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Abstract

Full-Heusler compounds exhibit a variety of magnetic properties such as
non-magnetism, ferromagnetism, ferrimagnetism and anti-ferromagnetism. In
recent years, they have attracted significant attention as potential thermoelectric
(TE) materials that convert thermal energy directly into electricity. This chapter
reviews the theoretical and experimental studies on the TE properties of magnetic
full-Heusler compounds. In Section 1, a brief outline of TE power generation is
described. Section 2 introduces the crystal structures and magnetic properties of
full-Heusler compounds. The TE properties of full-Heusler compounds are
presented in Sections 3 and 4. The relationship between magnetism, TE properties
and order degree of full-Heusler compounds is elaborated.

Keywords: full-Heusler compounds, half-metal, spin-gapless semiconductor,
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1. Introduction

Thermoelectric (TE) power generation using TE devices is one of the key
technologies to solve global energy problem, owing to its availability of direct
conversion of thermal energy into electricity [1–3]. A schematic figure of a TE
device is shown in Figure 1. It consists of n- and p-type TE materials connected in
series electrically with metal electrodes and arranged thermally in parallel. The TE
materials are wedged between ceramic plates. When one side of the device is heated
and the other side is cooled, electrons and holes in the n- and p-type TE materials,
respectively, diffuse from the hot side to the cold side, thus generating a flow of
electric current.

To commercialise TE devices, there is a need to improve their TE efficiency. The
maximum TE efficiency, ηmax, is an increasing function of the dimensionless
figure-of-merit, zT, expressed as:

ηmax ¼
TH � TC

TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ zT
p

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ zT
p

þ TC=TH
, (1)

where TH and TC are the heating and cooling temperature, respectively. The
dimensionless figure-of-merit, zT, is determined by TE properties (S: Seebeck
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coefficient, σ: electrical conductivity, κ: thermal conductivity) of the individual TE
materials in the device.

zT ¼ S2σ

κ
T, (2)

where T is the absolute temperature. The product S2σ is called the power factor
(PF), which is a measure of electric power generated using the TE material. To
achieve high TE efficiency (standard levels for practical use are zT > 1 and
PF > 2 � 10�3 W/K2m), high S, high σ and low κ are required. To meet these
requirements, a variety of TE materials have been explored, such as chalcogenides,
skutterudites, clathrates, silicides, Zintl compounds, half-Heusler compounds and
oxides [1–3]. Most of these materials are semiconductors because in general they
have high S than metals. However, recent theoretical and experimental studies have
revealed that metals, in particular, half-metallic full-Heusler compounds have rela-
tively high S as well as high σ. In addition, their junction with a metal electrode is
robust compared to that of semiconductors, which is also an advantage.

In Section 2, the crystal structures and magnetic properties of full-Heusler
compounds are introduced. Sections 3 and 4 demonstrate that magnetic
full-Heusler compounds are promising for the TE power generation device.

2. Crystal structures and magnetic properties of full-Heusler
compounds

The physical properties of full-Heusler compounds depend on their crystal
structures. As shown in Figure 2, there are several types of crystal structures
with different order degrees [4–6]. The full-Heusler compounds have four
interpenetrating fcc sublattices, and each sublattice consists of the X, X’, Y or Z
atom. The X, X’ and Y atoms are transition metals, whereas Z is a main group
element. In some cases, the Y atom is a rare earth element or an alkaline earth metal.

