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1. Introduction

Robustness is a fundamental issue in signal processing; unmodeled dynamics and unexpected
noise in systems and signals are inevitable in designing systems and signals. Against such
uncertainties, min-max optimization, or worst case optimization is a powerful tool. In this
light, we propose an efficient design method of FIR (finite impulse response) digital filters
for approximating and inverting given digital filters. The design is formulated by min-max
optimization in the frequency domain. More precisely, we design an FIR filter which minimizes
the maximum gain of the frequency response of an error system.
This design has a direct relation with H∞ optimization (Francis, 1987). Since the space H∞ is
not a Hilbert space, the familiar projection method in conventional signal processing cannot
be applied. However, many studies have been made on the H∞ optimization, and nowadays
the optimal solution to the H∞ problem is deeply analysed and can be easily obtained
by numerical computation. Moreover, as an extension of H∞ optimization, a min-max
optimization on a finite frequency interval has been proposed recently (Iwasaki & Hara,
2005). In both optimization, the Kalman-Yakubovich-Popov (KYP) lemma (Anderson, 1967;
Rantzer, 1996; Tuqan & Vaidyanathan, 1998) and the generalized KYP lemma (Iwasaki & Hara,
2005) give an easy and fast way of numerical computation; semidefinite programming
(Boyd & Vandenberghe, 2004). Semidefinite programming can be efficiently solved by
numerical optimization softwares.
In this chapter, we consider two fundamental problems of signal processing: FIR
approximation of IIR (infinite impulse response) filters and inverse FIR filtering of FIR/IIR
filters. Each problems are formulated in two types of optimization: H∞ optimization and
finite-frequency min-max one. These problems are reduced to semidefinite programming in
a similar way. For this, we introduce state-space representation. Semidefinite programming
is obtained by the generalized KYP lemma. We will give MATLAB codes for the proposed
design, and will show design examples.

2. Preliminaries

In this chapter, we frequently use notations in control systems. For readers who are not
familiar to these, we here recall basic notations and facts of control systems used throughout
the chapter. We also show MATLAB codes for better understanding.
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2 Digital Signal Processing

Let us begin with a linear system G represented in the following state-space equation or
state-space representation (Rugh, 1996):

G :

{

x[k + 1] = Ax[k] + Bu[k],

y[k] = Cx[k] + Du[k], k = 0, 1, 2, . . . .
(1)

The nonnegative number k denotes the time index. The vector x[k] ∈ Rn is called the state
vector, u[k] ∈ R is the input and y[k] ∈ R is the output of the system G . The matrices A ∈
Rn×n, B ∈ Rn×1, C ∈ R1×n, and D ∈ R are assumed to be static, that is, independent of the
time index k. Then the transfer function G(z) of the system G is defined by

G(z) := C(zI − A)−1B + D, z ∈ C.

The transfer function G(z) is a rational function of z of the form

G(z) =
bnzn + bn−1zn−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
.

Note that G(z) is the Z-transform of the impulse response {g[k]}∞
k=0 of the system G with the

initial state x[0] = 0, that is,

G(z) =
∞

∑
k=0

g[k]z−k = D +
∞

∑
k=1

CAk−1Bz−k.

To convert a state-space equation to its transfer function, one can use the above equations or
the MATLAB command tf. On the other hand, to convert a transfer function to a state-space
equation, one can use realization theory which provides a method to derive the state space
matrices from a given transfer function (Rugh, 1996). An easy way to obtain the matrices is to
use MATLAB or Scilab with the command ss.

Example 1. We here show an example of MATLAB commands. First, we define state-space matrices:

>A=[0,1;-1,-2]; B=[0;1]; C=[1,1]; D=0;
>G=ss(A,B,C,D,1);

This defines a state-space (ss) representation of G with the state-space matrices

A =

[

0 1
−1 −2

]

, B =

[

0
1

]

, C =
[

1 1
]

, D = 0.

The last argument 1 of ss sets the sampling time to be 1.

