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Abstract

Endogenous viral elements (EVEs) are the heritable sequences present in eukaryotic 
genomes that have originated from viral nucleotide sequences. EVEs are subdivided 
into two groups, according to the presence or absence of long terminal repeats (LTRs). 
EVEs with LTRs are called endogenous retroviruses (ERVs), and they account for 
approximately 8% of the human genome. EVEs without LTRs seem to be related to 
non-reverse-transcribing RNA and DNA viruses, and recent studies have revealed that 
numerous vertebrate genomes contain these non-LTR EVEs. Such EVEs are proposed 
to play essential roles in gene expression. EVEs can regulate gene expression as cis-reg-
ulatory DNA and RNA elements. EVE-derived non-coding RNAs and/or proteins can 
also influence cell transcriptomes in trans. To maintain cell integrity, cells epigenetically 
silence the expression of most EVEs, making these elements generally biochemically 
inert. These epigenetic alterations around the EVE loci can also affect host transcrip-
tomes. Here, we highlight the current knowledge available on the regulatory activities 
of ERVs and non-retroviral EVEs, especially the EVEs derived from bornaviruses, which 
are known as endogenous bornavirus-like elements (EBLs). Better knowledge of this 
area will improve our understanding of gene regulation and also the co-evolution of 
viruses and their hosts.
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1. Introduction

Various viruses appear to have left heritable sequences originated from viral nucleotide 

sequences, called endogenous viral elements (EVEs), in eukaryotic genomes. EVEs are 

distinguished by the presence or absence of long terminal repeats (LTRs). EVEs with LTRs
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are called endogenous retroviruses (ERVs). The LTRs contain cis-regulatory sequences 

and RNA polymerase II (Pol II) promoters [1]. ERVs are formed by the integration of 

ancient retroviruses into the host genome during infection, and they account for around 

8% of the human genome contents. Some ERV-derived genes that have been co-opted 

by the host play essential roles in biological processes, such as placentation in humans  

[2, 3]. On the other hand, recent studies have revealed that numerous vertebrate genomes 

also contain non-LTR EVEs, EVEs that have no LTRs [4–6]. Among these non-LTR EVEs, 

the bornavirus-derived EVEs (endogenous bornavirus-like elements (EBLs)), which have 

been relatively well studied, have provided clues about the biological significance of non-

LTR EVEs in mammals [4, 7–11]. EBLs are the DNA sequences in vertebrate genomes (i.e., 

primates, rodents, and afrotherians) that are formed by the long interspersed nuclear 

element-1 (LINE-1)-mediated integration of viral sequences of an ancient non-retroviral 

RNA virus, bornavirus [4]. LINE-1, a host retrotransposon, encodes two proteins, ORF1p 

and ORF2p, which form LINE-1 ribonucleoprotein (RNP) together with LINE-1 RNA  

[12, 13]. ORF2p is known as endonuclease and reverse transcriptase in the LINE-1 ret-

rotransposition, which is also used for retrotransposition of viral mRNAs of non-retro-

viral RNA viruses, thereby producing non-LTR EVEs. EBLs derived from the N, M, G, 

and L genes of bornaviruses, which are designated as EBLN, EBLM, EBLG, and EBLL, 

respectively, have been reported so far [14]. Although EBLs do not contain any cognate 

promoter sequences derived from bornavirus sequences, some EBLs are thought to influ-

ence gene expression.

EVEs use various mechanisms to regulate gene expression. First, genomic EVEs can regu-

late gene expression as cis-regulatory DNA elements. Second, EVEs produce non-coding 

RNAs and/or proteins that influence nearby genes and/or the global transcriptome in trans. 

Third, alterations in the epigenetic environment around the EVEs can also affect the tran-

scriptome. In this review, we provide a brief overview of the regulatory activities (e.g., pro-

moter activity and epigenetic regulation) of ERVs and EBLs in the context of gene expression  

regulation.

2. The influence of ERVs on gene expression

The exogenous retroviral genome contains the following genes: gag, which encodes the gene 

encoding retroviral structural proteins, pol, which encodes reverse transcriptase, protease, 

ribonuclease and integrase, and env, which encodes the envelope protein. The retrovirus viral 

genome also contains a primer-binding site (pbs) and the packaging signal (Ψ), both of which 
are important to the viral life cycle (Figure 1A). The reverse transcriptase encoded in the pol 

gene synthesizes viral DNA (proviral DNA) from the viral RNA, and the proviral DNA is 

then inserted into the host’s genome which, when inherited in germ-line cells, become ERVs 

(Figure 1B). ERVs have been co-opted with the host and play essential roles in gene expres-

sion (Figure 2).
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2.1. Gene regulation by ERVs as regulatory DNAs

The LTRs of human ERVs (HERVs) have strong Pol II regulatory sequences [15, 16] and contain 

abundant transcription factor binding sites that function as promoters for HERV expression [17]. 