When the X and X’ atoms are of the same element, the chemical composition of
the compounds is written as X2YZ, which generally crystallises in the L21 structure.
The prototype of the L21 structure is Cu2MnAl (space group: Fm3m). The Cu atoms
occupy the 8c (1/4 1/4 1/4) site, whereas the Mn and Al atoms occupy the 4b (1/2 1/
2 1/2) and 4a (0 0 0) sites, respectively. The L21 structure is a highly ordered
structure of the full-Heusler compounds. Disorder among the Cu, Mn and/or Al
atoms, that is, antisite defects, gives rise to different crystal structures. In a case
where the Mn and Al atoms are evenly located at the 4b and 4a sites, the Cu2MnAl
becomes the B2 structure. Its prototype is CsCl (space group: Pm3m). In a fully

Figure 1.
Schematic figure of a thermoelectric (TE) power generation device.
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disordered phase, all the atoms are randomly distributed in the 8c, 4b and 4a sites,
thus resulting in the A2 structure. In such a structure, all the sites are equivalent,
which are expressed as a bcc lattice (prototype: W, space group: Im3m). There are
other disordered phases, including the DO3 and B32a structures. The former is
caused by the random distribution of the X, X’ and Y atoms at the 8c and 4b sites
(prototype: BiF3, space group: Fm3m). In the B32a structure, the 8a (0 0 0) and 8b
(1/2 1/2 1/2) sites are occupied by the X/Y and X’/Z atoms, respectively. The
prototype is NaTl (space group: Fd3m).

When the X’ and Y atoms are of the same element, the chemical composition
becomes XX’2Z, which crystallises in the X (XA or Xa) structure. This structure is
called the inverse Heusler phase. The prototype is CuHg2Ti (or AgLi2Sb), and the
space group is F43 m. In the structure, the X and Z atoms occupy the 4d (3/4 3/4
3/4) and 4a (0 0 0) sites, respectively, and the X’ atoms occupy the 4b (1/2 1/2 1/2)
and 4c (1/4 1/4 1/4) sites.

In addition to the above ternary full-Heusler compounds, there are quaternary
full-Heusler compounds, XX’YZ, which crystallise in the Y structure (prototype:
LiMgPdSn or LiMgPdSb, space group: F43m). The X, X’, Y and Z atoms are situated
at the 4d, 4b, 4c and 4a sites, respectively, occupying one of the fcc sublattices. It
should be noted that the inverse Heusler and the quaternary full-Heusler phases are
ordered phases, and any disorder among the constituent atoms causes a structural
change; the structure changes to the B2, A2, DO3 or B32a structure.

Earlier theoretical studies demonstrated a half-metallic nature in full-Heusler
compounds [7, 8]. Since then, many studies have been dedicated to investigate the
electronic and magnetic properties of ternary and quaternary full-Heusler com-
pounds. It has been revealed that full-Heusler compounds exhibit a variety of
electronic properties; they exhibit the properties of semiconductors [9–18], spin-
gapless semiconductors (SGSs) [19–26], semimetals [27–29], metals [30–34] and
half-metals (HMs) [32, 35–78]. Considering the magnetic properties, they have
been reported to exhibit nonmagnetism [9–11, 14–18], ferromagnetism [12, 19–
24, 30–33, 36–46, 48–58, 61–66, 68–78], ferrimagnetism [13, 30, 35, 47, 59, 60, 67]
and antiferromagnetism [25, 26, 34]. The full-Heusler, inverse Heusler and quater-
nary Heusler compounds obey the Slater-Pauling rule [79–81]: the total spin

Figure 2.
Crystal structures of full-Heusler compounds. The Strukturbericht symbol and a prototype structure are written
above and below each crystal structure, respectively.
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magnetic moment per unit cell scales with the total number of valence electrons in
the unit cell.

3. Thermoelectric properties of half-metallic full-Heusler compounds

In this section, we present some of the theoretical and experimental studies on
the TE properties of half-metallic full-Heusler compounds. The TE properties can
be calculated on the basis of the Boltzmann transport equations [82–84]. Using the
electronic energy-wavenumber dispersion curve of the i-th band εi(k), the tensors
of the Seebeck coefficient, S(T), electrical conductivity, σ(T), and carrier thermal
conductivity, κe(T), can be expressed as:

S Tð Þ ¼ � 1
ej jT

Ðþ∞

�∞
~σ ε,Tð Þ ε� εFð Þ � ∂ f FD ε,Tð Þ

∂ε

� �

dε

σ Tð Þ , (3)