To obtain the transfer function G(z) = C(zI − A)−1B + D, we can use the command tf

>> tf(G)

Transfer function:
z + 1

-------------
z^2 + 2 z + 1

Sampling time (seconds): 1
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Min-Max Design of FIR Digital Filters by Semidefinite Programming 3

On the other hand, suppose that we have a transfer function at first:

>> z=tf(’z’,1);
>> Gz=(z^2+2*z+1)/(z^2+0.5*z+1);

The first command defines the variable z of Z-transform with sampling time 1, and the second
command defines the following transfer function:

G(z) =
z2 + 2z + 1

z2 + 0.5z + 1
.

To convert this to state-space matrices A, B, C, and D, use the command ss as follows:

>> ss(Gz)

a =
x1 x2

x1 -0.5 -1
x2 1 0

b =
u1

x1 1
x2 0

c =
x1 x2

y1 1.5 0

d =
u1

y1 1

Sampling time (seconds): 1
Discrete-time model.

These outputs shows that the state-space matrices are given by

A =

[

−0.5 −1
1 0

]

, B =

[

1
0

]

, C =
[

1.5 0
]

, D = 1,

with sampling time 1. �

Note that the state-space representation in Example 1 is minimal in that the state-space model
describes the same input/output behavior with the minimum number of states. Such a system
is called minimal realization (Rugh, 1996).
We then introduce a useful notation, called packed notation (Vidyasagar, 1988), describing the
transfer function from state-space matrices as

G(z) = C(zI − A)−1B + D =:

[

A B

C D

]

(z).
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4 Digital Signal Processing
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Fig. 1. The H∞ norm ‖G‖∞ is the maximum gain of the frequency response G(ejω).

By the packed notation, the following formulae are often used in this chapter:

[

A1 B1

C1 D1

]

×

[

A2 B2

C2 D2

]

=

⎡

⎣

A2 0 B2

B1C2 A1 B1D2

D1C2 C1 D1D2

⎤

⎦ ,

[

A1 B1

C1 D1

]

±

[

A2 B2

C2 D2

]

=

⎡

⎣

A1 0 B1

0 A2 ±B2

C1 C2 D1 ± D2

⎤

⎦ .

Next, we define stability of linear systems. The state-space system G in (1) is said to be stable
if the eigenvalues λ1, . . . , λn of the matrix A lie in the open unit circle D = {z ∈ C : |z| < 1}.
Assume that the transfer function G(z) is irreducible. Then G is stable if and only if the poles
of the transfer function G(z) lie in D. To compute the eigenvalues of A in MATLAB, use the
command eig(A), and for the poles of G(z) use pole(Gz).
The H∞ norm of a stable transfer function G(z) is defined by

‖G‖∞ := max
ω∈[0,π]

∣

∣

∣
G(ejω)

∣

∣

∣
.

This is the maximum gain of the frequency response G(ejω) of G as shown in Fig. 1. The
MATLAB code to compute the H∞ norm of a transfer function is given as follows:

>> z=tf(’z’,1);
>> Gz=(z-1)/(z^2-0.5*z);
>> norm(Gz,inf)

ans =

1.3333

This result shows that for the stable transfer function

G(z) =
z − 1

z2 − 0.5z
,

the H∞ norm is given by ‖G‖∞ ≈ 1.3333.
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Min-Max Design of FIR Digital Filters by Semidefinite Programming 5

H∞ optimization is thus minimization of the maximum value of a transfer function. This leads
to robustness against uncertainty in the frequency domain. Moreover, it is known that the H∞

norm of a transfer function G(z) is equivalent to the ℓ2-induced norm of G , that is,

‖G‖∞ = ‖G‖ := sup
u∈ℓ2

u �=0

‖Gu‖2

‖u‖2
,

where ‖u‖2 is the ℓ2 norm of u:

‖u‖2 :=

(

∞

∑
n=0

|u[k]|2
)1/2

.

The H∞ optimization is minimization of the system gain when the worst case input is applied.
This fact implies that the H∞ optimization leads to robustness against uncertainty in input
signals.

3. H∞ Design problems of FIR digital filters

In this section, we consider two fundamental problems in signal processing: filter
approximation and inverse filtering. The problems are formulated as H∞ optimization by
using the H∞ norm defined in the previous section.