Although the full-length HERV is considered to have two LTRs, up to 85% of HERVs have under-

gone recombinatorial deletion [18], making most HERV loci solo LTRs. Solo LTRs can still serve 

as promoters in both the sense and antisense orientations and influence gene expression [19, 20]. 

Figure 1. Summary of ERV and EBL structures and their biogenesis. (A) Structure of the retrovirus genome and 

ERV. LTR, the long terminal repeat; gag, the group-specific antigen gene; pol, the polymerase gene; env, the envelope 

gene; pbs, the primer-binding site; and Ψ, the packaging signal. (B) Mechanism of ERV biogenesis. Retrovirus reverse 
transcribes its RNA into a linear double-stranded DNA. The viral DNA is integrated into the host genome to form a 

provirus. (C) Structure of the bornavirus genome and EBLs. (D) Mechanism of LINE-1 retrotransposition and LINE-1-

mediated EBL biogenesis. LINE-1 encodes two proteins, ORF1p and ORF2p. ORF2p encodes endonuclease and reverse 

transcriptase enzymes for the reverse transcription of LINE-1 RNA and genomic integration of its cDNA. ORF2p 

occasionally reverse transcribes other mRNAs in trans. EBLs seem to be generated from bornavirus mRNA in this 

manner.
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For example, IL2RB and NOS3 are genes whose expression in the placenta is solely related to 

the presence of LTR promoters [19]. Stem cell-specific LTR-derived promoters, such as mouse 
ERVK and human ERV1, control the expression of nuclear transcripts [21], whose expression 

is associated with maintenance of pluripotency. MER39 (an ERV1 class member) constitutes 

the promoter for human endometrial Prl [22]. MER41, another HERV, works as a cis-regulatory 

sequence of AIM2 (a non-self DNA sensor), thereby regulating inflammatory responses [23]. The 

ERV-9 LTR is located near the 5′ end of the locus control region, around 40–70 kb upstream of 
the human fetal γ- and adult β-globin genes. LTR deletion was found to drastically suppress the 

β-globin gene and reactivate the γ-globin gene through a competitive mechanism involving globin 

gene switching [24]. Some lineage-specific ERVs, such as LTR19B and MER41, have dispersed 
numerous IFN-inducible enhancers in human genomes, thereby shaping the evolution of the 

transcriptional network underlying the interferon (IFN) response [23]. The expression of very 

long intergenic RNAs (vlincRNAs), which also control pluripotency, is driven by HERV LTR 

[25], suggesting a role for HERV LTRs in regulating the expression of not only protein-coding 

genes but also long non-coding RNAs (lncRNAs) [26].

Figure 2. Influence of ERVs on gene expression. (1) ERVs function as cis or distal regulatory sequences. (2) ERV proteins 

may regulate the expression of host gene in trans. (3) ERV RNAs can work as lncRNAs to regulate the expression of the 

host genes. (4) ERV proteins may inhibit viral replication. (5) Epigenetic modifications that silence ERV expression can 
influence the expression of neighboring genes. The ochre circle (Me) indicates a central suppressive modification, DNA 

methylation, on the ERV locus.
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2.2. Gene regulation by ERV proteins

The expression products of HERVs can also affect the physiological functioning and devel-
opment of the host’s tissues. For example, HERV-W (ERVWE1), HERV-FRD, and ERV-3 are 

three HERVs whose intact env genes are expressed as proteins in the human placenta [27–30]. 

HERV proteins play important roles in the proper formation of the placenta and are involved 

in the suppression of fetal tissue rejection [27, 31, 32]. The transmembrane envelope proteins 

of HERV-K, which modulate the expression of numerous cytokines, provide an example of 

gene expression regulation by a HERV protein [33]. HERVs may also be linked to a strategy 

used for inhibiting exogenous virus replication. For example, Friend virus susceptibility 1 (Fv1), 

a mouse gene that originated from the gag gene of an ancient retrovirus, is known to restrict 

murine leukemia virus (MLV) at a stage after entry but before integration and formation of the 

provirus, thereby inhibiting viral replication [34, 35].

