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Abstract

The paper presents the results obtained in simulation of fiber Bragg grating (FBG) and
long-period grating (LPG) sensors and their applications. The optical properties of FBG
and LPG are firstly analyzed and, consequently, the basics of simulation models are
provided. Coupled-mode theory and the transfer matrix methods are the two techni‐
ques used for the simulation of FBG and LPG. The numerical simulations are per‐
formed for an improved design of these types of fiber sensors, designs dedicated to
specified applications.  The different FBG types,  i.e.  the normal,  chirped, apodized,
according to different laws and tilted cases, are analyzed. Also, various LPG configu‐
rations are numerically simulated. The two main categories of sensing applications, for
temperature and for mechanical stress/strain evaluation, are simulated for each type of
fiber grating sensor. The chapter is intended to be a synthesis of already obtained results
to which some results of research in development are added.

Keywords: Distributed feedback devices, Optical fibers, Fiber gratings, Fiber Bragg
grating, Long-period grating fiber, Optical fiber communication, Optical fiber devices,
Optical fiber filters

1. Introduction

Into an increasing number of scientific, medical, industrial and military sensing and telecom‐
munication applications, optic fibers are used, which have a spatial periodic variation of the
refractive index inscribed in the core, δn, periodic variation defined as grating, the fiber optic
being denoted under the general name “fiber grating” [1–5]. There are two main types of such
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optic fibers: the fiber Bragg grating (FBG) ones and the long-period grating (LPG) kind [5–7]. In
literature, FBGs are considered as short-period grating (300–700 nm), while LPGs as long ones
(10–1000 μm). For both FBGs and LPGs, the amplitude of the core refractive index is extreme‐
ly small, in the range 0.0001–0.0005 or even smaller [5–12]. It is important to mention that only
step index optic fibers for which the weakly guiding approximation relying on a very small
difference between the values of the core and cladding refractive index, nco–ncl, is applicable are
analyzed [5–7, 11–15]. Related to this, it has to be underlined the fact that the amplitude of the
spatial periodic variation of the refractive index inscribed in the core is smaller than nco–ncl [11–
15]. The basic functions as sensors and/or wavelength filter of both FBG and LPG are accom‐
plished by controlled, observed and measured variations of optical fiber refractive indexes of
the core (nco) and cladding (ncl) to which the refractive index of the ambient (namb) is added, where
the optical fiber is mounted. Consequently, the spectral characteristics that can be observed in
fiber reflection (FBG) and transmission (LPG) gratings will be described [13–19]. For an improved
design of experimental setups dedicated to the above-mentioned applications, it is obvious that,
for both FBG and LPG, the principles for understanding and tools for designing fiber gratings
are emphasized [11–20]. The emphasized understanding principles and designing tools are
applicable for the wide variety of optical properties that are possible in fiber gratings [19–28].
There are given examples related to the large number of fiber grating subtypes of both FBG and
LPG,  considering  uniform,  apodized,  chirped,  discrete  phase-shifted  and  superstructure
gratings; symmetric and tilted gratings; and cladding-mode and radiation-mode coupling
gratings [20–33].

Both FBGs and LPGs are manufactured in single-mode silicate optic fiber by modifying in a
periodic manner its core refractive index using UV-irradiation delivered by Ar or other UV
laser [20]. Most commonly, the LPG is created by altering the core in a periodic manner, but
another class of manufacturing methods physically deforms the fiber to create the required
optical modulation [34–40]. These include the following: irradiation from a carbon dioxide
laser, radiation with femtosecond pulses and writing by electric discharge, ion implantation,
periodic ablation and/or annealing, corrugation of the cladding, micro-structuring of tapered
fibers and dopant diffusion into the fiber core.

2. Theory

This section presents the optical properties of FBG and LPG. Consequently, the basics of
simulation models are provided. Coupled-mode theory and the transfer matrix methods are
the two techniques used for the simulation of FBG and LPG [13, 14, 17, 20, 22–28]. Thus, the
physical mechanism of the grating electric field interaction is given and aims to provide the
reader with insight into the operation principles of FBG and LPG. The gratings are inscribed
into the core of a step index optic fiber; consequently, the step index optic fiber case is analyzed.