3.1 FIR approximation of IIR filters

The first problem we consider is approximation. In signal processing, there are a number
of design methods for IIR (infinite impulse response) filters, e.g., Butterworth, Chebyshev,
Elliptic, and so on (Oppenheim & Schafer, 2009). In general, to achieve a given characteristic,
IIR filters require fewer memory elements, i.e., z−1, than FIR (finite impulse response) filters.
However, IIR filters may have a problem of instability since they have feedbacks in their
circuits, and hence, we prefer an FIR filter to an IIR one in implementation. For this reason,
we employ FIR approximation of a given IIR filter. This problem has been widely studied
(Oppenheim & Schafer, 2009). Many of them are formulated by H2 optimization; they aim at
minimizing the average error between a given IIR filter and the FIR filter to be designed.
This optimal filter works well averagely, but in the worst case, the filter may lead a large
error. To guarantee the worst case performance, H∞ optimization is applied to this problem
(Yamamoto et al., 2003). The problem is formulated as follows:

Problem 1 (FIR approximation of IIR filters). Given an IIR filter P(z), find an FIR (finite impulse
response) filter Q(z) which minimizes

‖(P − Q)W‖∞ = max
ω∈[0,π]

∣

∣

∣

(

P(ejω)− Q(ejω)
)

W(ejω)
∣

∣

∣
,

where W is a given stable weighting function.

The procedure to solve this problem is shown in Section 4.
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6 Digital Signal Processing

3.2 Inverse filtering

Inverse filtering, or deconvolution is another fundamental issue in signal processing.
This problem arises for example in direct-filter design in spline interpolation
(Nagahara & Yamamoto, 2011).
Suppose a filter P(z) is given. Symbolically, the inverse filter of P(z) is P(z)−1. However, real
design is not that easy.

Example 2. Suppose P(z) is given by

P(z) =
z + 0.5

z − 0.5
.

Then, the inverse Q(z) := P(z)−1 becomes

Q(z) = P(z)−1 =
z − 0.5

z + 0.5
,

which is stable and causal. Then suppose

P(z) =
z − 2

z − 0.5
,

then the inverse is

Q(z) = P(z)−1 =
z − 0.5

z − 2
.

This has the pole at |z| > 1, and hence the inverse filter is unstable. On the other hand, suppose

P(z) =
1

z − 0.5
,

then the inverse is
Q(z) = P(z)−1 = z − 0.5,

which is noncausal.

By these examples, the inverse filter P(z)−1 may unstable or noncausal. Unstable or noncausal
filters are difficult to implement in real digital device, and hence we adopt approximation
technique; we design an FIR digital filter Q(z) such that Q(z)P(z) ≈ 1. Since FIR filters are
always stable and causal, this is a realistic way to design an inverse filter. Our problem is now
formulated as follows:

Problem 2 (Inverse filtering). Given a filter P(z) which is necessarily not bi-stable or bi-causal (i.e.,
P(z)−1 can be unstable or noncausal), find an FIR filter Q(z) which minimizes

‖(QP − 1)W‖∞ = max
ω∈[0,π]

∣

∣

∣

(

Q(ejω)P(ejω)− 1
)

W(ejω)
∣

∣

∣
,

where W is a given stable weighting function.

The procedure to solve this problem is shown in Section 4.
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Min-Max Design of FIR Digital Filters by Semidefinite Programming 7

4. KYP lemma for H∞ design problems

In this section, we show that the H∞ design problems given in the previous section
are efficiently solved via semidefinite programming (Boyd & Vandenberghe, 2004). For this
purpose, we first formulate the problems in state-space representation reviewed in Section
2. Then we bring in Kalman-Yakubovich-Popov (KYP) lemma (Anderson, 1967; Rantzer, 1996;
Tuqan & Vaidyanathan, 1998) to reduce the problems into semidefinite programming.

4.1 State-space representation

The transfer functions (P(z)− Q(z))W(z) and (Q(z)P(z)− 1)W(z) in Problems 1 and 2,
respectively, can be described in a form of

T(z) = T1(z) + Q(z)T2(z), (2)

where
T1(z) = P(z)W(z), T2(z) = −W(z),

for Problem 1 and
T1(z) = −W(z), T2(z) = P(z)W(z),

for Problem 2. Therefore, our problems are described by the following min-max optimization:

min
Q(z)∈FN

‖T1 + QT2‖∞ = min
Q(z)∈FN

max
ω∈[0,π]

∣

∣

∣
T1(e

jω) + Q(ejω)T2(e
jω)

∣

∣

∣
, (3)

where FN is the set of N-th order FIR filters, that is,

FN :=

{

Q(z) : Q(z) =
N

∑
i=0

αiz
−i, αi ∈ R

}

.

