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Abstract

This chapter introduces an overview of the current approaches for generating
spoken content using text-to-speech synthesis (TTS) systems, and thus the voice of
an Interactive Virtual Assistant (IVA). The overview builds upon the issues which
make spoken content generation a non-trivial task, and introduces the two main
components of a TTS system: text processing and acoustic modelling. It then
focuses on providing the reader with the minimally required scientific details of the
terminology and methods involved in speech synthesis, yet with sufficient knowl-
edge so as to be able to make the initial decisions regarding the choice of technology
for the vocal identity of the IVA. The speech synthesis methodologies’ description
begins with the basic, easy to run, low-requirement rule-based synthesis, and ends
up within the state-of-the-art deep learning landscape. To bring this extremely
complex and extensive research field closer to commercial deployment, an exten-
sive indexing of the readily and freely available resources and tools required to build
a TTS system is provided. Quality evaluation methods and open research problems
are, as well, highlighted at end of the chapter.

Keywords: text-to-speech synthesis, text processing, deep learning, interactive
virtual assistant

1. Introduction

Generating the voice of an interactive virtual assistant (IVA) is performed by
the so called text-to-speech synthesis (TTS) systems. A TTS system takes raw text as
input and converts it into an acoustic signal or waveform, through a series of
intermediate steps. The synthesised speech commonly pertains to a single,
pre-defined speaker, and should be as natural and as intelligible as human speech.
An overview of the main components of a TTS system is shown in Figure 1.

At first sight this seems like a straightforward mapping of each character in the
input text to its acoustic realisation. However, there are numerous technical issues

Figure 1.
Overview of a text-to-speech synthesis system’s main components.
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which make natural speech synthesis an extremely complex problem, with some of
the most important ones being indexed below:

the written language is a discrete, compressed representation of the spoken language aimed at

transferring a message, irrespective of other factors pertaining to the speaker’s identity, emotional

state, etc. Also, in almost any language, the written symbols are not truly informative of their

pronunciation, with the most notable example being English. The pronunciation of a letter or sequence

of letters which yield a single sound is called a phone. One exception here is the Korean alphabet for

which the symbols approximate the position of the articulator organs, and was introduced in 1443 by

King Sejong the Great to increase the literacy among the Korean population. But for most languages,

the so called orthographic transparency is rather opaque;

the human ear is highly adapted to the frequency regions in which the relevant information from

speech resides (i.e. 50–8000 Hz). Any slight changes to what is considered to be natural speech, any

artefacts, or unnatural sequences present in a waveform deemed to contain spoken content, will be

immediately detected by the listener;

speaker and speech variability is a result of the uniqueness of each individual. This means that there

are no two persons having the same voice timbre or pronouncing the same word in a similar manner.

Even more so, one person will never utter a word or a fixed message in an exactly identical manner

even when the repetitions are consecutive;

co-articulation effects derive from the articulator organs’ inertial movement. There are no abrupt

transitions between sounds and, with very few exceptions, it is very hard to determine the exact

boundary of each sound. Another result of the co-articulation is the presence of reductions or

modifications in the spoken form of a word or sequence of words, derived from the impossibility or

hardship of uttering a smooth transition between some particular phone pairs;

prosody is defined as the rhythm and melody or intonation of an utterance. The prosody is again

related to the speaker’s individuality, cultural heritage, education and emotional state. There are no

clear systems which describe the prosody of a spoken message, and one’s person understanding of, for

example, portraying an angry state of mind is completely different from another;

no fixed set of measurable factors define a speaker’s identity and speaking characteristics. Therefore,

when wanting to reproduce one’s voice the only way to do this for now is to record that person and

extract statistical information from the acoustic signal;

no objective measure correlates the physical representation of a speech signal with the perceptual

evaluation of a synthesised speech’s quality and/or appropriateness.

The problems listed above have been solved, to some extent, in TTS systems by
employing high-level machine learning algorithms, developing large expert
resources or by limiting the applicability and use-case scenarios for the synthesised
speech. In the following sections we describe each of the main components of a TTS
system, with an emphasis on the acoustic modelling part which poses the greatest
problems as of yet. We also index some of the freely available resources and tools
which can aid a fast development of a synthesis system for commercial IVAs in a
dedicated section of the chapter, and conclude with the discussion of some open
problems in the final section.

2. Speech processing fundamentals

Before diving into the text-to-speech synthesis components, it is important to
define a basic set of terms related to digital speech processing. A complete overview
of this domain is beyond the scope of this chapter, and we shall only refer to the
terms used to describe the systems in the following sections.

Speech is the result of the air exhaled from the lungs modulated by the articulator
organs and their instantaneous or transitioning position: vocal cords, larynx,
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pharynx, oral cavity, palate, tongue, teeth, jaw, lips and nasal cavity. By modulation
we refer to the changes suffered by the air stream as it encounters these organs. One
of the most important organs in speech are the vocal cords, as they determine the
periodicity of the speech signal by quickly opening and closing as the air passes
through. The vocal cords are used in the generation of vowels and voiced consonant
sounds [1]. The perceived result of this periodicity is called the pitch, and its objective
measure is called fundamental frequency, commonly abbreviated F0 [2]. The slight
difference between pitch and F0 is better explained by the auditory illusion of the
missing fundamental [3] where the measured fundamental frequency differs from the
perceived pitch. Commonly, the terms are used interchangeably, but readers should
be aware of this small difference. The pitch variation over time in the speech signal
gives the melody or intonation of the spoken content. Another important definition is
that of vocal tractwhich refers to all articulators positioned above the vocal cords. The
resonance frequencies of the vocal tract are called formant frequencies. Three formants
are commonly measured and noted as F1, F2 and F3.