Optical fiber mainly consists of a core, cladding and a protective layer called the primary plastic
buffer coating. The optical fiber acts as a waveguide for optical frequencies and is normally
cylindrical in shape. The core is a dielectric cylinder surrounded by the cladding to form a
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larger dielectric cylinder [13, 14]. The optical fiber has a uniform refractive index up to the
core-cladding conjunction, where it undergoes a sharp change in refractive index. The
refractive index of the core and the cladding is given as nco and ncl, respectively, the relation nco

> ncl being valid [13, 36, 37]. This is the necessary condition for total internal reflection to occur.
The structure and material of the fiber confines the electromagnetic waves to a direction
parallel to the axis and also affects the transmission properties of the optic fiber [13, 20]. The
light transmitted through the fiber is confined due to total internal reflection within the
material. There are practically no electromagnetic fields outside the cladding because of
exponential decay within this region [13]. The difference between nco and ncl is very small, of
10−4 order. This is the necessary condition for the weakly guiding approximation to be
applicable. This approximation results into a mathematical apparatus, which allows descrip‐
tion of fiber grating processes as a byproduct. Figure 1 shows the schematics of a typical optical
fiber layout. For a single-mode step index fiber commonly used for grating to be inscribed into
the core, the core radius is in the range 1.5–5 μm, the cladding radius being typically of 62.5 μm.

Figure 1. The schematics of a typical optical fiber layout.

It is assumed that a perturbation to the effective refractive index of the guided mode(s) can be
defined as follows [13]:

( ) ( ) ( )21 coseff effmeann z n z v z zpd d j
ì üé ùï ï= + × +í ýê úLï ïë ûî þ

(1)

where δneffmean is the amplitude of the perturbation, evaluated as the index change spatially
averaged on a grating period, v is the fringe visibility of the index change, Λ is the nominal
period and φ(z) is the grating chirp, which represents a variation of nominal period. In the case
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of a step index fiber without a grating, the core power confinement factor, Γ, is defined. For
uniformity across the core-induced grating, with an induced index change δnco created in core,
for the propagation mode, the following relation is defined [13, 21–28, 36]:

eff con nd d@ G × (2)

Since FBG or LPG is manufactured starting from single-mode light is propagating along the
core as LP01 modes for which an effective index parameter b is introduced. It is useful to
introduce the normalized frequency, V, a parameter synthetically characterizing the geomet‐
rical and optical materials fiber properties [13, 36, 37]. V is defined as follows:

2 22
co co clV a n np

l
æ ö

= × × -ç ÷
è ø

(3)

where aco is the core radius. The effective index parameter is a solution to the dispersion rela‐
tion [20]:
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where l is the Azimuthal order of the mode LP01. In Eq. (4), Jl are the Bessel functions of the
first kind and Kl are the modified Bessel functions of the second kind. The effective index neff

is related to through the relation [13, 20–28]:
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-
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(5)

Once b and V are known, Γ can be determined from

( )
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(6)

A fiber grating, FBG or LPG, is the periodic variation of refractive index within the core of a
step index single-mode optical fiber. In Figures 2 and 3, the schematics of the two considered
types of an optical fiber with a grating written in the core of the fiber are shown. The core
inscribed refractive index changes can be described as cylinders. The refractive index changes
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of a fiber grating usually have a near sinusoidal variation. Firstly, the simple case of a uniform
grating fiber grating is considered.

Figure 2. Propagation in a FBG.

Figure 3. Propagation in a LPG.

A fiber grating produces coupling between two fiber modes [13, 14, 20, 21]. The quantitative
analysis of this phenomenon is achieved using coupled-mode theory. It is helpful to consider
a qualitative analysis of the basic interactions of interest. A fiber grating is simply an optical
diffraction grating, at each refractive index change junction, refraction and reflection occur,
and thus its effect upon a light wave incident on it can be described by the familiar grating
equation. The diffraction of the light incident on the diffraction grating at an angle θ1 can be
described by the equation from Snell’s law [13, 14]:

2 1sin sinn n m lq q× = × + ×
L

(7)
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where m determines the diffraction order and θ2 is the angle of the diffracted wave λ and ̂  are
the wavelength of the incident light and the period of the diffraction grating, respectively. Eq.
(6) can predict only the directions θ2 into which constructive interference occurs, but it is not
useful for determining the wavelength at which a fiber grating most efficiently couples light
between two modes.