To reduce the problem of minimizing (3) to semidefinite programming, we use state-space
representations for T1(z) and T2(z) in (2). Let {Ai, Bi, Ci, Di} (i = 1, 2) are state-space matrices
of Ti(z) in (2), that is,

Ti(z) = Ci(zI − Ai)
−1Bi + Di =:

[

Ai Bi

Ci Di

]

(z), i = 1, 2.

Also, a state-space representation of an FIR filter Q(z) is given by

Q(z) =
N

∑
n=0

αnz−n =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 . . . 0 0

0 0 1
. . .

...
...

0 0
. . .

. . . 0
...

...
...

. . . 0 1 0
0 0 . . . 0 0 1

αN αN−1 . . . α2 α1 α0

⎤





















⎦

(z) =:

[

Aq Bq

αN:1 α0

]

(z), (4)

where αN:1 :=
[

αN αN−1 . . . α1

]

.
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8 Digital Signal Processing

By using these state-space matrices, we obtain a state-space representation of T(z) in (2) as

T(z) =

⎡

⎢

⎢

⎣

A1 0 0 B1

0 A2 0 B2

0 BqC2 Aq BqD2

C1 α0C2 αN:1 D1 + α0D2

⎤





⎦

(z) =:

[

A B

C(αN:0) D(α0)

]

(z). (5)

Note that the FIR parameters α0, α1, . . . , αN depend affinely on C and D, and are independent
of A and B. This property is a key to describe our problem into semidefinite programming.

4.2 Semidefinite programming by KYP lemma

The optimization in (3) can be equivalently described by the following minimization problem:

minimize γ subject to Q(z) ∈ FN and

max
ω∈[0,π]

∣

∣

∣
T1(e

jω) + Q(ejω)T2(e
jω)

∣

∣

∣
≤ γ. (6)

To describe this optimization in semidefinite programming, we adopt the following lemma
(Anderson, 1967; Rantzer, 1996; Tuqan & Vaidyanathan, 1998):

Lemma 1 (KYP lemma). Suppose

T(z) =

[

A B

C D

]

(z)

is stable, and the state-space representation {A, B, C, D} of T(z) is minimal1. Let γ > 0. Then the
following are equivalent conditions:

1. ‖T‖∞ ≤ γ.

2. There exists a positive definite matrix X such that

⎡

⎣

A⊤XA − X A⊤XB C⊤

B⊤XA B⊤XB − γ2 D
C D −1

⎤

⎦ ≤ 0.

By using this lemma, we obtain the following theorem:

Theorem 1. The inequality (6) holds if and only if there exists X > 0 such that

⎡

⎣

A⊤XA − X A⊤XB C(αN:0)
⊤

B⊤XA B⊤XB − γ2 D(α0)
C(αN:0) D(α0) −1

⎤

⎦ ≤ 0, (7)

where A, B, C(αN:0), and D(α0) are given in (5).

By this, the optimal FIR parameters α0, α1, . . . , αN can be obtained as follows. Let x be the
vector consisting of all variables in αN:0, X, and γ2 in (7). The matrix in (7) is affine with
respect to these variables, and hence, can be rewritten in the form

M(x) = M0 +
L

∑
i=1

Mixi,

1 For minimality of state-space representation, see Section 2 or Chapter 26 in (Rugh, 1996).
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∣

∣

∣
P
(

ejω
)

− Q
(

ejω
)
∣

∣

∣

ω

ωlow

γ

0 π

Fig. 2. Finite frequency approximation (Problem 3): the gain of the error P(ejω)− Q(ejω) is
minimized over the finite frequency range Ωlow = [0, ωlow].

where Mi is a symmetric matrix and xi is the i-th entry of x. Let v ∈ {0, 1}L be a vector such
that v⊤x = γ2. Our problem is then described by semidefinite programming as follows:

minimize v⊤x subject to M(x) ≤ 0.

By this, we can effectively approach the optimal parameters α0, α1, . . . , αN by numerical
optimization softwares. For MATLAB codes of the semidefinite programming above, see
Section 7.