σ Tð Þ ¼
ðþ∞

�∞

~σ ε,Tð Þ � ∂ f FD ε,Tð Þ
∂ε

� �

dε, (4)
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δ ε� εi kð Þð Þ, α, β ¼ x, y, zð Þ, (6)

where e, ε, εF, fFD(ε,T), Nk, τ(k,T),ℏ and ~σ ε,Tð Þ are the elementary charge,
electron energy, Fermi level, Fermi-Dirac distribution function, total number of the
k-points, relaxation time, Dirac constant and conductance spectrum tensor, respec-
tively. It is difficult to calculate the relaxation time; hence, the calculation of TE
properties generally gives S(T), σ(T)/τ and κe(T)/τ [84]. In context to magnetic
materials, the electronic states of the majority and minority spin electrons are
considered. Assuming that τ for the majority and minority spin electrons is the
same, the total S for the magnetic materials, Stot(T), is calculated by

Stot Tð Þ ¼ S↑ Tð Þσ↑ Tð Þ=τ þ S↓ Tð Þσ↓ Tð Þ=τ
σ↑ Tð Þ=τ þ σ↓ Tð Þ=τ ¼ S↑ Tð Þσ↑ Tð Þ þ S↓ Tð Þσ↓ Tð Þ

σ↑ Tð Þ þ σ↓ Tð Þ , (7)

where S and σ with the up- and down-arrow subscripts those evaluated from the
electronic states of the majority and minority spin electrons, respectively.

Figure 3(a) and (b) shows the temperature dependence of the calculated Stot for
ternary and quaternary half-metallic full-Heusler compounds, respectively. To cal-
culate the electronic band, the full-potential linearised augmented plane wave
(FLAPW) method was employed, adopting the local spin density approximation
(LSDA) or the generalised gradient approximation in the Perdew-Burke-Ernzerhof
parametrisation (PBE-GGA) as the local exchange-correlation potential. As seen in
the figure, the negative and positive Stot are presented, indicating that both n-type
and p-type materials can be obtained from half-metallic full-Heusler compounds.
The Stot is observed to increase with increasing temperature for almost all the
compounds, which is the typical behaviour of metal. Furthermore, the Stot is
observed to attain values as high as several tens of μV/K. These values are lower
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than those of TE semiconductors but higher than those of common metals, demon-
strating the potential of half-metallic full-Heusler compounds as high-temperature
TE materials.

The temperature dependence of S for several half-metallic Co-based full-Heusler
compounds was determined by Balke et al. [37] and Hayashi et al. [53]. For the
measurements, the Stot values for the compounds were obtained. Hereafter, we use
S to represent Stot. As shown in Figure 4(a)–(c), the Co-based full-Heusler com-
pounds exhibit negative S in the order of several tens of μV/K. For metals, the sign
of S is well explained by Mott’s formula [85]:

S∝ � 1
DOS εFð Þ

d DOS εð Þ
dε

�

�

�

�

ε¼εF

, (8)

where DOS is the electronic density of states. Adopting Eq. (8) for the partial
DOS of the sp-electrons and d-electrons of Co2MnSi, it was obtained that in half-
metallic full-Heusler compounds, the itinerant sp-electrons contribute more to S
than the localised d-electrons [53]. In Figure 4, Co2TiAl is shown to exhibit the
highest |S| of |�56| μV/K at 350 K among other compounds. It is observed that
Co2TiSi, Co2TiGe and Co2TiSn exhibit a characteristic temperature dependence of
|S|; the value of |S| increases with increasing temperature and becomes constant at
temperatures above 350 K. This characteristic behaviour is further discussed later in
this section.