A fiber grating’s main function is based on coupling between the modes propagating through
the fiber, modes which can travel in opposite directions or in the same direction—this being
the basic criterion for classification of fiber gratings into two main types: (a) modes traveling
in the opposite directions, denoted as the short-period gratings, the fiber Bragg gratings (FBG),
working as the reflection gratings; (b) modes traveling in the same direction, denoted as Long-
Period Gratings (LPG), working as transmission gratings.

In Figure 2, the mode reflection by a Bragg grating is schematically presented. The incident
mode has a bounce angle of θ2 and becomes the same mode traveling in the opposite direction
with a bounce angle of θ2 = - θ1. It is worth to underline that the entire process is taking place
only inside the core. For the incident and diffracted rays, the propagation constants are
calculated as follows [13, 14]:

1 1 1 1 1 1

2 2 2 2 2 2

2 2, sin sin

2 2, sin sin

eff eff co co

eff eff co co

n n n n

n n n n

p pb q b q
l l
p pb q b q
l l

æ ö
= = Þ = ç ÷

è ø
æ ö

= = Þ = ç ÷
è ø

(8)

Eq. (7) can be rewritten in terms of the propagation constant of the incident beam and the
reflected/diffracted light as follows [13, 14, 20–28]:

2 1
2m pb b= +
L

(9)

where the subscripts 1 and 2 describe the incident and reflected/diffracted propagation
constant. For first-order diffraction, which usually dominates in a fiber grating, m = −1. Eq. (9)
is modified to [13, 14, 20]

2 1
lb b= -
L

(10)

For the bound core modes, the following relation is fulfilled:

cl eff con n n< < (11)
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In order to be rigorous, for the cladding modes, a relation similar to Eq. (11) is obtained by
considering the value of optic fiber ambient medium, usually air, refractive index:

1 eff cln n< < (12)

Fiber modes that propagate in the negative (−z) direction are described by negative β values.
Using Eq. (9) and observing that β2 < 0, the resonant wavelength is obtained for reflection of
a mode of index neff1 into reflection of a mode of index neff2 as defined by the relation:

( )1 2eff effn nl = + ×L (13)

Normally, the two counter propagating fiber modes have propagation constants with the same
absolute value and the following relation is defined:

1 2eff eff effn n n= = (14)

From (14), the familiar result for Bragg reflection peak wavelength is obtained:

2B effnl = × × L (15)

In Figure 3, the diffraction is schematically presented by a transmission of a fiber core mode
with a bounce angle θ1 on the grating into a cladding co-propagating fiber mode with an
angle θ2 [13, 14, 20–28]. Since, in the case illustrated in Figure 1, both incident core and
transmitted cladding fiber modes propagate in positive +z direction, it follows that β ‼ 0. As
a consequence, Eq. (9) predicts the resonant wavelength of an absorption peak for a trans‐
mission grating as follows:

( )1 2eff effn nl = - ×L (16)

The Bragg condition required for a (fundamental) mode to couple to another mode (backward
propagating or forward propagating) results from two requirements [20, 21]:

1. Energy conservation. It means that the frequency of the incident and reflected radiation
is constant—no wavelength shift is observed because of reflection.

2. Momentum conservation. It means that the wave vector of the scattered radiation k
→

f  is
equal to the sum of the incident wave vector k

→
i and the grating wave vector K

→
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i fK k k+ =
r rr

(17)

2K K p
= =

L

r
(18)

Coupled-mode theory is used for quantitative information about the diffraction efficiency and
spectral characteristics of fiber gratings by assuming the approximation of a weakly guiding
fiber [13, 14, 36, 37]. Implicitly, it is assumed that the propagating fiber modes have slowly
varying along the z direction amplitudes. Also it is assumed that a fiber mode has a transverse
component of the electric field defined as a superposition of the modes labeled “j” traveling
in the +z and −z directions such that [13, 20, 36]

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , exp exp , expt j j j j jt
j

E x y z t A z i z B z i z e x y i tb b wé ù= + - × -ë ûå
r r

(19)

where Aj(z) and Bj(z) are slowly varying amplitudes of the jth mode, respectively. Eq. (19)
describes the transverse mode electric fields of the bound core or radiation LPil modes, as given
in [8], or of the cladding modes. Into an ideal uniform optical fiber, the modes are orthogonal
and hence do not exchange energy; the presence of a dielectric perturbation such as a grating
causes the modes to be coupled such that the amplitudes Aj(z) and Bj(z) of the jth mode
evolution along the z axis are defined according to