Looking into the time domain, as a result of the articulator movement, the
speech signal is not stationary, and its characteristics evolve through time. The
smallest time interval in which the speech signal is considered to be quasi-stationary
is 20–40 msec. This interval determines the so-called frame-level analysis or
windowing of the speech signal, in which the signal is segmented and analysed at
more granular time scales for the resulting analysis to adhere to the digital signal
processing theorems and fundamentals [4].

The spectrum or instantaneous spectrum is the result of decomposing the speech
signal into its frequency components through Fourier analysis [5] on a frame-by-
frame basis. Visualising the evolution of the spectrum through time yields the
spectrogram. Because the human ear has a non-linear frequency response, the linear
spectrum is commonly transformed into the Mel spectrum, where the Mel frequen-
cies are a non-linear transformation of the frequency domain pertaining to the
pitches judged by listeners to be equal in distance one from another. Frequency
domain analysis is omnipresent in all speech related applications, and Mel spectro-
grams are the most common representations of the speech signal in the neural
network-based synthesis.

One other frequency-derived representation of the speech is the cepstral [6]
representation which is a transform of the spectrum aimed at separating the vocal
tract and the vocal cord (or glottal) contributions from the speech signal. It is based
on homomorphic and decorrelation operations.

3. Text processing

Text processing or front-end processing represents the mechanism of generating
supplemental information from the raw input text. This information should yield a
representation which is hypothetically closer and more relevant to the acoustic
realisation of the text, and therefore tightens the gap between the two domains.
Depending on the targeted language, this task is more or less complex [2]. A list of
the common front-end processing steps is given below:

text tokenisation splits the input text into syntactically meaningful chunks i.e. phrases sentences and

words. Languages which do not have a word separator such as Chinese or Japanese pose additional

complexity for this task [7];

diacritic restoration - in languages with diacritic symbols it might be the case that the user does not

type these symbols and this leads to an incorrect spoken sequence [8]. The diacritic restoration refers

to adding the diacritic symbols back into the text so that the intended meaning is preserved;
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text normalisation converts written expressions into their ‘“spoken” forms e.g. $3.16 is converted into

“three dollars sixteen cents.” or 911 is converted into “nine one one” and not “nine hundred eleven” [9].

An additional problem is caused by languages which have genders assigned to nouns e.g. in Romanian

“21 oi = douăzeci şi una de oi” (en. twenty one sheep–feminine) versus “21 cai = douăzeci şi unu de cai”

(en. twenty one horses-masculine);

part-of-speech tagging (POS) assigns a part-of-speech (i.e. noun, verb, adverb, adjective, etc.) to

each word in the input sequence. The POS is important to disambiguate non-homophone homographs.

These are words which are spelled the same but pronounced differently based on their POS (e.g. bow -

to bend down/the front of a boat/tied loops). POS are also essential for placing the accent or focus of an

utterance on the correct word or word sequence [10];

lexical stress marking - the lexical stress pertains to the syllable within a word which is more

prominent [11]. There are however languages for which this notion is quite elusive such as French or

Spanish. Yet in English a stress-timed language assigning the correct stress to each word is essential for

conveying the correct message. Along with the POS the lexical stress also helps disambiguate non-

homophone homographs in the spoken content. There are also phoneticians who would mark a

secondary and tertiary stress but for speech synthesis the primary stress should be enough as the

secondary does not affect the meaning but rather the naturalness or emphasis of the speech;

syllabification - syllables represent the base unit of co-articulation and determine the rhythm of

speech [12]. Again different languages pose different problems and languages such as Japanese rely on

syllables for their alphabetic inventory. As a general rule every syllable has only one vowel sound but

can be accompanied by semi-vowels. Compound words generally do not follow the general rules such

that prefixes and suffixes will be pronounced as a single syllable;

phonetic transcription is the final result of all the steps above. Meaning that by knowing the POS the

lexical stress and syllabification of a word the exact pronunciation can be derived [13]. The phones are

a set of symbols corresponding to an individual articulatory target position in a language or otherwise

put it is the fixed sound alphabet of a language. This alphabet determines how each sequence of letters

should be pronounced. Yet this is not always the case and the concept of orthographic transparency

determines the ease with which a reader can utter a written text in a particular language;

prosodic labels, phrase breaks - with all the lexical information in place there is still the issue of

emphasising the correct words as per intent of the writer. The accent and pauses in speech are very

important and can make the message decoding a very complex task or an easier one with the

information being able to be faster assimilated by the listener. There is quite a lot of debate on how the

prosody should be marked in text and if it should be [14]. There is definitely some markings in the

form of punctuation signs yet there is a huge gap between the text and the spoken output. However

public speaking coaching puts a large weight on the prosodic aspect of the speech and therefore

captivating the listeners attention through non-verbal queues;

word/character embeddings - are the result of converting the words or characters in the text into a

numeric representation which should encompass more information about their identity pronunciation

syntax or meaning than the surface form does. Embeddings are learnt from large text corpora and are

language dependent. Some of the algorithms used to build such representations are: Word2Vec [15]

GloVe [16] ELMo [17] and BERT [18].

