

AMERICAN CHEMICAL SOCIETY

Synthesis of Cost Effective and Sustainable Pathways to Wastewater Treatment

E. A. Aboagye¹, C. Tran¹, M. Desai¹, K. M. Yenkie¹, and F. Friedler² ¹Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, NJ, 08028, USA ²Institute for Process Systems Engineering and Sustainability, Pazmany Peter Catholic University, Budapest, Hungary Sustainable Design and Systems Medicine Lab Group Website: <u>https://yenkiekm.com/</u> Email: yenkie@rowan.edu

ACS Chemistry Gruter Global Water Resources & Consumption

- Very small percentage of the total water available is freshwater
- Yet, we depend on freshwater for our municipal, agricultural and industrial processes

Source: https://en.wikipedia.org/wiki/Water_scarcity

Rowan University

Freshwater Usage Data

Current freshwater usage statistics (2018)

Projected freshwater usage in 2030

Where will this additional 20% come from?

- To meet the demand we have to rely on **treated and recycled** water
- Thus, we need efficient wastewater
 treatment methods today to satisfy
 demands for sustainable existence
 tomorrow
- Systems Engineering can help in providing sustainable and cost effective insights

WASTE?WATER FROM WASTE TO RESOURCE

Worldwide, the majority of wastewater is neither collected nor treated. Wastewater is a valuable resource, but it is often seen as a burden to be disposed of. This perception needs to change.

https://blogs.worldbank.org/water/wastewater-treatment-critical-component-circular-economy

Wastewater Treatment: A Systems Problem

Sources of Wastewater

Treatment Methods

Designing a Treatment Process

Solids removal is one of the tasks in Wastewater Treatment

Complexity of the design problem

If a wastewater stream has **C** contaminants and **S** technologies for each task, then number of distinct treatment networks (N_f) possible is given by

$$N_f = \frac{[2(C-1)]! \ S^{(C-1)}}{C! \ (C-1)!}$$

If C = 5 and S = 10, then $N_f = 1.4 \times 10^5$ (close to a million) possible networks

Treatment Stages & Technologies

 Wastewater treatment is most effective using a stagewise approach

 Technologies are placed is stages based on their contaminant removal capability

Technology Information

Technology	Driving Force	Process conditions
Sedimentation (Sdm) or Decantation (Dct)	Density gradient Particle settling velocity	Size, density of particle Tank depth Residence time
Filtration (Ftt)	Particle size	Average flux, Pressure gradient Filtration rate
Advanced Oxidation Process (Aop)	Oxidation reactions for contaminant degradation	Ozone, peroxide, UV reactor
Disinfection (Dis)	Chemical, radiation	Chlorine dosage, Acid/Alkali treatment, UV radiation
Rotating Biological Contactors (Rbc)	Biological mechanism	Biological film on rotational discs, speed of rotation, aeration rate
Membranes (Mbr)	Particle/molecular size Sorption/Diffusion Pressure	Pore size, Mol. wt. cut-off Average flux, Pressure gradient Type of membranes - MF, UF, NF and RO
Activated Sludge (Acs)	Microbial activity	Detention time, mixing efficiency, aeration rate

P-graph Methodology

- P-graph (process graph) studio uses vertices and nodes to represent materials & operating units connected by arcs represent streams
- Includes two types of nodes
 - M-type: Materials

- O-type: Operating units
- Based on axioms for structurally feasible process networks
- Algorithms available:
 - MSG (Maximal Structure Generator): generates the maximal structure
 - ✓ SSG (Solution-Structure Generator): generates all the structurally feasible process networks
 - ✓ ABB (Accelerated Branch and Bound): generates the optimal or n-best feasible networks

Friedler, F., Tarján, K., Huang, Y.W., Fan, L.T., 1992. Graph-theoretic approach to process synthesis: axioms and theorems. Chem. Eng. Sci. 47, 1973-1988. Heckl, I., Friedler, F., Fan, L.T., 2010. Solution of separation-network synthesis problems by the P-graph methodology. Comput. Chem. Eng., Selected Paper of Symposium ESCAPE 19, June 14-17, 2009, Krakow, Poland 34, 700-706.