5. Finite frequency design of FIR digital filters

By the H∞ design discussed in the previous section, we can guarantee the maximum gain of
the frequency response of T = (P − Q)W (approximation) or T = (QP− 1)W (inversion) over
the whole frequency range [0, π]. Some applications, however, do not need minimize the gain
over the whole range [0, π], but a finite frequency range Ω ⊂ [0, π]. Design of noise shaping
∆Σ modulators is one example of such requirement (Nagahara & Yamamoto, 2009). In this
section, we consider such optimization, called finite frequency optimization. We first consider
the approximation problem over a finite frequency range.

Problem 3 (Finite frequency approximation). Given a filter P(z) and a finite frequency range
Ω ⊂ [0, π], find an FIR filter Q(z) which minimizes

VΩ(P − Q) := max
ω∈Ω

∣

∣

∣
P(ejω)− Q(ejω)

∣

∣

∣
.

Figure 2 illustrates the above problem for a finite frequency range Ω = Ωlow = [0, ωlow],
where ωlow ∈ (0, π]. We seek an FIR filter which minimizes the gain of the error P(ejω) −
Q(ejω) over the finite frequency range Ω, and do not care about the other range [0, π] \ Ω. We
can also formulate the inversion problem over a finite frequency range.

Problem 4 (Finite frequency inversion). Given a filter P(z) and a finite frequency range Ω ⊂ [0, π],
find an FIR filter Q(z) which minimizes

VΩ(QP − 1) := max
ω∈Ω

∣

∣

∣
Q(ejω)P(ejω)− 1

∣

∣

∣
.

These problems are also fundamental in digital signal processing. We will show in the
next section that these problems can be also described in semidefinite programming via
generalized KYP lemma.

201Min-Max Design of FIR Digital Filters by Semidefinite Programming

www.intechopen.com



10 Digital Signal Processing

6. Generalized KYP lemma for finite frequency design problems

In this section, we reduce the problems given in the previous section to semidefinite
programming. As in the H∞ optimization, we first formulate the problems in state-space
representation, and then derive semidefinite programming via generalized KYP lemma
(Iwasaki & Hara, 2005).

6.1 State-space representation

As in the H∞ optimization in Section 4, we employ state-space representation. Let T(z) =
P(z)− Q(z) for the approximation problem or T(z) = P(z)Q(z)− 1 for the inversion problem.
Then T(z) can be described by T(z) = T1(z) + Q(z)T2(z) as in (2). Then our problems are
described by the following min-max optimization:

min
Q(z)∈FN

VΩ (T1 + QT2) = min
Q(z)∈FN

max
ω∈Ω

∣

∣

∣
T1(e

jω) + Q(ejω)T2(e
jω)

∣

∣

∣
. (8)

Let {Ai, Bi, Ci, Di}, i = 1, 2 be state-space matrices of Ti(z). By using the same technique as in
Section 4, we can obtain a state-space representation of T(z) as

T(z) =

[

A B
C(αN:0) D(α0)

]

(z), (9)

where αN:0 = [αN , . . . , α0] is the coefficient vector of the FIR filter to be designed as defined in
(4).

6.2 Semidefinite programming by generalized KYP lemma

The optimization in (8) can be equivalently described by the following problem:

minimize γ subject to Q(z) ∈ FN and

max
ω∈Ω

∣

∣

∣
T1(e

jω) + Q(ejω)T2(e
jω)

∣

∣

∣
≤ γ (10)

To describe this optimization in semidefinite programming, we adopt the following lemma
(Iwasaki & Hara, 2005):

Lemma 2 (Generalized KYP Lemma). Suppose

T(z) =

[

A B

C D

]

(z)

is stable, and the state-space representation {A, B, C, D} of T(z) is minimal. Let Ω be a closed interval
[ω1, ω2] ⊂ [0, π]. Let γ > 0. Then the following are equivalent conditions:

1. VΩ(T) = maxω∈[ω1,ω2]

∣

∣

∣
T(ejω)

∣

∣

∣
≤ γ.