The half-metallic full-Heusler compounds are predicted to have high electrical
conductivity σ owing to their metallic properties; hence, they are considered to be
superior to the semiconductors. Figure 5(a) shows the temperature dependence of

Figure 3.
Temperature dependence of the calculated Stot for half-metallic full-Heusler compounds. Their crystal
structures are also shown. The calculation of the electronic structure was performed using the full-potential
linearised augmented plane wave (FLAPW) method with local spin density approximation (LSDA) or
generalised gradient approximation in the Perdew-Burke-Ernzerhof parametrisation (PBE-GGA).
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the measured σ for several Co-based full-Heusler compounds [53]. The σ values of
the compounds are observed to be high, ranging from 105 to 107 S/m. Among all the
compounds, Co2MnSi exhibits the highest σ in the whole temperature range. The σ

Figure 4.
Temperature dependence of the measured S of several Co-based full-Heusler compounds. ((a) and (b)
Reprinted from [37]. Copyright 2010, with permission from Elsevier. (c) Reprinted from [53]. Copyright
2017, with permission from Springer).

Figure 5.
(a) Measured σ and (b) PF of several Co-based full-Heusler compounds as a function of temperature.
(Reprinted from [53]. Copyright 2017, with permission from Springer).
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value of Co2MnSi decreases from 4.6� 106 S/m at 300 K to 4.7� 105 S/m at 1000 K.
This is a typical electrical conductivity-temperature relation in metals. From the S
and σ values (shown in Figures 4(c) and 5(a), respectively), the PF was calculated
and plotted in Figure 5(b) [53]. Owing to the high S and high σ, Co2MnSi exhibits
the highest PF (2.9 � 10�3 W/K2m at 500 K) among other compounds, which is
comparable to that of a Bi2Te3-based material [86]. Since Co2MnSi exhibits a nega-
tive S, it could be a potential n-type TE material. Thus, to develop a TE device using
full-Heusler compounds, a p-type counterpart to Co2MnSi is needed. For this pur-
pose, Li et al. [60, 78] prepared a half-metallic Mn2VAl compound and measured its
TE properties. Although Mn2VAl is a p-type material showing positive S, its highest
PF (2.84 � 10�4 W/K2m at 767 K [78]) is lower than that of Co2MnSi. Thus, there is
a need to explore more p-type half-metallic full-Heusler compounds with high PF.

Here, the temperature dependence of S for the various full-Heusler compounds
is discussed. Comparing the calculated S values for Co2TiSi, Co2TiGe and Co2TiSn
(Figure 3(a)) with the measured values (Figure 5(b)), it is obtained that not only
the temperature dependence but also the sign of the S values are different. As
mentioned earlier, the measured S value is almost constant at temperatures above
350 K; however, the calculated values do not display such relation. To explain this
difference, Barth et al. [38] considered the difference in the electronic structure of
the ferromagnetic (FM) state and nonmagnetic (NM) states. They obtained that the
FM-NM phase transition occurs around 350 K for Co2TiSi, Co2TiGe and Co2TiSn
[38]. Using the temperature dependence of S for the FM and NM states, SFM(T) and
SNM(T), and that of the normalised magnetisation calculated by using the molecular
field theory, M(T), a modified S value, SFM + NM, can be calculated according to the
formula [38]:

SFMþNM Tð Þ ¼ SFM Tð ÞσFM Tð ÞM Tð Þ þ SNM Tð ÞσNM Tð Þ 1�M Tð Þf g
σFMþNM Tð Þ , (9)

where σFM + NM is the modified electrical conductivity of a mixture of FM and
NM states weighted by using M(T). Although the above consideration is plausible,
the calculated SFM + NM values for Co2TiSi, Co2TiGe and Co2TiSn (Figure 6) do not
coincide with the measured values. The inconsistency between the SFM + NM values
and the measured ones is also observed in the case of Co2CrAl, Co2MnAl, Co2MnSi,
Co2FeAl and Co2FeSi [53].