4. Acoustic modelling

The acoustic modelling or back-end processing part refers to the methods which
convert the desired input text sequence into a speech waveform. Some of the
earliest proofs of so-called talking heads are mentioned by Aurrilac (1003 A.D.),
Albert Magnus (1198–1280) or Roger Bacon (1214–1294). The first electronic
synthesiser was the VODER (Voice Operation DEmonstratoR) created by Homer
Dudley at Bell Laboratories in 1939. The VODER was able to generate speech by
tediously operating a keyboard and foot pedals to control a series of digital filters.

Coming to the more recent developments, and based on the main method of
generating the speech signal, speech synthesis systems can be classified into
rule-based and corpus-based methods. In rule-based methods, similar to the
VODER, the sound is generated by a fixed, pre-computed set of parameters.
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Corpus-based methods, on the other hand, use a set of speech recordings to generate
the synthetic output or to derive statistical parameters from the analysis of the spoken
content. It can be argued that using pre-recorded samples is not in itself synthesis, but
rather a speech collage. In this sense Taylor gives a different definition of speech
synthesis: “the output of a spoken utterance from a resource in which it has not been prior
spoken” [2].

4.1 Rule-based synthesis

Formant synthesis is one of the first digital methods of speech generation. It is
still used today, especially by phoneticians who study various spoken language
phenomena. The method uses the approximation of several speech parameters
(commonly the F0 and formant frequencies) for each phone in a language, and also
how these parameters vary when transitioning from one phone to the next one [19].
The most representative model of formant synthesis is the one described by [20],
which later evolved into the commercial system of MITalk [21]. There are around
40 parameters which describe the formants and their respective bandwidths, and
also a series of frequencies for nasals or glottal resonators.

The advantages of formant synthesis are related to the good intelligibility even at
high speeds, and its very low computation and memory requirements, making it
easy to deploy on limited resource devices. The major drawback of this type of
synthesis is, of course, its low quality and robotic sound, and also the fact that for
high-pitched outputs, the formant tracking mechanisms can fail to determine the
correct values.

Articulatory synthesis uses mechanical and acoustic models of speech produc-
tion [1]. The physiological effects such as the movement of the tongue, lips, jaw,
and the dynamics of the vocal tract and glottis are modelled. For example, [22] uses
lip opening, glottal area, opening of nasal cavities, constriction of tongue, and rate
between expansion and contraction of the vocal tract along with the first four
formant frequencies. Magnetic resonance imaging offers some more insight into the
muscle movement [23], yet the complexity of this type of synthesis makes it rather
unfeasible for high naturalness and commercial deployment. One exception in the
project GNUSpeech [24] but its results are still poor compared to what corpus-
based synthesis is able to achieve nowadays.

4.2 Corpus-based synthesis

4.2.1 Concatenative synthesis

As the name entails, concantenative synthesis is a method of producing spoken
content by concatenating pre-recorded speech samples. In its most basic form, a
concatenative synthesis system contains recordings of all the words needed to be
uttered, which are then combined in a very limited vocabulary scenario. For exam-
ple, in a rudimentary IVA, it will combine the typed-in phone number of a customer
by combining pre-recorded digits. Of course, in a large vocabulary, open-domain
system, pre-recording all the words in a language is unfeasible. The solution to this
problem is to find a smaller set of acoustic units which can be then combined into
any spoken phrase. Based on the type of segment stored in the recorded database,
the concatenative synthesis is either fixed inventory – segments in the database
have the same length, or variable inventory or unit selection – segments have
variable length. As the basic acoustic unit of any language is its phone set, a first
open-domain fixed inventory concatenative synthesis made use of diphones [25, 26].
A diphone is the acoustic unit spanning from the middle of a phone to the middle of

5

Generating the Voice of the Interactive Virtual Assistant
DOI: http://dx.doi.org/10.5772/intechopen.95510



the next one in adjoining phone pairs. Although this yields a much larger acoustic
inventory, the diphones are a better choice than phones because they can model the
co-articulation effects. For a primitive diphone concatenation system, the recorded
speech corpus would include a single repetition of all the diphones in a language.
More elaborate systems use diphones in different context (e.g. beginning, middle or
end of a word) and with different prosodic events (e.g. accent, variable duration
etc.). Another type of fixed inventory system is based on the use of syllables as the
concatenation unit [27–29]. Some theories state that the basic unit of speech is the
syllable and, therefore, the co-articulation effects between them is minimum [30],
but the speech database is hard to design. The average number of unique syllables in
one language is in the order of thousands.