2. There exist symmetric matrices Y > 0 and X such that

⎡

⎣

M1(X, Y) M2(X, Y) C⊤

M2(X, Y)⊤ M3(X, γ2) D
C D −1

⎤

⎦ ≤ 0,
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where

M1(X, Y) = A⊤XA + YAe−jω0 + A⊤Yejω0 − X − 2Y cos r,

M2(X, Y) = A⊤XB + YBe−jω0 , M2(X, Y) = A⊤XB + YBejω0 ,

M3(X, γ2) = B⊤XB − γ2, ω0 =
ω1 + ω2

2
, r =

ω2 − ω1

2
.

(11)

By using this lemma, we obtain the following theorem:

Theorem 2. The inequality (10) holds if and only if there exist symmetric matrices Y > 0 and X such
that

⎡

⎣

M1(X, Y) M2(X, Y) C(αN:0)
⊤

M2(X, Y)⊤ M3(X, γ2) D(α0)
C(αN:0) D(α0) −1

⎤

⎦ ≤ 0,

where M1, M2, and M3 are given in (11), A, B, C(αN:0), and D(α0) are given in (9).

By this theorem, we can obtain the coefficients α0, . . . , αN of the optimal FIR filter by
semidefinite programming as mentioned in Section 4. MATLAB codes for the semidefinite
programming are shown in Section 7.

7. MATLAB codes for semidefinite programming

In this section, we give MATLAB codes for the semidefinite programming derived in previous
sections. Note that the MATLAB codes for solving Problems 1 to 4 are also available at the
following web site:

http://www-ics.acs.i.kyoto-u.ac.jp/~nagahara/fir/

Note also that to execute the codes in this section, Control System Toolbox (Mathworks, 2010),
YALMIP (Löfberg, 2004), and SeDuMi (Sturm, 2001) are needed. YALMIP and SeDuMi are
free softwares for solving optimization problems including semidefinite programming which
is treated in this chapter.

7.1 FIR approximation of IIR filters by H∞ norm

function [q,gmin] = approxFIRhinf(P,W,N);
% [q,gmin]=approxFIRhinf(P,W) computes the
% H-infinity optimal approximated FIR filter Q(z) which minimizes
% J(Q) = ||(P-Q)W||,
% the maximum frequency gain of (P-Q)W.
% This design uses SDP via the KYP lemma.
%
% Inputs:
% P: Target stable linear system in SS object
% W: Weighting stable linear system in SS object
% N: Order of the FIR filter to be designed
%
% Outputs:
% q: The optimal FIR filter coefficients
% gmin: The optimal value
%
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12 Digital Signal Processing

%% Initialization
T1 = P*W;
T2 = -W;
[A1,B1,C1,D1]=ssdata(T1);
[A2,B2,C2,D2]=ssdata(T2);
n1 = size(A1,1);
n2 = size(A2,1);

%% FIR filter to be designed
Aq = circshift(eye(N),-1);
Aq(N,1) = 0;
Bq = [zeros(N-1,1);1];

%% Semidefinite Programming
A = [A1, zeros(n1,n2), zeros(n1,N);

zeros(n2,n1), A2, zeros(n2,N);
zeros(N,n1),Bq*C2, Aq];

B = [B1;B2;Bq*D2];

NN = size(A,1);

X = sdpvar(NN,NN,’symmetric’);
alpha_N1 = sdpvar(1,N);
alpha_0 = sdpvar(1,1);
gamma = sdpvar(1,1);

M1 = A’*X*A-X;
M2 = A’*X*B;
M3 = B’*X*B-gamma;

C = [C1, alpha_0*C2, alpha_N1];
D = D1 + alpha_0*D2;

M = [M1, M2, C’; M2’, M3, D; C, D, -gamma];

F = set(M < 0) + set(X > 0) + set(gamma > 0);

solvesdp(F,gamma);

%% Optimal FIR filter coefficients
q = fliplr([double(alpha_N1),double(alpha_0)]);
gmin = double(gamma);

7.2 Inverse FIR filtering by H∞ norm

function [q,gmin] = inverseFIRhinf(P,W,N,n);
% [q,gmin]=inverseFIRhinf(P,W,N,n) computes the
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% H-infinity optimal (delayed) inverse FIR filter Q(z) which minimizes
% J(Q) = ||(QP-z^(-n))W||,
% the maximum frequency gain of (QP-z^(-n))W.
% This design uses SDP via the KYP lemma.
%
% Inputs:
% P: Target stable linear system in SS object
% W: Weighting stable linear system in SS object
% N: Order of the FIR filter to be designed
% n: Delay (this can be omitted; default value=0);
%
% Outputs:
% q: The optimal FIR filter coefficients
% gmin: The optimal value
%

if nargin==3
n=0

end

%% Initialization
z = tf(’z’);
T1 = -z^(-n)*W;
T2 = P*W;
[A1,B1,C1,D1]=ssdata(T1);
[A2,B2,C2,D2]=ssdata(T2);
n1 = size(A1,1);
n2 = size(A2,1);