( ) ( ) ( ) ( )exp expj t z t z
k kj kj k j k kj kj k j

k k

dA
i A K K i z i B K K i z

dz
b b b bé ù é ù= + - + - - +ë û ë ûå å (20)

( ) ( ) ( ) ( )exp expj t z t z
k kj kj k j k kj kj k j

k k

dB
i A K K i z i B K K i z

dz
b b b bé ù é ù= - - + - + - -ë û ë ûå å (21)

In (20) and (21), two coupling coefficients are introduced: transverse and longitudinal. The
transverse coupling coefficient between modes k and j is given by

( ) ( ) ( ) ( )*, , , ,
4

t
kj kt jtK z dxdy x y z e x y e x yw e

¥

= D × ×òò
r r

(22)

where Δ ε is the perturbation to the electric permittivity, which has a very small value in the
weakly guiding approximation. When δn < < n, the Δ ε perturbation can be approximated as
Δε≅2nδn. The longitudinal coupling coefficient Kkj

z(z) is analogous to Kkj
t (z), but for slow
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longitudinally varying fiber modes approximation, the condition Kkj
z(z)< < Kkj

t (z) is fulfilled and
thus this coefficient is usually neglected.

In most fiber gratings, the induced index change δn (x, y, z)is approximately considered as
uniform across the core and nonexistent outside the core. Thus, it becomes possible to define
index by an expression similar to Eq. (1), but with δneffmean(z) replaced by δnco(z). As a conse‐
quence, it becomes convenient to define two new coefficients [13, 14, 20]

( ) ( ) ( ) ( )*, ,
2

co
kj comean kt jt

core

nz n z dxdy e x y e x yw
s d= × × ×òò

r r
(23)

( ) ( )2kj kj
vz zk s= (24)

where σ is a “DC” (period-averaged) coupling coefficient and κ is an “AC” coupling coefficient,
then the general coupling coefficient can be written as follows:

( ) ( ) ( ) ( )22 cost
kj kj kjK z z z z zps k jé ù

= + × +ê úLë û
(25)

Eqs. (20)–(23) are the coupled-mode equations forming a set used to describe fiber grating
spectra below.

2.1. FBG reflection spectra

In the FBG case, the dominant interaction in the fiber grating is the reflection of a mode A(z)
into an identical counter-propagating mode; at the Bragg resonance wavelength, Eqs. (20) and
(21) are simplified by retaining only terms that involve the particular modes [13], neglecting
terms on the right-hand sides of Eqs. (20) and (21) that contain rapidly oscillating z dependence,
since these have low contributions to the variations of the mode amplitude. The resulting
equations can be written as follows:

( ) ( ) ( )ˆ
dR z

i R z i S z
dz

s k= + (26)

( ) ( ) ( )ˆ
dS z

i S z i R z
dz

s k *= - - (27)

In (26) and (27), as a starting hypothesis, it is assumed that R(z) and S(z) are defined as follows:
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( ) ( ) exp
2

R z A z i z jdæ ö
º × -ç ÷

è ø
(28)

( ) ( ) exp
2

S z B z i z jdæ ö
º × - +ç ÷

è ø
(29)

In these equations, the “AC” coupling coefficient from (23) and the general “DC” self-coupling
coefficient appear. The “AC” coupling coefficient is defined as follows:

1ˆ
2

d
dz
js d sº + - (30)

The detuning δ, considered independent of z for all gratings, is defined as follows:

1 12D eff
D

npd b b b p
l l

æ ö
º - = - = -ç ÷ç ÷L è ø

(31)

where λD is the “design wavelength” for Bragg scattering by an infinitesimally weak grating
with a period δneff →. The “design wavelength” λD is defined as follows:

2D effnl = L (32)

When δ = 0, λD fulfill the Bragg condition, i.e. the following relation is accomplished

D Bl l= (33)

The “DC” coupling coefficient σ is defined in Eq. (23). Absorption loss in the grating is
described by a complex coefficient σ̂. The power loss coefficient α is the proportional to
imaginary part of the complex coefficient σ̂, being defined as follows:

( )2Ima s= (34)
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Light not reflected by the grating experiences a transmission loss TL expressed in dB/cm as
follows:

( )1010 logTL e a= × (35)

The derivative describes possible chirp of the grating period, where φ(z) is defined using
different variation laws. For a single-mode Bragg reflection grating, the following simple
relations are useful:

2
effmeannps d

l
= (36)

k k *= (37)

ˆ effmeanv nps d
l

= (38)

If the grating is uniform along z, then δneffmean is a constant, meaning no chirping of the grating,

consequently dφ
dz =0, and thus κ, σ and σ̂ are constants. Thus, Eqs. (26) and (27) form a system

of coupled first-order ordinary differential equations with constant coefficients and appropri‐
ate boundary conditions for which closed-form solutions can be found. As the boundary
conditions, for a grating of length L, it is assumed that a forward-going wave incident from z
→ -∞, the grating reflectivity, is unitary, R(z=-L/2)=1, and that no backward-going wave exists
for z larger or equal to L/2, S(z=L/2)=0. The amplitude and power reflection coefficients ρ and
r, respectively, can then be shown to be defined as

( )
( ) ( )

2 2

2 2 2 2 2 2

ˆsinh

ˆ ˆ ˆ ˆsinh cosh

L

L i L

k k s
r

s k s k s k s

- -
=

- + - -
(39)

( )
( )

2 2 2

2
2 2 2

2

ˆsinh

ˆˆcosh

L
r

L

k s

sk s
k

-
=

- -
(40)

From (40), it is found that the maximum reflectivity for a Bragg grating, rmax, is defined as
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( )2
max tanhr Lk= (41)

This value occurs when σ̂ =0, or at the wavelength λmax, which is defined as

max 1 effmean
D

eff

n
n

d
l l

æ ö
ç ÷= +
ç ÷
è ø

(42)

2.2. LPG transmission spectra

In the LPG case, the coupled-mode equations are rearranged in the sense that near the peak
resonance wavelength at which mode “1” of amplitude A1(z) is strongly coupled to a co-
propagating mode “2” with amplitude A2(z), Eqs. (20) and (21) may be simplified by keeping
only terms that involve the amplitudes of these two modes and then making use of the
synchronous approximation of modes. The resulting equations can be written as follows:

( ) ( ) ( )ˆ
dR z

i R z i S z
dz

s k= + (43)

( ) ( ) ( )ˆ
dS z

i S z i R z
dz

s k *= - + (44)

where the new amplitudes R(z) and S(z) are defined as

( ) ( )11 22
1 exp exp

2 2
z

R z A i i z
s s jd

é ù+ æ ö
º - -ê ú ç ÷

è øê úë û
(45)

( ) ( )11 22
2 exp exp

2 2
z

S z A i i z
s s jd

é ù+ æ ö
º - - +ê ú ç ÷

è øê úë û
(46)

and where �11 and �22 are “DC” coupling coefficients [13, 14]. From Eqs. (36), (37) and (38), the
“AC” cross-coupling coefficient, κ, and, σ̂, a general “DC” self-coupling coefficient are defined
as

21 12k k k *= = (47)
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and

11 22 1ˆ
2 2

d
dz

s s js d
-

= + - (48)

Here the detuning, �, which is assumed to be constant along z, is defined as

( )1 2
1
2

pd b bº - -
L

(49)

or

1 1
eff

D

nd p
l l

æ ö
º D -ç ÷ç ÷

è ø
(50)

In Eqs.(49) and (50), λD is the design wavelength for an infinitesimally weak grating; as for
Bragg gratings, λD is defined as follows:

D effnl º D L (51)

As for the Bragg grating case, δ = 0 corresponds to the grating resonance condition predicted
by the qualitative picture of grating diffraction, schematically presented in Figures 2 and 3.