It is suggested that the constant S value in the NM state for Co2TiSi, Co2TiGe and
Co2TiSn (Figure 4(b)) is governed by the relaxation time rather than by the elec-
tronic structure [38]. The S value is calculated by using Eq. (1), where both the
numerator and denominator of the fraction are functions of relaxation time τ(k,T);
τ is included in both numerator and denominator of the fraction through ~σ ε,Tð Þ
described in Eq. (6). However, in the calculation, the τ in the numerator and
denominator cancels each other. In addition, the total S is calculated assuming that τ
for the majority and minority spin electrons is the same (Eq. (7)). The neglected τ in
Eqs. (1) and (7) could be a reason for the difference in the temperature dependence
of the calculated and measured S. Another possible reason for this discrepancy is the
method employed in calculating the electronic structure. The calculation results
shown in Figures 3 and 6 are based on the LSDA or PBE-GGA. The use of the onsite
Hubbard interaction in combination with PBE-GGA, namely, PBE + U or GGA + U
[51, 55, 70, 73], and the Tran-Blaha modified Becke-Johnson (TB-MBJ) [64, 73] gives
electronic structures different from that obtained using the LSDA or PBE-GGA,
which may lead to a temperature dependence of S well-fitted to the measured one.

Also, defect and/or disorder in full-Heusler compounds affect the temperature
dependence, as well as the sign of S, which could be another reason for the
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discrepancy in the temperature dependence of S. The structure model used for the
calculation in Figures 3 and 6 is the L21, X or Y structure, which is highly ordered
phases, devoid of any defect, for the ternary and quaternary full-Heusler com-
pounds. Popescu et al. [52] investigated the effect of several defects on the temper-
ature dependence of S for Co2TiZ (Z = Si, Ge, Sn) in the FM state. As shown in
Figure 7, off-stoichiometric defects, such as Co vacancy and the substitution of
excess atoms at a particular site, change the sign of S.

The effect of structural disorder on S for Co2CrAl, Co2MnAl, Co2MnSi, Co2FeAl
and Co2FeSi has been obtained, as shown in Figure 8 [53]. The figure compares the
calculated SFM + NM with the measured S. It is observed that the measured values of
S are individually higher than the calculated value (SFM + NM). Considering the
crystal structure, Co2CrAl, Co2MnAl, Co2MnSi, Co2FeAl and Co2FeSi are not in the
fully ordered L21 structure; most of them crystallise in the disordered B2 and/or A2
structures. This result implies that the B2 and/or A2 structures exhibit higher S than
the L21 structure. Recently, Li et al. [78] investigated the effect of structural disor-
der on the value of S for half-metallic Mn2VAl compounds by varying the B2 order
degree. Figure 9(a) shows the measured S values for Mn2VAl with the B2 order
degree of 27 and 66%. The S values for the structure having 66% B2 order degree are
observed to be higher than those for 27% B2 order degree in the entire measurement
temperature range. In addition, it is observed that the S value increases with
increasing the B2 order degree (Figure 9(b)). The increase in the B2 order degree
means an increase in the disorder between the V and Al atoms, that is, a decrease in
the L21 order degree. To understand the reason for the difference in S between the
L21 and B2 structures, the DOS of Mn2VAl with the L21 and B2 structures was
calculated by using the Korringa-Kohn-Rostoker method. It was obtained that the
B2 structure exhibits a steeper DOS of the majority-spin sp-electrons than the L21

Figure 6.
Temperature dependence of the calculated S of Co2TiZ (Z = Si, Ge, Sn) considering the FM-NM phase
transition. In the calculation, the chemical potential at T = 0, μ(0), was set to (a) εF and (b) 150 meV below
εF. (Reprinted from [38]. Copyright 2010, with permission from American Physical Society).
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structure, which is considered as the main reason for the higher S of the B2 struc-
ture than that of the L21 structure. Further increase in the B2 order degree is
expected to yield a higher S for Mn2VAl. The modulation of the order degree can be
a key strategy to enhance the S value of the half-metallic full-Heusler compounds;
the disorder in Co2CrAl, Co2MnAl, Co2MnSi, Co2FeAl, Co2FeSi and Mn2VAl gives
rise to the higher S. To establish this strategy, the effects of the order degree, not
only on S but also on σ, should be investigated for several half-metallic full-Heusler
compounds.