%% FIR filter to be designed
Aq = circshift(eye(N),-1);
Aq(N,1) = 0;
Bq = [zeros(N-1,1);1];

%% Semidefinite Programming
A = [A1, zeros(n1,n2), zeros(n1,N);

zeros(n2,n1), A2, zeros(n2,N);
zeros(N,n1),Bq*C2, Aq];

B = [B1;B2;Bq*D2];

NN = size(A,1);

X = sdpvar(NN,NN,’symmetric’);
alpha_N1 = sdpvar(1,N);
alpha_0 = sdpvar(1,1);
gamma = sdpvar(1,1);
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M1 = A’*X*A-X;
M2 = A’*X*B;
M3 = B’*X*B-gamma;

C = [C1, alpha_0*C2, alpha_N1];
D = D1 + alpha_0*D2;

M = [M1, M2, C’; M2’, M3, D; C, D, -gamma];

F = set(M < 0) + set(X > 0) + set(gamma > 0);

solvesdp(F,gamma);

%% Optimal FIR filter coefficients
q = fliplr([double(alpha_N1),double(alpha_0)]);
gmin = double(gamma);

7.3 FIR approximation of IIR filters by finite-frequency min-max

function [q,gmin] = approxFIRff(P,Omega,N);
% [q,gmin]=approxFIRff(P,Omega,N) computes the
% Finite-frequency optimal approximated FIR filter Q(z)

which minimizes
% J(Q) = max{|P(exp(jw))-Q(exp(jw))|, w in Omega}l.
% the maximum frequency gain of P-Q in a frequency band Omega.
% This design uses SDP via the generalized KYP lemma.
%
% Inputs:
% P: Target stable linear system in SS object
% Omega: Frequency band in 1x2 vector [w1,w2]
% N: Order of the FIR filter to be designed
%
% Outputs:
% q: The optimal FIR filter coefficients
% gmin: The optimal value
%

%% Initialization
[A1,B1,C1,D1]=ssdata(P);
n1 = size(A1,1);

%% FIR filter to be designed
Aq = circshift(eye(N),-1);
Aq(N,1) = 0;
Bq = [zeros(N-1,1);1];

%% Semidefinite Programming
A = blkdiag(A1,Aq);
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B = [B1;-Bq];

NN = size(A,1);

omega0 = (Omega(1)+Omega(2))/2;
omegab = (Omega(2)-Omega(1))/2;

P = sdpvar(NN,NN,’symmetric’);
Q = sdpvar(NN,NN,’symmetric’);
alpha_N1 = sdpvar(1,N);
alpha_0 = sdpvar(1,1);
g = sdpvar(1,1);

C = [C1, alpha_N1];
D = D1 - alpha_0;

M1r = A’*P*A+Q*A*cos(omega0)+A’*Q*cos(omega0)-P-2*Q*cos(omegab);
M2r = A’*P*B + Q*B*cos(omega0);
M3r = B’*P*B-g;
M1i = A’*Q*sin(omega0)-Q*A*sin(omega0);
M21i = -Q*B*sin(omega0);
M22i = B’*Q*sin(omega0);
Mr = [M1r,M2r,C’;M2r’,M3r,D;C,D,-1];
Mi = [M1i, M21i, zeros(NN,1);M22i, 0, 0; zeros(1,NN),0,0];
M = [Mr, Mi; -Mi, Mr];

F = set(M < 0) + set(Q > 0) + set(g > 0);

solvesdp(F,g);

%% Optimal FIR filter coefficients
q = fliplr([double(alpha_N1),double(alpha_0)]);
gmin = double(g);