ACS Chemistry for Life* AMERICAN SOCIETY Stage-wise Wastewater Treatment Superstructure

Key: Pretreatment; Primary Treatment; Secondary Treatment; Tertiary Treatment; Bypass

Superstructure Generated: P-Graph

What is a superstructure?

It is a systematic representation of all possible treatment technologies available in the 4 stages of wastewater treatment.

It also shows the flow from the initial wastewater stream towards the final purified water stream

FLC - Flocculation, SDM -Sedimentation, FTT - Filtration, ADS -Adsorption, RBC - Rotating Biological Containers, ASL - Activated Sludge, DIS - Disinfection, MBRT - Membrane Bioreactor, MBR - Membrane Processes, AOP - Advanced Oxidation Processes, BLC - Bleaching, BYP - Bypasses

Framework for Design & Evaluation

- Provide input wastewater composition and define output purity specifications
- Construct the wastewater treatment network design as an optimization model
 - Mass and energy balances
 - Investment and Operating Costs
 - \checkmark Integer variables to select technologies by holding a (0,1) value
- Method: P-Graph Studio (Graph Theory based Process Synthesis);
 MILP (Mixed integer linear programming) solver

Entering flowrate of wastewater in the treatment system: 100 m³/hr

Operating days per year: 330

Wastewater contaminant concentrations and purity levels

Contaminant	Inlet Amount	Outlet Amount	Units
Acids/Chlorides	5000	300	mg/L
COD (Inorganic)	2000	70	mg/L
BOD (Organic)	1100	25	mg/L
Settable solids	200000	500	mg/L
Metals (Pb, Cu, Ni, Zn)	1340	5	µg/L

Source: Page et.al., 1996 "Use of Reclaimed Water and Sludge in Food Crop Production", The National Academy Press for publications in Sciences, Engineering and Medicine.

ACS Chemistry for Life[®] Solutions from P-Graph formulation Revenues ity

- The total best network solution generated using the P-Graph approach is 45 with a solution time of 0.035 seconds
- * Costs: Fix and Proportional Investment Costs, Fix and Proportional Operating Costs

- Feasible Structure 1: (FLC-SDM-RBC)
- Purification Cost (\$/yr.): 3197040

- Feasible Structure 2: (FLC-SDM-BLC)
- Purification Cost (\$/yr.): 3256250
- Olnlet WW Flont FLC BYP 4 OPurified Wate
- Feasible Structure 3 (FLC-SDM-ADS)
- Purification Cost (\$/yr.): 3901470

Summary of the first best 10 feasible network pathways

No	Network Path	Purification Cost, (\$/yr)	Purification Cost/Liter of Purified Water(\$/L)
1	FLC-SDM-RBC	3197040	0.004249
2	FLC-SDM-BLC	3256250	0.004327
3	FLC-SDM-ADS	3901470	0.005185
4	FLC-FTT	4447680	0.005637
5	FLC-SDM-RBC-BLC	4507400	0.005990
6	FLC-SDM-AOP	4815100	0.006399
7	FLC-SDM-ADS-BLC	5343310	0.007101
8	FLC-FTT-RBC	5417120	0.007199
9	FLC-FTT-BLC	5482110	0.007286
10	FLC-SDM-RBC-AOP	6066250	0.008062

- Ecological Footprint
- Quantification of sustainability based on arable area needed to produce one unit of product
- The burden of a process on the ecosystem
- The higher the SPI, the less sustainable the process is

Solutions from SPI

- FLC-SDM-RBC-AOP (7) has the highest SPI Value
- FLC-FTT (4) has the lowest SPI Value

Conclusions from P-Graph and SPI Analysis

- In terms of cost, network path (1) had the minimum, but network path (4) had had the lowest SPI value
- Even though network path (4) had the lowest SPI value, it was the only network path that could not meet purification requirements
- To make a decision, there should be trade-offs between cost and "greenness" of the process

- An integrated approach involving design and optimization for generation of cost-effective wastewater treatment networks
- P-Graph approach to wastewater treatment using a superstructure optimization (MINLP)
- Generated a rank of network synthesis for wastewater treatment based on purification cost
- Sustainable process index (SPI) evaluation of generated synthesis paths

AMERICAN CHEMICAL SOCIETY

Thank you for your attention!