Considering the TE performance of the half-metallic full-Heusler compounds,
not only PF but also zT are important. To evaluate the zT of Co2MnSi, we obtained
the temperature dependence of the total thermal conductivity, κtot (Figure 10(a)).
Similar to the case of common metals, a high κtot was obtained. It decreases with
increasing temperature from 79 W/Km at 300 K to 21 W/Km at 1000 K.

Figure 7.
Change in calculated S for Co2TiSi with several off-stoichiometric defects such as (a) Co vacancy (VCo),
(b) excess Co atoms at the Si site (CoSi), (c) excess Co atoms at the Ti site (CoTi) and (d) excess Si atoms at the
Ti site (SiTi). (Reprinted from [52]. Copyright 2017, with permission from American Physical Society).

Figure 8.
Comparison between the calculated SFM + NM and the measured S at 300 K for several Co-based full-Heusler
compounds. (Reprinted from [53]. Copyright 2017, with permission from Springer).
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Figure 10(b) shows the temperature dependence of zT for Co2MnSi calculated
using the PF value (Figure 5(b)) and the κtot value (Figure 10(a)). Due to the high
κtot, the maximum zT value, zTmax, of Co2MnSi is 0.039, which is obtained at
temperatures above 900 K. Although this zTmax value is far below the standard level
of zT = 1, it is higher than that of Co2TiSn (0.033 at 370–400 K) [38] and those of
semi-metallic full-Heusler compounds (0.0052 at 300 K for Ru2NbAl [28] and
0.0027 at 300 K for Ru2VAl0.25Ga0.75 [29]).

It should be noted that the κtot of Co2MnSi is not equal to the carrier thermal
conductivity, κe. The κe value can be calculated by using the Wiedemann-Frantz

Figure 9.
(a) Temperature dependence of the measured S of Mn2VAl with the B2 order degree of 27 and 66%.
(b) Measured S values of Mn2VAl at 767 K plotted against the B2 order degree. (Reprinted from [78].
Copyright 2020, with permission from IOP Publishing).

Figure 10.
Temperature dependence of (a) measured κtot, κe and κl and (b) evaluated zT of Co2MnSi.
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law, κe = LσT, where L is the Lorentz number. Evaluating the L value on the basis of
the single parabolic band model [87] and using the measured σ value (Figure 5(a)),
the κe value of Co2MnSi was calculated and plotted in Figure 10(a). It can be
observed from the figure that κe is only half as high as κtot. The rest is attributed to
the lattice thermal conductivity, κl (=κtot � κe), as shown in Figure 10(a), which
amounts to a half of the κtot. This is contrary to the case of common metals where
the κtot is mainly dominated by κe [88]. The non-negligible κl suggests that, for the
theoretical evaluation of zT of the half-metallic full-Heusler compounds, the con-
tribution of κl should not be ignored. Experimentally, the high contribution of κl to
κtot indicates that the κtot of half-metallic full-Heusler compounds could be reduced
by decreasing the κl.

4. Future prospects of magnetic full-Heusler compounds as potential
thermoelectric materials

In this section, we introduce other full-Heusler compounds to demonstrate the
potentials of magnetic full-Heusler compounds in TE applications. First, we con-
sider the full-Heusler SGSs as an example. Schematic illustrations of the DOS of
SGSs and HMs are shown in Figure 11. The DOS of SGSs has an open band gap in
one spin electron and a closed gap in the other. Since the Fermi level εF is located
just at the closed gap, the electron or hole concentration in SGSs is expected to be
less than that in HMs. One of the investigated SGSs is the full-Heusler Mn2CoAl,
which crystallises in the X structure (the inverse Heusler phase). The variation of its
σ, S and carrier concentration, n, with temperature is shown in Figure 12, as
determined by Ouardi et al. [19]. It can be observed that the σ and n vary slightly
with the temperature, which is attributed to the typical behaviour of gapless semi-
conductors [89]. In addition, the S value is nearly equal to 0 μV/K. The reduced
Seebeck effect indicates the occurrence of electron and hole compensation, which is
the evidence that εF is at the top of the valence states and at the bottom of the
conduction states.