A natural evolution of the fixed inventory synthesis is the variable length inven-
tory, or unit selection [31, 32]. In unit selection, the recorded corpus includes
segments as small as half-phones and go up to short common phrases. The speech
database is either stored as-is, or as a set of parameters describing the exact acoustic
waveform. The speech corpus, therefore, needs to be very accurately annotated
with information regarding the exact phonetic content and boundaries, lexical
stress, syllabification, lexical focus and prosodic trends or patterns (e.g. questions,
exclamation, statements). The combination of the speech units into the output
spoken phrase is done in an iterative manner, by selecting the best speech segments
which minimise a global cost function [31] composed of: a target cost - measuring
how well a sequence of units matches the desired output sequence, and a concate-
nation cost - measuring how well a sequence of units will be joined together and thus
avoid the majority of the concatenation artefacts.

Although this type of synthesis is almost 30 years old, it is still present in many
commercial applications. However, it poses some design problems, such as: the need
for a very large manually segmented and annotated speech corpus; the control of
prosody is hard to achieve if the corpus does not contain all the prosodic events
needed to synthesise the desired output; changing the speaker identity requires the
database recording and processing to be started from scratch; and there are quite a
lot of concatenation artefacts present in the output speech making it unnatural, but
which have, in some cases, been solved by using a hybrid approach [33].

4.2.2 Statistical-parametric synthesis

Because concatenative synthesis is not very flexible in terms of prosody and
speaker identity, in 1989 a first model of statistical-parametric synthesis based on
Hidden Markov Models (HMMs) was introduced [34]. The model is parametric
because it does not use individual stored speech samples, but rather parameterises
the waveform. And it is statistical because it describes the extracted parameters
using statistics averaged across the same phonetic identity in the training data [35].
However this first approach did not attract the attention of the specialists because of
its highly unnatural output. But in 2005, the HMM-based Speech Synthesis System
(HTS) [36] solved part of the initial problems, and the method became the main
approach in the research community with most of its studies aiming at fast speaker
adaptation [37] and expressivity [38]. In HTS, a 3 state HMM models the statistics
of the acoustic parameters of the phones present in the training set. The phones are
clustered based on their identity, but also on other contextual factors, such as the
previous and next phone identity, the number of syllables in the current word, the
part-of-speech of the current word, the number of words in the sentence, or the
number of sentences in a phrase, etc. This context clustering is commonly
performed with the help of decision trees and ensures that the statistics are
extracted from a sufficient number of exemplars. At synthesis time, the text is
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converted in a context aware complex label and drives the selection of the HMM
states and their transitions. The modelled parameters are generally derived from the
source-filter model of speech production [1]. One of the most common vocoders
used in HTS is STRAIGHT [39] and it parameterises the speech waveform into F0,
Mel cepstral and aperiodicity coefficients. A less performant, yet open vocoder is
WORLD [40]. A comparison of several vocoders used for statistical parametric
speech synthesis is presented in [41].

There are several advantages for the statistical-parametric synthesis, such as: the
small footprint necessary to store speech information; automatic clustering of
speech information–removes the problems of hand-written rules; generalisation–
even if for a certain phoneme context there is not enough training data, the phone
will be clustered along with similar parameter characteristics; flexibility–the trained
models can be easily adapted to other speakers or voice characteristics with mini-
mum amount of adaptation data. However, the parameter averaging yields the so-
called buzziness and low speaker similarity of the output speech, and for this reason
the HTS system has not truly made its way into the commercial applications.

4.2.3 Neural synthesis

In 1943, McCulloch and Pitts [42] introduced the first computational model for
artificial neural networks (ANN). And although the incipient ANNs have been suc-
cessfully applied in multiple research areas, including TTS [43], their learning power
comes from the ability to stack multiple neural layers between the input and output.
However, it was not until 2006 that the hardware and algorithmic solutions enabled
adding multiple layers and making the learning process stable. In 2006, Geoffrey
Hinton and his team published a series of scientific papers [44, 45] showing how a
many-layered neural network could be effectively pre-trained one layer at a time.
These remarkable results set the trend for all automatic machine learning algorithms
in the following years, and are the bases of the deep neural network (DNN)
research field. Nowadays, there are very few machine learning applications which do
not cite the DNNs as attaining the state-of-the-art results and performances.

In text-to-speech synthesis, the progression from HMMs to DNNs was gradual.
Some of the first impacting studies are those of Ling et al. [46] and Zen et al. [47].
Both papers substitute parts of the HMM-based architecture, yet model the audio
on a frame-by-frame basis, maintaining the statistical-parametric approach, and
also use the same contextual factors in the text processing part. The first open
source tool to implement the DNN-based statistical-parametric synthesis is Merlin
[48]. A comparison of the improvements achieved by the DNNs compared to
HMMs is presented in [49]. However, these methods still rely on a time-aligned set
of text features and their acoustic realisations, which requires a very good frame-
level aligner systems, usually an HMM-based one. Also, the sequential nature of
speech is only marginally modelled through the contextual factors and not within
the model itself, while the text still needs to be processed with expert linguistic
automated tools which are rarely available in non-mainstream languages.

