect on

myocardial T1 values

Note: NA, not applicable; srTFL, saturation recovery turboFLASH; LL, Look‐Locker; MOLLI, modified Look–Locker
inversion recovery sequence; VAST, inversion recovery gradient echo sequence with Variable Sampling of the k‐space
in Time; GRE, gradient pulse sequence; shMOLLI, short modified Look‐Locker sequence.

Table 2. Healthy clinical studies using T1 and T2*.
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First author

(Ref. #)

Cardiac disease

category

Patient

sample

size

T1

mapping

method

Summary of findings

Franck

Thuny

Systemic sclerosis 37 MOLLI LV diastolic dysfunction had a shorter 15 min postcontrast

T1 time (ms) than those with a normal diastolic function

(431 ± 7 vs. 464 ± 8, p = 0.01).

Helene

Thibault

Type II diabetic

patient

24 MOLLI Mean myocardial T1 relaxation time was significantly

shorter in diabetic patients than in volunteers both at 5 (312

± 5 vs. 361 ± 6 milliseconds, respectively, p < 0.001) and

15 min (405 ± 6 vs. 456 ± 5 milliseconds, respectively, p <

0.001) after gadolinium injection.

Andris H

Ellims

Hypertrophy

cardiomyopathy

51 VAST Postcontrast myocardial T1 time was significantly shorter

in patients with HCM compared with controls, consistent

with diffuse myocardial fibrosis (498 ± 80 ms vs. 561

± 47 ms, p < 0.001).

Beatrice A

Marzluf

Patients with NH2‐

terminal portion of

the precursor of

brain natriuretic

peptide (NT‐

proBNP)

37 N/A In patients with NT‐proBNP levels >400 pg/ml mean T1

was significantly shorter than in patients with NT‐proBNP

<400 pg/ml (374.6 ± 51.1 vs. 404.6 ± 34.4 ms, p = 0.042) and

controls (509.4 ± 46.5 ms, p < 0.001).

Christopher

T Sibley

Nonischemic

cardiomyopathy

73 LL 47 patients had a focal myocardial scar and 26 without scar

tissue. The midwall circumferential strain (Ecc) was

reduced (−13.0 +/− 5.4%) and mean T1 time was 478 +/

− 70 ms in patients with no scar tissue.

Jellis et al.

[18]

Type II diabetic

patients

67 VAST Subjects has a shorter post contrast T1 = 434 ± 20 ms.

Postcontrast T1 was associated with Echocardiography

diastolic dysfunction (Em r = 0.28, p = 0.020; E/Em r =−0.24,

p = 0.049).

Messroghli et

al. [13]

Acute myocardial

infarction

8 Inversion

recovery

(IR)‐

prepared

fast

gradient

echo

sequence

T1 precontrast value of the infarcted myocardium was

significantly prolonged compared with noninfarcted

normal myocardium (+18 ± 7%). T1 10‐min postcontrast

value of the infarct was significantly reduced compared

with normal myocardium (−27 ± 4%).

Messroghli et

al. [20]

Acute and chronic

myocardial

infarction

24 MOLLI In chronic MI, the precontrast T1 relaxation time of hyper‐

enhanced areas was higher than T1 of remote areas (1060

± 61 vs. 987 ± 34 ms, p < 0.0001). In acute MI, the

precontrast T1 value of hyper‐enhanced areas was higher
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First author

(Ref. #)

Cardiac disease

category

Patient

sample

size

T1

mapping

method

Summary of findings

than remote areas (1197 ± 76 vs. 1011 ± 66). The hyper‐

enhanced in acute is higher than chronic infarction.

Flacke and

Sebastian

[32]

Acute and chronic

myocardial

infarction

10 LL Mean T1 values of the normal myocardium postcontrast

was 536 ± 66 ms, chronically infracted precontrast and

postcontrast was 1000 ± 67 ms and 408 ± 43 ms,

respectively.

Sparrow et al.

[35]

Myocardial Fibrosis

in Chronic Aortic

Regurgitation

8 Molli There is a significant difference in segmental averaged T1

relaxation between in abnormal wall motion vs. Normal

control segments in 10, 15, and 20 min after administration

Gd: (510 vs. 476 ms, 532 vs 501 ms, and 560 vs. 516 ms,

respectively).

Iles et al. [8] Chronic heart

failure 

25 VAST Postcontrast myocardial T1 times were shorter in heart

failure subjects than in controls (383 ± 17 ms vs. 564

± 23 ms) even when excluding areas of regional fibrosis.

T1 15‐min postcontrast values correlated significantly with

collagen volume fraction on myocardial biopsies (R = −0.7).

Maceira 2005 Cardiac

amyloidosis 

22 Segmented

inversion

recovery

sequence

Subendocardial T1 in amyloid patients was shorter than in

controls (at 4 min: 427 ± 73 vs. 579 ± 75 ms; p < 0.01).

Table 3. Clinical studies using T1 mapping for myocardial diffuse fibrosis in clinical patients.

6. Limitations of T1 mapping

Challenges remain with myocardial relaxometry for T1 mapping. These include technical
challenges such as variations of T1 times at different field strength and across different vendors,
and the rapidity in growth of pulse sequences being released as product and as works‐in‐
progress (WIP), calling into question both the inherent accuracy and the level agreement
between these techniques. Furthermore, the variations in T1 relaxometry values with different
contrast doses and image timing require further investigation to establish the test–retest and
intersite reproducibility of this technique. Next, the challenges to application of T1 mapping
to clinical practice include establishment of robust normal ranges in large cohorts across
multiple ethnic groups and the observation that T1 mapping appears to be a highly sensitive
technique, with the ability to discriminate healthy normal myocardium and identify very early
changes in substrate. However, this technique lacks specificity; a wide variety of conditions
prolong native T1 and/or shorten postcontrast myocardial T1. Therefore, further clinical data
are required in order to establish the use of these parameters in relation to disease (e.g., early
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detection of target organ damage in systemic conditions such as hypertension or diabetes), to
inform treatment decisions, and their ability to predict or alter clinical outcomes.

7. Conclusions

Myocardial T1 mapping using quantitative relaxometry is an emerging and important tool in
the assessment of global myocardial fibrosis. It is a highly sensitive marker of disease, but is
not specific, with changes in myocardial T1 occurring in many different conditions. Never‐
theless, the high sensitivity and excellent reproducibility of the technique offer a tool for the
early detection of myocardial damage, over‐and‐above techniques such as the CMR LGE
technique and other modalities such as speckle tracking echocardiography, pulse wave
velocity, and tissue tagging. Native T1 mapping is proving to be a robust indicator of early
myocardial disease in many conditions, and normal ranges and guidelines for postprocessing
have been published by the Society of Cardiovascular Magnetic Resonance [41]. Myocardial
T1 mapping is a rapidly evolving technique, now with longitudinal prognostic data emerging,
and normal ranges established at 1.5 and 3.0 T in healthy humans and in aging persons. Further
questions remain as to the standardization of pulse sequences across field strengths and
between vendors, the affect of contrast type, dose and timing, the postprocessing software,
and the interpretation of T1 mapping results to inform clinical practice.
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Abbreviations

CMR cardiac magnetic resonance

LL Look‐ Locker

LGE late gadolinium enhancement

LV left ventricle

MOLLI modified Look‐Locker inversion recovery

MRI magnetic resonance imaging

ROI regions of interest

RV right ventricle

shMOLLI shortened modified Look‐Locker inversion recovery
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