In the usual case of a uniform grating, σ̂ and κ are constants. In the LPG case, unlike for a Bragg
grating reflection of a single mode, here the coupling coefficient generally cannot be simply
defined as in (38). For coupling between two different modes in the LPG case of transmission
gratings, the overlap integrals (23) and (24) must be evaluated numerically. Like the analogous
Bragg grating, Eqs. (43) and (44) are coupled first-order ordinary differential equations with
constant coefficients. Thus, closed-form solutions can be found when appropriate initial
conditions are specified for a grating of length L. The transmission can be found by assuming
only one mode is incident from z → - ∞, and assuming that R(0) = 1 and S(0) = 0. The power
bar and cross-transmission, t=and t×, respectively, can be defined as follows:

( )
( )

( ) ( )
2

2
2 2 2 2

2 2 2

ˆˆ ˆcos sin
ˆ0

R z
t z z

R

sk s k s
s k= = = + + +

+
(52)
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( )
( )

( )
2

2
2 2

2 2 2
ˆsin

ˆ0

S z
t z

R

k k s
s k´ = = +

+
(53)

The maximum cross-transmission (which occurs when σ̂ =0) is defined as

( )2
,max sint Lk´ = (54)

and it occurs at the wavelength

( )
max

11 22

1

1
2

Dl l
s s

p

=
L

- -
(55)

For coupling between a core mode “1” and a cladding mode “2” with an induced index change
in the core only, σ11 = σ from Eqs. (36), σ22 ≪ σ11and for low cladding confinement factor, λmax

can be approximated as

max 1 effmean
D

eff

n
n

d
l l

æ ö
ç ÷@ +
ç ÷Dè ø

(56)

In Eq. (56), it is assumed that δneffmean, the induced change in the core-mode effective index, is
much smaller than Δneff which is the common case. Analyzing Eqs. (56) and (42), a major
difference is observed between the FBG and LPG cases, difference which consists in the fact
that the wavelength of maximum coupling in a long-period cladding-mode coupler grating
shifts toward longer wavelengths as the grating is being written many times more rapidly,
meaning a longer grating period, than the shift occurring in the Bragg grating case.

3. Simulation results

Because of their various and important sensing and communication applications, the FBGs
and LPGs are intensively studied in the last 20 years. Since the first reported results concerning
their characteristics, fabrication and engineering their applications, in time, it became more
and more clear that FBG and LPG simulation models are urgently needed for a proper design
of their applications, especially the sensing ones. The design of FBG’s and LPG’s sensing
applications involves a large number of input parameters or parameters having large variation
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domains. In time, more or less accurate FBG and LPG simulation models were reported in
literature [13, 14, 17, 20-28, 36-40]. These FBG and LPG simulation models are crucial for design
of their applications.

However, in spite of the complicated mathematical apparatus defined in Section 2 used for
describing the FBG or LPG mode of operation, there are several ideas which a researcher, using
or designing FBG and LPG application, has to keep in mind:

1. The FBG and LPG applications are based on the fiber interaction with the environment.
The FBG and LPG applications are developed starting by processing single mode fibers
for grating formation.

2. In the FBG case, the whole process is taking place in the core of the optic fiber, without
any direct interaction of the fiber grating with the environment. This means that only
modes counter-propagating in pairs through the core are involved being coupled by the
grating, i.e. exchanging energy. As a consequence, into the more or less broad emission
spectrum of a light source connected at one end of the fiber, there will appear a reflection
band which can be measured at the same fiber end or an absorption band as observed at
the other fiber end. Usually, for the sake of spectroscopic measurements accuracy, the
reflection band is mostly used. The peak wavelength and bandwidth of this band are the
parameters of interest to be observed in applications. The main task of FBG simulations
consists in defining the peak of the reflection band. The spectral shift of this peak wave‐
length of reflection band is correlated with grating period which can be modified by
simple or simultaneous mechanical or thermal loads applied indirectly on the fiber
grating.

3. In the LPG case, the process is different in the sense that co-propagating fiber modes are
coupled by the grating. The LPG operation process is taking place in the entire fiber cross
section. The LPG operation is based on the coupling of a core mode with the possible
cladding propagating modes. Inherently, two possible single-mode fiber simulation
models are to be considered: (a) two layers (core and cladding or cladding and environ‐
ment) and (b) three layers (core, cladding and environment). As a consequence, into the
more or less broad emission spectrum of a light source connected at one end of the fiber,
there will appear several absorption bands with the strength and bandwidth depending
on how much the transverse intensity distributions of core mode and cladding modes are
overlapping, the values of “DC” and “AC” coupling coefficients depending on this mode
superposition. The resulting absorption bands are usually observed at the other fiber end.
The main task of LPG simulation consists in defining the peaks and bandwidths of these
absorption bands appearing in the test light source transmission spectrum. The spectral
shifts of absorption peaks and bandwidth broadenings can be correlated with grating
period changes imposed by simple or simultaneous mechanical or thermal loads applied
on the fiber grating. It becomes possible to correlate any modification of environment
refraction index modification induced chemically or thermally by external factors. The
spectral peak shifts and bandwidth broadenings of this absorption bands are to be
evaluated.
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Nevertheless, there are several steps to be accomplished in development of an accurate FBG
or LPG simulation model, based on which a practical simulation algorithm can be defined.
The first steps are identical for FBG and LPG simulation cycles. The first two identical steps of
FBG and LPG simulations consist of:

‐ STEP 1—the usual gathering of input data, meaning core and cladding diameters, core
and cladding refractive index values, to which the environment refractive index has to be
added in LPG case and is only informal for FBG model. Any data concerning the geometry
of the fiber grating has to be considered in this stage. For example, if fiber grating is
supposed to be bent, or elongated, or longitudinally compressed or not.

‐ STEP 2—evaluation of fiber core effective value of the refractive index. This task is
achieved by graphically or numerically solving the dispersion Eq. (4) for b and using Eq.
(5). For more strictness, the confinement factor can be calculated using (6). The results of
Step 2 consist of variation curves with wavelength of core effective refractive index,
normalized frequency V and, eventually, of confinement factorΓ.

In this stage, the FBG and LPG simulation cycles separate into different ways of evolution. In
the FBG case:

‐ STEP 3 FBG—evaluation of fiber short-period grating reflectivity spectrum in the domain
including the Bragg wavelength by solving the system of differential equations defined
from coupled-mode theory applied for core counter-propagating modes, i.e. using Eqs.
(39)–(42). The obtained reflectivity spectrum will depend on the grating length, period
and if it is uniform or has a variable period according to a predefined law on z along the
grating (sine, sinc, positive tanh or Blackman) but keeping a constant amplitude of δneff,
this being the chirping technique, or it is apodized, meaning that the period is constant
and the amplitude of δneff is defined by a variation law on z as the argument (also sine,
sinc, positive tanh or Blackman functions are applicable). Once the Bragg grating reflec‐
tivity spectrum is obtained, it is possible to correlate its spectral shift with mechanical or
thermal load applied on the FBG device, meaning to use it as a sensor. FBG chirping or
apodization is used for smoothing the reflectivity spectrum wings.

In this moment, two ideas have to be underlined:

‐ The matrix transfer theory, which is based on dividing the fiber grating into a number of
segments of short length (in comparison to the propagating light wavelength), the light
propagating through these segments, the output signal (power) of one being the input for
the next one and so on, the input of the first segment being the initial conditions for
coupled-mode differential equations. Finally, in the matrix transfer theory, an iteration
equation is defined, and solving it leads to the reflectivity spectrum. For FBG, coupled-
mode and matrix transfer theories conduct to similar results.

‐ Tilted FBG consisting of a Bragg grating with pitches having an angle with z fiber axis
represents an attempt to couple the core specific processes to the environment via
cladding. The analysis of tilted FBG is beyond the purposes of this Chapter.
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The LPG case:

‐ STEP 3 LPG—evaluation of refractive index values for the possible cladding propagation
modes and of resonance peak wavelength of absorption bands created into the grating
transmission band. This task can be accomplished by using a two layers or three layers
model of the optic fiber for solving the dispersion Eq. (4) in order to define the effective
values of cladding possible propagation modes. The Two Layers model means to consider
the fiber itself as a core placed into an infinite cladding and to solve Eq. (4). It is a modified
procedure applied at STEP 2. The two layers model is an approximation. The more
accurate three layers model means to solve a modified version of dispersion equation
obtained by a complicated algebra calculation taking into account the refractive index
values of core, cladding and environment. This procedure is continued by evaluation of
the peak wavelengths of the absorption bands created in the LPG transmission spectrum
using the resonance relation Eq. (16). The differences observed between simulation results
obtained using the Two or Three Layers models are of 5-10%, depending on the compu‐
tational hardware and software capacity. These differences are observed for cladding
modes propagating near the core.