An intermediate system which replaces all the components in a TTS pipeline
with neural networks is that of [50], but it does not incorporate a single end-to-end
network. The first study which removes the above dependencies, and models the
speech synthesis process as a sequence-to-sequence recurrent network-based archi-
tecture is that of Wang et al. [51]. The architecture was able to “synthesise fairly
intelligible speech” and was the precursor of the more elaborate Char2Wav [52] and
Tacotron [53] systems. Both Char2Wav and Tacotron model the TTS generation as a
two step process: the first one takes the input text string and converts it into a
spectrogram, and the second one, also called the vocoder, takes the spectrogram and
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converts it into a waveform, either in a deterministic manner [54], or with the help
of a different neural network [55]. These two synthesis systems were also the first to
alleviate the need for more elaborate text representations, and derived them as an
inherent learning process, setting the first stepping stones towards true end-to-end
speech synthesis [56]. However, for phonetically rich languages it is common to
train the models on phonetically transcribed text, and also to augment the input text
with additional linguistic information such as part-of-speech tags which can
enhance the naturalness of the output speech [57, 58].

Starting with the publication of Tacotron, the DNN-based speech synthesis
research and development area has seen an enormous interest from both the acade-
mia and the commercial sides. Most focus has been granted on generating extremely
high quality speech, but also to the reduction of the computational requirements
and generation speed–which in the DNN domain is called inference speed. A major
breakthrough was obtained by the second version of Tacotron, Tacotron 2 [59],
which achieved naturalness scores very close to human speech. However, both
systems’ architectures involve attention-based recurrent auto-regressive processes
which make the inference step very slow and prone to instability issues, such as
word skipping, deletions or repetitions. Also, the recurrent neural networks
(RNNs) are known to have high demands in terms of data availability and training
time. So that, the next step in DNN-based TTS was the introduction of CNNs, in
systems such as DC-TTS [60], DeepVoice 3 [61], ClariNet [62], or ParaNet [63].
The CNNs enable a much better data and training efficiency and also a much faster
inference speed through parallel processing. And also, recently, the research com-
munity started to look into ways of replacing the auto-regressive attention-based
generation, and incorporated duration prediction models which stabilise the output
and enable a much faster parallel inference of the output speech [64, 65].

Inspired by the success of the Transformer network [66] in text processing, TTS
systems have adopted this architecture as well. Transformer based models include
Transformer-TTS [67], FastSpeech [68], FastSpeech 2 [69], AlignTTS [70], JDI-T [71],
MultiSpeech [72], or Reformer-TTS [73]. Transformer-based architectures improve
the training time requirements, and are capable of modelling longer term depen-
dencies present in the text and speech data.

As the naturalness of the output synthetic speech became very high-quality,
researchers started to look into ways of easily controlling the different factors of the
synthetic speech, such as duration or style. The go-to solution for this are the
Variational AutoEncoders (VAEs) and their variations, which enable the disentan-
glement of the latent representations, and thus a better control of the inferred
features [74–78]. There were also a few approaches including Generative Adversar-
ial Networks (GANs), such as GAN-TTS [79] or [80], but due to the fact that GANs
are known to pose great training problems, this direction was not that much
explored in the context of TTS.

A common problem in all generative modelling irrespective of deep learning
methodologies, is the fact that the true probability distribution of the training data
is not directly learned or accessible. In 2015, Rezende et al. [81] introduced the
normalising flows (NFs) concept. NFs estimate the true probability distribution of
the data by deriving it from a simple distribution through a series of invertible
transforms. The invertible transforms make it easy to project a measured data point
into the latent space and find its likelihood, or to sample from the latent space and
generate natural sounding output data. For TTS, NFs have just been introduced, yet
there are already a number of high-quality systems and implementations available,
such as: Flowtron [82], Glow-TTS [83], Flow-TTS [84], or Wave Tacotron [56].
From the generative perspective, this approach seems, at the moment, to be able to
encompass all the desired goals of a speech synthesis system, but there are still a
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number of issues which need to be addressed, such as the inference time and latent
space disentanglement and control.

All the above mentioned neural systems only solve the first part of the end-to-
end problem, by taking the input text and converting it into a Mel spectrogram, or
variations of it. For the spectrogram to be converted into an audio waveform, there
is the separate component, called the vocoder. And there are also numerous studies
on this topic dealing with the same trade-off issue of quality versus speed [85].

WaveNet [55] was one of the first neural networks designed to generate audio
samples and achieved remarkably natural results. It is still the one vocoder to beat
when designing new ones. However, its auto-regressive processes make it
unfeasible for parallel inference, and several methods have been proposed to
improve it, such as FFTNet [86] or Parallel WaveNet [87], but the quality is
somewhat affected. Some other neural architectures used in vocoders are, of course,
the recurrent networks used in WaveRNN [88] and LPCNet [89], or the adversarial
architectures used inMelGAN [90], GELP [91], ParallelWaveGAN [92], VocGAN [93].
Following the trend of normalising flows-based acoustic modelling, flow-based
vocoders have also been implemented. Some of the most remarkable being:
FlowWaveNet [94], WaveGlow [95], WaveFlow [96], WG-WaveNet [97], EWG
(Efficient WaveGlow) [98], MelGlow [99], or SqueezeWave [100].

In light of all these methods available for neural speech synthesis, it is again
important to note the trade-offs between the quality of output speech, model sizes,
training times, inference speed, computing power requirements and ease of control
and adaptability. In the ideal scenario, a TTS system would be able to generate
natural speech, at an order of magnitude faster than real-time processing speed, on
a limited resource device. However, this goal has not yet been achieved by the
current state-of-the-art, and any developer looking into TTS solutions should first
determine the exact applicability scenario before implementing any of the above
methods. It may be the case that, for example, in a limited vocabulary, non-
interactive assistant, a simple formant synthesis system implemented on a dedi-
cated hardware might be more reliable and adequate.

