12/15-LOX inhibition ameliorates hippocampus associated neuronal damage and mitochondrial dysfunction in mice subjected to hypobaric hypoxia

A. Katyal ${ }^{1}$, R. Choudhary ${ }^{2}$

1,2 Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, India

ABSTRACT

Background and Aim :Oxidative stress is thought to be the critical effector in hypobaric hypoxia induced cognitive dysfunctions. 12/15 Lipoxygenase (12/15 LOX) has recently been described as potent mediator of oxidative stress and is closely associated with cognitive decline. The present study was designed to decipher the underlying role of $12 / 15$ LOX in hypobaric hypoxia induced memory impairment and neuronal damage
Method: Balb/c mice were subjected to hypobaric hypoxia, simulating condition at 7620 m altitude. Baicalein(12/15 LOX Inhibitor)was administered to mice . Behavioral paradigm, histopathological assessment and mitochondrial integrity were assessed to establish the involvement of 12/15 LOX in the hypobaric hypoxia neuropathology.
Results:Hypobaric hypoxia episode was accompanied by an increased level of $12 / 15$ LOX and its metabolite 12(S) HETE. The hippocampus CA3 region was found to be mostly affected and showed sign of cellular apoptosis as characterized by elevated activity of caspase-3, $9 \& 8$. Working memory impairment seen in mice after hypobaric hypoxia was attenuated following baicalein treatment along with reduced level of caspase activation and HIF-1a. Further, impediment of $12 / 15$ LOX decreased NO level by down-regulating the expression of iNOS, nNOS but not eNOS. A significantly elevated level of cytochrome C was associated with increased 12/15 LOX colocalisation with mitochondria that got reversed following 12/15 LOX inhibition.
Conclusion:12/15 LOX influences the hypobaric hypoxia pathology and its inhibition using baiclein was found to be neuroprotective.

INTRODUCTION

Decrease in partial pressure of O_{2} /hypobaric hypoxia results in decline in memory functions associated with increased oxidative stress and neuronal apoptosis in hippocampus. Recently, 12/15LOX emerged as an important amplifier of oxidative stress and has been found to be crucially associated with neurodegenerative conditions including stroke ${ }_{12}$. The present study explores the mechanistic insights into the involvement of $12 / 15-$ LOX in hypobaric hypoxia induced cognitive impairment and neuronal damage.

OBJECTIVES

*To evaluate the involvement of $12 / 15$ LOX in hypobaric hypoxia induced working memory deficits and neuronal damage.
*To estimate the relative expression and activity of $12 / 15-$ LOX in hippocampus during hypobaric hypoxia and its modulation by baicalein. * To elucidate the role of $12 / 15-\mathrm{LOX}$ in modulation of hippocampal hypoxia inducible factor-1a (HIF-1a) expression and its targeted genes viz. NOS isoforms during hypobaric hypoxia.

* To investigate the association of 12/15-LOX in executing mitochondria dependent cell death cascade during hypobaric hypoxia.

EXPERIMENTAL PLAN

Baicalein ameliorates hypobaric hypoxia induced memory dysfunction/ oxidative stress and prevents Cytochrome C release in cytosol

Baicalein reverses alteration in 12/15-LOX and HETE in hypobaric hypoxia

Baicalein mitigates hypobaric hypoxia induced neurotoxicity

Role of 12/15-LOX in modulation of HIF-1a and targeted genes (NOS)

12/15-LOX attacks on the periphery of mitochondria promoting apoptosis

REFERENCES

1) van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH Stroke. 37(2006):3014-8.
2) Praticò D etal., Am J

Pathol.164(2004):1655-62.

ACKNOWLEDGEMENT

Authors acknowledge ICMR and CSIR, India for financial support.