Owing to the nearly zero S values, Mn2CoAl cannot be used as a TE material;
however, there is a possibility of achieving high |S| in Mn2CoAl by tuning the
position of εF. The position of εF can be varied via partial substitution, which
increases the hole or electron carrier concentration in Mn2CoAl. We calculated the S
value for the partially substituted Mn2CoAl, as shown in Figure 13(a). The calcula-
tion was based on a rigid band model; thus, the electronic structure of the partially
substituted Mn2CoAl is assumed to be the same as that of Mn2CoAl. In the figure,
the horizontal axis is μ-εF, where μ and εF are the chemical potential (i.e., the Fermi

Figure 11.
Schematic illustration of DOS for spin-gapless semiconductors (SGSs) and half-metals (HMs).
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level) of the partially substituted Mn2CoAl and the Fermi level of Mn2CoAl,
respectively. A negative/positive μ-εF value means an increase in the hole/electron
carrier concentration. Although the value of S at μ = εF, corresponding to the case of
Mn2CoAl, is small, it is large at μ = εF � 0.184 and at μ = εF + 0.053 (pointed by
orange and green arrows, respectively). The temperature dependences of S at μ = εF,
μ = εF � 0.184 and μ = εF + 0.053 are shown in Figure 13(b), which again demon-
strates that high |S| values can be achieved for both p-type and n-type regions.
These calculation results prove the full-Heusler SGSs as potential materials for TE
applications.

Figure 12.
Temperature dependence of the measured (a) σ, (b) S and (c) n of Mn2CoAl. (Reprinted from [19]. Copyright
2020, with permission from American Physical Society).

Figure 13.
(a) Calculated S value at 300 K for the partially substituted Mn2CoAl plotted as a function of μ-εF, where μ
and εF are the Fermi levels of partially substituted Mn2CoAl and that of Mn2CoAl, respectively. The highest |S|
values are obtained at μ = εF � 0.184 and at μ = εF + 0.053, as denoted by orange and green arrows,
respectively. (b) Temperature dependence of S at μ = εF, μ = εF � 0.184 and μ = εF + 0.053.
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To achieve high |S| values for Mn2CoAl, it is important to retain its SGS charac-
teristic. Galanakis et al. [90] theoretically investigated the effects of structural
disorder on the electronic structure of Mn2CoAl. It was obtained that the SGS
characteristic is not conserved in the presence of Mn-Co, Mn-Al and Co-Al antisite
defects. Instead of the closed gap, low DOS intensity emerges in the electronic
structure of the majority spin electrons around εF, indicating that the disorder
induces half-metallic characteristics in Mn2CoAl. Also, Xu et al. [91] reported that
an as-prepared Mn2CoAl compound is non-stoichiometric and contains the Mn-Co
antisite defect. In a case where Mn2CoAl is not an SGS, the |S| cannot be increased
via partial substitutions.

Other examples considered here are the full-Heusler compounds having low
values of κl. Figure 14 shows a flower-like microstructure of Co2Dy0.5Mn0.5Sn
observed by Schwall et al. [43]. Although the chemical composition of
Co2Dy0.5Mn0.5Sn coincides with that of the full-Heusler phase, Co2Dy0.5Mn0.5Sn is
not in a single phase. It consists of two major phases: half-metallic Co2MnSn and
ferromagnetic Co8Dy3Sn4 phases. This phase separation is induced by rapid cooling
from the liquid phase. Consequently, the κl value of Co2Dy0.5Mn0.5Sn is lower than
those of Co2MnSn and Co8Dy3Sn4.