Some aspects which we did not take into account in the above enumeration are
the multispeaker, multilingual TTS systems. However, in a commercial setup these
are not directly required and can be substituted by independent high-quality sys-
tems integrated in a seamless way withing the IVA.

5. Open resources and tools

Deploying any research result into a commercial environment requires at least a
baseline functional proof-of-concept from which to start optimising and adapting the
system. It is the same in TTS systems, where especially the speech resources, text-
processing tools, and system architectures can be at first tested and only then devel-
oped and migrated to the live solution. To aid this development, the following table
indexes some of the most important resources and tools available for text to speech
synthesis systems. This is by no means an exhaustive list, but rather a starting point.
The official implementations pertaining to the published studies are marked as such.
If no official implementation was found, we relied on our experience and prior work
to link an open tool which comes as close as possible to the original publication.

Speech and text datasets and resources

Language Data Consortium (LDC) is a repository and distribution point for various language

resources. Link: www.ldc.upenn.edu
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The European Language Resources Association (ELRA) is a non-profit organisation whose main

mission is to make Language Resources for Human Language Technologies available to the community

at large. Link: www.elra.info/en/

META-SHARE [101] is an open and secure network of repositories for sharing and exchanging

language data, tools and related web services. Link: www.meta-share.org

OpenSLR is a site devoted to hosting speech and language resources, such as training corpora for

speech recognition, and software related mainly to speech recognition. Link: www.openslr.org

LibriVox is a group of worldwide volunteers who read and record public domain texts creating free

public domain audiobooks for download. Link: www.librivox.org

Mozilla Common Voice is part of Mozilla’s initiative to help teach machines how real people speak.

Link: www.commonvoice.mozilla.org/en/datasets

Project Gutenberg is an online library of free eBooks. Link: www.gutenberg.org

LibriTTS [102] is a multi-speaker English corpus of approximately 585 hours of read English speech

designed for TTS research. Link: www.openslr.org/60/

The Centre for Speech Technology Voice Cloning Toolkit (VCTK) Corpus includes speech data

uttered by 109 native speakers of English with various accents. Each speaker reads out about 400

sentences. Link: www.datashare.is.ed.ac.uk/handle/10283/2950

CMU Wilderness Multilingual Speech Dataset [103] is a speech dataset of aligned sentences and

audio for some 700 different languages. It is based on readings of the New Testament. Link: www.

github.com/festvox/datasets-CMU_Wilderness

Text processing tools

Festival is a complete TTS system, but it enables the use of its front-end tools independently. It

supports several languages and dialects. Link: www.cstr.ed.ac.uk/projects/festival/

CMUSphinx G2P tool is a grapheme-to-phoneme conversion tool based on transformers. Link: www.

github.com/cmusphinx/g2p-seq2seq

Multilingual G2P uses the eSpeak tool to generate phonetic transcriptions in multiple languages. Link:

www.github.com/jcsilva/multilingual-g2p.

Stanford NLP tools includes various text-processing and knowledge extraction tools for English and

other languages. Link: www.nlp.stanford.edu/software/

RecoAPy [104] tool includes an easy to use interface for recording prompted speech, but also a set of

models able to perform high accuracy phonetic transcription in 8 languages. Link: www.gitlab.utcluj.

ro/sadriana/recoapy

word2vec [15] is a word embedding model that learns vector representations of words that capture

semantic and other properties of these words from large amounts of text data. Link: code.google.com/

archive/p/word2vec/

GloVE [16] is a word embedding method that learns from the co-occurences of words in text corpus

obtaining similar vector representations for words that occur in the same context. Link: www.nlp.

stanford.edu/projects/glove/

ELMo [17] obtains contextualized word embeddings that model the semantics and syntax of the word,

but can learn different representations for various contexts. Link: www.allennlp.org/elmo

BERT [18] is a Transformer-based model that obtains context dependent word embeddings and can

process sentences in parallel. Link: www.github.com/google-research/bert

Speech synthesis systems

eSpeak is a formant-based compact open source software speech synthesiser. Link: www.espeak.

sourceforge.net/ [Official]

Festival is an unrestricted commercial and non-commercial use framework for building

concatenative and HMM-based TTS systems. Link: www.cstr.ed.ac.uk/projects/festival/

[Official]

MaryTTS [105] is an open-source, multilingual TTS platform written in Java supporting diphone and

unit selection synthesis. Link: http://mary.dfki.de/ [Official]
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HTS [36] is the most commonly used implementation of the HMM-based speech synthesis. Link:

http://hts.sp.nitech.ac.jp/ [Official]

Merlin [48] is a Python implementation of DNN models for statistical parametric speech synthesis.