7.4 Inverse FIR filtering by finite-frequency min-max

function [q,gmin] = inverseFIRff(P,Omega,N,n);
% [q,gmin]=inverseFIRff(P,Omega,N,n) computes the
% Finite-frequency optimal (delayed) inverse FIR filter Q(z) which minimizes
% J(Q) = max{|Q(exp(jw)P(exp(jw))-exp(-jwn)|, w in Omega}.
% the maximum frequency gain of QP-z^(-n) in a frequency band Omega.
% This design uses SDP via the generalized KYP lemma.
%
% Inputs:
% P: Target stable linear system in SS object
% Omega: Frequency band in 1x2 vector [w1,w2]
% N: Order of the FIR filter to be designed
% n: Delay (this can be omitted; default value=0);
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%
% Outputs:
% q: The optimal FIR filter coefficients
% gmin: The optimal value
%

if nargin==3
n=0

end

%% Initialization
z = tf(’z’);
T1 = -z^(-n);
T2 = P;
[A1,B1,C1,D1]=ssdata(T1);
[A2,B2,C2,D2]=ssdata(T2);
n1 = size(A1,1);
n2 = size(A2,1);

%% FIR filter to be designed
Aq = circshift(eye(N),-1);
Aq(N,1) = 0;
Bq = [zeros(N-1,1);1];

%% Semidefinite Programming
A = [A1, zeros(n1,n2), zeros(n1,N);

zeros(n2,n1), A2, zeros(n2,N);
zeros(N,n1),Bq*C2, Aq];

B = [B1;B2;Bq*D2];

NN = size(A,1);

omega0 = (Omega(1)+Omega(2))/2;
omegab = (Omega(2)-Omega(1))/2;

P = sdpvar(NN,NN,’symmetric’);
Q = sdpvar(NN,NN,’symmetric’);
alpha_N1 = sdpvar(1,N);
alpha_0 = sdpvar(1,1);
g = sdpvar(1,1);

C = [C1, alpha_0*C2, alpha_N1];
D = D1 + alpha_0*D2;

M1r = A’*P*A+Q*A*cos(omega0)+A’*Q*cos(omega0)-P-2*Q*cos(omegab);
M2r = A’*P*B + Q*B*cos(omega0);
M3r = B’*P*B-g;

208 Applications of Digital Signal Processing

www.intechopen.com



Min-Max Design of FIR Digital Filters by Semidefinite Programming 17

M1i = A’*Q*sin(omega0)-Q*A*sin(omega0);
M21i = -Q*B*sin(omega0);
M22i = B’*Q*sin(omega0);
Mr = [M1r,M2r,C’;M2r’,M3r,D;C,D,-1];
Mi = [M1i, M21i, zeros(NN,1);M22i, 0, 0; zeros(1,NN),0,0];
M = [Mr, Mi; -Mi, Mr];

F = set(M < 0) + set(Q > 0) + set(g > 0);

solvesdp(F,g);

%% Optimal FIR filter coefficients
q = fliplr([double(alpha_N1),double(alpha_0)]);
gmin = double(g);

8. Examples

By the MATLAB codes given in the previous section, we design FIR filters for Problems 1 and
3. Let the FIR filter order N = 8. The target filter is the second order lowpass Butterworth
filter with cutoff frequency π/2. This can be computed by butter(2,1/2) in MATLAB.
The weighting transfer function in Problem 1 is chosen by an 8th-order lowpass Chebyshev
filter, computed by cheby1(8,1/2,1/2) in MATLAB. The frequency band for Problem 3 is
Ω = [0, π/2]. Figure 3 shows the gain of the error E(z) := P(z)− Q(z). We can see that the
H∞ optimal filter (the solution of Problem 1), say Q1(z), shows the lower H∞ norm than the
finite-frequency min-max design (the solution of Problem 3), say Q2(z). On the other hand,
in the frequency band [0, π/2], Q1(z) shows the larger error than Q2(z).
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Fig. 3. The gain of the error E(z) = P(z)− Q(z) for H∞ optimization (solid) and
finite-frequency min-max optimization (dash)
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9. Conclusion

In this chapter, we consider four problems, FIR approximation and inverse FIR filtering
of FIR/IIR filters by H∞ and finite-frequency min-max, which are fundamental in signal
processing. By using the KYP and generalized KYP lemmas, the problems are all solvable
via semidefinite programming. We show MATLAB codes for the programming, and show
examples of designing FIR filters.
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