He et al. [9] theoretically discovered a new class of stable nonmagnetic full-
Heusler semiconductors with high PF and ultralow κl, attributed to atomic rattling.
The compounds contain alkaline earth elements (Ba, Sr or Ca) in the X sublattice
and noble metals (Au or Hg) and main group elements (Sn, Pb, As or Sb) in the Y
and Z sublattices, respectively. The κl value of Ba2AuBi and Ba2HgPb was obtained
to be lower than 0.5 W/Km at 300 K. At higher temperatures, it was close to the
theoretical minimum, that is, the amorphous limit of 0.27 W/Km [92]. Park et al.
[16] further examined the TE properties of Ba2BiAu. They predicted that consider-
ably high zT of �5 can be achieved at 800 K.

Finally, there are many ternary and quaternary full-Heusler compounds yet to
be explored. Among the full-Heusler compounds, nonmagnetic Fe2VAl-based com-
pounds have been intensively investigated as one of the potential TE semiconduc-
tors [93]. Despite the long historical investigation, Hinterleitner et al. [94]
discovered quite recently that a metastable Fe2V0.8W0.2Al thin film exhibits
extremely high zT of�6 at 350 K as a result of its high S. The crystal structure of the
thin film is reported to be the disordered A2 structure, which could be the reason
for its high S, as in the cases of several half-metallic Co-based and Mn-based full-
Heusler compounds [53, 78]. If the disorder in structure contributes to the high S,
then the strategy of enhancing zT by controlling structural disorder would be
applicable to the other full-Heusler compounds. Herewith, more conventional and
novel findings on the full-Heusler compounds can be achieved.

Figure 14.
Flower-like microstructure of Co2Dy0.5Mn0.5Sn. (a) Elemental mappings, (b) combined image of elemental
mappings shown in (a). (c) Line scan along the line indicated in (b). (Reprinted from [43]. Copyright 2012,
with permission from WILEY-VCH).
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To explore the potentials of the full-Heusler compounds, theoretical studies are
vital to minimise the experimental tasks. Figure 15 exhibits a plot of S versus σ/τ at
1000 K for several Co-based and Mn-based full-Heusler compounds, as calculated
by Li et al. [60]. Furthermore, recent advancements in machine learning dispel the
difficulty in searching novel full-Heusler compounds [95, 96]. Combining such
calculations with experiments, we can effectively discover magnetic full-Heusler
compounds with much higher TE efficiency, which promises the realisation of high-
efficiency TE power generation devices.
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Nomenclatures

ηmax [�] maximum TE efficiency
zT [�] dimensionless figure-of-merit
T [K] absolute temperature
S [V/K] Seebeck coefficient
σ [S/m] electrical conductivity
κ [W/Km] thermal conductivity
PF [W/K2m] power factor
εi [eV] electronic energy–wavenumber dispersion curve

of the i-th band
k [m�1] wavenumber
S [V/K] Seebeck coefficient tensor
σ [S/m] electrical conductivity tensor
κe [W/Km] carrier thermal conductivity tensor
e = 1.60217662 � 10�19 C elementary charge
ε [eV] electron energy
εF [eV] Fermi level
fFD [�] Fermi-Dirac distribution function
Nk [�] total number of k-points
τ [1/s] relaxation time
ℏ = 6.582119569 � 10�16 eVs Dirac constant
~σ [S/m] conductance spectrum tensor
DOS [states/eV] density of states
M [�] normalised magnetisation calculated by using

molecular field theory
μ [eV] chemical potential
κe [W/Km] carrier thermal conductivity
L [WΩ/K2] Lorentz number
κl [W/Km] lattice thermal conductivity
n [1/m3] carrier concentration
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