Link: www.github.com/CSTR-Edinburgh/merlin [Official]

IDLAK [106] is a project to build an end-to-end neural parametric TTS system within the Kaldi ASR

framework. Link: www.idlak.readthedocs.io/en/latest/ [Official]

DeepVoice [50] follows the structure of HMM-based TTS systems, but replaces all its components

with neural networks. Link: www.github.com/israelg99/deepvoice

Char2Wav [52] is an end-to-end neural model trained on characters that can synthesise speech with

the SampleRNN vocoder. Link: https://github.com/sotelo/parrot [Official]

Tacotron [53] is one of the most frequently used end-to-end neural synthesis systems based on

recurrent neural nets and attention mechanism. Link: www.github.com/keithito/tacotron

VoiceLoop [107] is one of the first neural synthesisers which uses a buffer memory instead of

recurrent layers and does not require an audio-to-phone alignment. Link: www.github.com/

facebookarchive/loop [Official]

Tacotron 2 [59] is an enhanced version of Tacotron which modifies the attention mechanism and also

uses the WaveNet vocoder to generate the output speech. Link: www.github.com/NVIDIA/tacotron2

DeepVoice 3 [61] is a fully convolutional synthesis system that can synthesise speech in a multispeaker

scenario. Link: www.github.com/r9y9/deepvoice3_pytorch

DCTTS [60] - Deep Convolutional TTS is a synthesis system that implements a two step synthesis, by

first learning a coarse and then a fine-grained representation of the spectrogram. Link: www.github.

com/tugstugi/pytorch-dc-tts

ClariNet [62] is the first text-to-wave neural architecture for speech synthesis, which is fully

convolutional and enables fast end-to-end training from scratch. Link: www.github.com/ksw0306/

ClariNet

Transformer TTS [67] replaces the recurrent structures of Tacotron 2 with attention mechanisms.

Link: www.github.com/soobinseo/Transformer-TTS

GAN-TTS [79] is a GAN-based synthesis system that uses a generator to produce speech and multiple

discriminators that evaluate the naturalness and text-adequacy of the output. Link: www.github.com/

yanggeng1995/GAN-TTS

FastSpeech [68] is a novel feed-forward network based on Transformer which generates the Mel-

spectrogram in parallel, and uses a teacher-based length predictor to achieve this parallel generation.

Link: www.github.com/xcmyz/FastSpeech

FastSpeech 2 [69] is an enhanced version of FastSpeech where the length predictor teacher network is

replaced by conditioning the output on duration, pitch and energy from extracted from the speech

waveform at training and their predicted values in inference. Link: www.github.com/ming024/

FastSpeech2

AlignTTS [70] is a feed-forward Transformer-based network with a duration predictor which aligns

the speech and audio. Link: www.github.com/Deepest-Project/AlignTTS

Mellotron [108] is a multispeaker TTS able to emote emotions by explicitly conditioning on rhythm

and continuous pitch contours from an audio signal. Link: www.github.com/NVIDIA/mellotron

[Official]

Flowtron [82] is an autoregressive normalising flow-based generative network for TTS, also capable of

transferring style from one speaker to another. Link: www.github.com/NVIDIA/flowtron [Official]

Glow-TTS [83] is a flow-based generative model for parallel TTS using a dynamic programming

method to achieve the alignment between text and speech. Link: www.github.com/jaywalnut310/

glow-tts [Official]

Speech synthesis system libraries

Mozilla TTS is a deep learning library for TTS that includes implementations for Tacotron, Tacotron 2,

Glow-TTS and vocoders such as MelGAN, WaveRNN and others. Link: www.github.com/mozilla/TTS

[Official]
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NeMO is a toolkit that includes solutions for TTS, speech recognition and natural language processing

tools as well. Link: www.github.com/NVIDIA/NeMo [Official]

ESPNET-TTS [109] is a toolkit that contains implementations for TTS systems like Tacotron,

Transformer TTS, FastSpeech and others. Link: www.github.com/espnet/espnet [Official]

Parakeet is a flexible, efficient and state-of-the-art text-to-speech toolkit for the open-source

community. It includes many influential TTS models proposed by Baidu Research and other research

groups. Link: www.github.com/PaddlePaddle/Parakeet [Official]

Neural Vocoders

WaveNet [55] is an autoregressive and probabilistic model used to generate raw audio. It can also be

conditioned on text to produce the very natural output speech, but its complexity makes it very

resource demanding. Link: www.github.com/r9y9/wavenet_vocoder

WaveRNN [88] is a recurrent neural network based vocoder that is able to generate audio

faster then real time as a result of its compact architecture. Link: www.github.com/fatchord/

WaveRNN

FFTNet [86], inspired by WaveNet also generates the waveform samples sequentially, with the

current sample being conditioned on the previous ones, but simplifies its architecture and allows

real-time synthesis. Link: www.github.com/syang1993/FFTNet

nv-WaveNet is an open-source implementation of several different single-kernel approaches to the

WaveNet variant described by [50]. Link: www.github.com/NVIDIA/nv-wavenet [Official]

LPCNet [89] is a variant of WaveRNN that improves the waveform generation by combining the

recurrent neural architecture with linear prediction coefficients. Link: www.github.com/mozilla/

LPCNet [Official]

FloWaveNet [94] is a generative model based on flows that can sample audio in real time. Compared

to Parallel WaveNet and ClariNet it only requires a training process that is single-staged. Link: www.

github.com/ksw0306/FloWaveNet [Official]

Parallel WaveGAN [95] is a vocoder that uses adversarial training and provides fast and lightweight

waveform generation. Link: www.github.com/kan-bayashi/ParallelWaveGAN

WaveGlow [95] vocoder borrows from Glow and WaveNet to generate raw audio from Mel

spectrograms. It is a flow-based model implemented with a single network. Link: www.github.com/

NVIDIA/waveglow [Official]

MelGAN [90] is a GAN-based vocoder that is able to generate coherent waveforms, the model is non-

autoregressive and based on convolutional layers. Link: www.github.com/descriptinc/melgan-neurips

[Official]

GELP [91] is a parallel neural vocoder utilising generative adversarial networks, and integrating a

linear predictive synthesis filter into the model. Link: www.github.com/ljuvela/GELP

SqueezeWave [100] is a lightweight version of WaveGlow that can generate on-device speech output.