‐ STEP 4 LPG—evaluation of coupling coefficients and the bandwidths of the correspond‐
ing absorption bands created in the LPG spectrum and consequently the entire transmis‐
sion spectrum simulation. STEPS 3 and 4 LPG can be used for simulation of absorption
bands peaks shifting and bandwidth broadening corresponding to applying mechanical
or thermal loads on the LPG device or environment refractive index variation, i.e. the use
of LPG as a sensor device.

Figure 4. The variations of core and clad refractive indices versus propagating radiation wavelength.

In the following, several examples of FBG and LPG optical characteristic simulations devel‐
oped in the above-described steps are presented. In the FBG case, the presented examples are
obtained for uniform, chirped or apodized, the grating reflectivity being the main target. For
LPG, its transmission characteristics are to be simulated. In the presented examples, simulation
was performed considering the geometry and refractive index core and cladding values
characteristic for Fibercore SM750 optical fiber (core radius 2.8 μm, nco = 1.4575, cladding radius
62.5 μm, ncl = 1.4545). Fibercore SM750 optical fiber is commonly used as host for FBG or LPG.
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For both FBG and LPG sensors design, the first step consists in simulation of core and cladding
effective refraction indices of propagation modes. Figure 4 displays the results obtained in
simulation of core and cladding refractive indices variations versus the wavelength of light
propagating through the fiber. There are analyzed possible values of refractive index for which
the radiation modes can propagate through the optic fiber.

Results obtained in the analyzed FBG cases are presented in Figures 5-10. The primary task
accomplished by simulation consists in defining the variation of the FBG reflectivity with
wavelength around the Bragg resonance wavelength. In simulation of chirped and/or apo‐
dized Bragg grating, for its period variation law, sine, sinc, positive tanh and Blackman profiles
were considered.

Figure 5. Variation of FBG reflectivity versus wavelength for a uniform Bragg grating displaying different grating
strength kL. Length of the grating L = 1 mm, grating visibility v = 1, number of grating pitches N = 10,000, grating am‐
plitude ∆ neff = 1e−4, design wavelength λD = 1550 nm.

Figure 6. Effect of change in refractive indices on reflection spectra of uniform Bragg gratings. Length of the grating L =
1 mm, grating visibility v = 1, number of grating pitches N = 10,000, grating amplitudes 2206 = 20e−4, 15e−4 and 10e−4,
design wavelength λD = 1550 nm.
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Figure 7. Reflection of a Gaussian profile chirped Bragg grating. Length of the grating L = 50 mm, grating visibility v =
1, number of grating pitches N = 10,000, grating amplitude = 20e−4, design wavelength λD = 1550 nm.

Figure 8. Apodization of a chirped grating using different profiles. Length of the grating L = 50 mm, grating visibility v
= 1, number of grating pitches N = 10,000, grating amplitude ∆ neff = 20e−4, design wavelength λD = 1550 nm.

Figure 9. Variations of the resonance wavelength versus LPG period, calculated for the first 10 possible clad propaga‐
tion modes. LPG length L = 75 mm, grating amplitude ∆ neff = 25e−4.
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Figure 10. LPG transmission spectra simulated for an optic fiber in normal state. LPG period = 400 μm, LPG length L =
75 mm, grating amplitude ∆ neff = 25e−4.

Figure 11. LPG transmission spectra simulated for a bent optic fiber in normal state. LPG period = 400 μm, LPG length
L = 75 mm, grating amplitude ∆ neff = 25e−4.

Results obtained in the analyzed LPG cases are presented in Figures 9–11. In Figure 9 are
presented simulation results obtained regarding the variations of the resonance wavelengths
of the absorption peaks in the LPG transmission spectra, peaks defined using (16)-the “second
key task to be accomplished” in the design of LPG fiber sensors. In Figures 10 and 11 are
presented the LPG transmission spectra simulated for an unperturbed fiber and for a bent
fiber.

4. Conclusions

The chapter refers to a broad research domain concerning the optic fiber and fiber grating
physics. One of the two main purposes of the chapter consists in presenting the theoretical
tools and simulation procedures used for analysis of optical properties of short-period FBG
and fiber LPG. The second purpose of the chapter consists in providing the basics of simulation
models. Examples of simulation results obtained using coupled-mode theory, verified using

Modeling and Simulation in Engineering Sciences110



the transfer matrix theory in the FBG case, are presented. The presented simulation results are
in fairly good agreement with experimental and simulation results presented in literature.
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