Link: https://github.com/tianrengao/SqueezeWave [Official]

WaveFlow [96] is a flow-based model that includes WaveNet and WaveGlow as special cases and can

synthesise audio faster than real-time. Link: www.github.com/L0SG/WaveFlow

VocGAN [93] is a GAN-based vocoder that can synthesise speech in real time even on a CPU. Link:

www.github.com/rishikksh20/VocGAN

WG-WaveNet [97] is composed of a WaveGlow like flow-based model combined with WaveNet

based postfilter that can synthesise speech without the need for a GPU. Link: www.github.com/

BogiHsu/WG-WaveNet

Speech synthesis challenges

Blizzard Challenge is a yearly challenge in which teams develop TTS systems starting from more or

less the same resources, and are jointly evaluated in a large-scale listening test. Link: http://www.

festvox.org/blizzard/

Voice Cloning Challenge is a bi-annual challenge in which teams are asked to provide a

high-quality solution for cloning the voice of a target speaker within the same language, or

cross-lingual. The results are also evaluated in a large scale listening test. Link: http://

www.vc-challenge.org/
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6. Quality measurements

Although there are no objective measures which can perfectly predict the per-
ceived naturalness of the synthetic output [110, 111], we still need to measure a TTS
system’s performance. The current approach to doing this is to use listening tests. In a
listening test, a set of listeners, preferably a large number of native speakers of the
target language, are asked to rate the synthetic output in several scenarios using
either absolute or relative values. The common setup includes multiple synthesis
systems and natural samples. The evaluation can be performed by presenting one or
two samples at a time and the listeners rate it by using a Mean Opinion Score (MOS)
scale going from 1 to 5, with 5 being the highest value. Or, more commonly used
nowadays, in a MUSHRA [112] setup, in which multiple samples are presented the
same time and the listeners are asked to order and rate them on a scale of 1 to 100.
There is also a preference test setup in which the listeners are asked to choose
between two samples according to their preference or adequacy of the rendered
speech to the text or speaker identity. The most common evaluation criteria are:

naturalness listeners are asked to rank how close to natural speech is a sample of synthetic output

perceived;

intelligibility listeners are asked to transcribe what they hear after playing the sample only once. The

transcripts are then compared to the reference transcript and the word error rate is computed;

speaker similarity listeners are presented with a natural sample as reference and a synthetic or natural

sample for evaluation. They are asked to rate how similar the identity of the evaluation sample is in

comparison to the reference sample.

7. Conclusions and open problems

In this chapter we aimed to provide a high-level indexing of the available
methods to generate the voice of an IVA, and to provide the reader with a clear,
informed starting point for developing his/her own text-to-speech synthesis system.
In the recent years there has been an increasing interest in this domain, especially in
the context of vocal chat bots and content access. So that it would be next to
impossible to index all the publications and available tools and resources. Yet, we
consider that the provided knowledge and minimal scientific description of the TTS
domain is sufficient to trigger the interest and application of these methods in the
reader’s commercial products. It should also be clear that there is still an important
trade-off between the quality and the resource requirements of the synthetic voices,
and that a very thorough analysis of the applications’ specifications and intended
use should guide the developer into making the right choice of technology.

We should also point out that, although the recent advancements achieve close to
human speech quality, there are still a number of issues that need to be addressed
before we can easily say that the topic of speech synthesis has been thoroughly solved.
One of these issues is that of adequate prosody. When synthesising long paragraphs, or
entire books, there is still a lack of variability in the output, and a subset of certain
prosodic patterns reemerge. Also, the problem of correctly emphasising certainwords,
or word groups, such that the desired message is clearly and correctly transmitted is
still an open issue for TTS. There is also the problem of mimicking spontaneous
speech, where repetitions, elisions, filled pauses, breaks and so on convey the mental
process and effort of developing the message and generating it as a spoken discourse.

In terms of speaker identity, the fast adaptation, and also cross-lingual adapta-
tion are of great interest to the TTS community at this point. Being able to copy a
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person’s speech characteristics using as little examples as possible is a daunting task,
yet giant leaps have been taken with the NN-based learning. More so, transferring
the identity of a person speaking in a language, to the identity of a synthesis system
generating a different language is also open for solutions.

On the more far-fetched goals is that of affective rendering. If we were to interact
with a complete synthetic persona, we would like it to be adaptable to our state of
mind, and render compassionate and emphatic emotions in its discourse. Yet the
automatic detection and generation of emotions is far from being solved.
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