2.3. Gene regulation by HERV-driven lncRNAs

lincRNA-RoR is a large intergenic non-coding RNA driven by HERV-H [36]. lincRNA-RoR 

modulates reprograming and is indeed expressed at much higher levels in the embryonic 

stem cell line, H1-hESC, and human-induced pluripotent stem cells than in any other tissue or 

cell line [36, 37]. Knockdown of lincRNA-RoR affects the expression of other stem cell factors 
such as KLF4, SOX2, and NANOG [38, 39], resulting in an exit from the pluripotent state [37]. 

Together with vlincRNAs [25], HERV-driven lncRNAs can influence the transcriptome of the 
genes involved in pluripotency.

2.4. Gene regulation by epigenetic modification of ERVs

In addition to the abovementioned roles, LTRs are important sites for epigenetic modifica-

tions that restrict HERV in the human genome. DNA methylation, which is carried out by 

DNA methyltransferases, histone methylation, and histone deacetylation are the major host 

mechanisms used for gene silencing [40, 41]. Indeed, HERVs are heavily methylated in normal 

tissues [42]. By contrast, histone deacetylation alone is not sufficient to repress HERV expres-

sion. Rather, histone deacetylation in combination with other epigenetic modifications, par-

ticularly DNA methylation, is required for sufficient silencing of HERVs [43]. Furthermore, 

histone demethylation, which is carried out by lysine-specific histone demethylases (KDMs), 
also silences HERV expression [44, 45]. All these epigenetic alterations to ERV loci can affect 
the expression of nearby genes. For example, MuERV-L/MERVL, a mouse ERV, is repressed 

by a KDM1A-mediated epigenetic modification [45]. Some zygotic genome activation (ZGA) 

genes use an LTR of MERVL as a promoter or contain an MERVL element within 5 kb of their 

transcriptional start sites [45]. These ERV-linked ZGA genes become de-repressed in KDM1A 

mutant cells, which coincide with an expanded cell fate potential [45]. Thus, KDM1A recruit-

ment to the MERVL LTRs seems to alter the chromatin structure around the loci, which in 

turn suppresses the expression of ERV-linked ZGA genes during early mammalian embry-

onic development.
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2.5. Possible links between ERVs and human diseases

The recent studies on ERVs have revealed possible interactions between ERVs and their 

hosts with the potential to contribute to the development of diseases such as cancer and 

neurologic diseases. For example, the HERV expression is upregulated in various types of 

cancers [46–48]. Many HERV LTR regions, such as LTR10 and MER61, have a near-perfect 

p53 DNA binding site [49]. The tumor suppressor protein p53 is a sequence-specific tran-

scription factor, which regulates genes of diverse biological pathways [50]. Thus, ERVs may 

regulate carcinogenesis via the p53 pathway. CSF1R gene, an oncogene, is activated by a 

demethylated MaLR LTR [51]. LTR-driven CSF1R is expressed aberrantly in anaplastic large 

cell lymphoma [51], suggesting that ERV LTRs may also directly contribute to tumor growth 

via activation of oncogenes. HERVs have also involved in neurological and psychiatric dis-

eases. For example, the expression levels of HERV-H are significantly higher in patients 
with attention deficit hyperactivity disorder (ADHD) compared with healthy controls [52]. 

Furthermore, the HERV-W env mRNA expression is selectively upregulated in brain tissue 

from patients with multiple sclerosis compared with controls [53]. Although links between 

the upregulation of ERVs and these diseases are reported, the contribution of upregulated 

ERVs to the disease development is still unclear and further studies are clearly required for 

demonstrating it.

3. The influence of nonretroviral EVEs on gene expression

EBLs are the only nonretroviral RNA virus-derived EVEs found in the human genome. EBLs 

seem to be generated from bornavirus mRNA in a LINE1-dependent manner (Figure 1C 

and D). Thus, they are a unique form of a processed pseudogene, which is derived from 

the sequences of an exogenous virus but not endogenous sequences, and they evidence the 

mechanism of retrotransposon-mediated RNA-to-DNA information flow from the virus to 
the host [4]. In the human genome, seven EBLNs (hsEBLN-1 to hsEBLN-7) and one EBLG 

have been identified to date [4–6]. All seven hsEBLNs are expressed as RNAs in at least one 

tissue, suggesting the possibility of a biological function for these EBLs [9].

3.1. Gene regulation by EBLN RNAs

hsEBLN-1 is one of the most studied EBLs in the human genome. Because no natural selection 

of hsEBLN-1 and its orthologues is detected [54], hsEBLN-1 is thought to function as a DNA 

element or non-coding RNA, or even to have lost its function (Figure 3). He et al. reported 

that 1067 and 2004 genes are up- and downregulated, respectively, after knockdown of hsE-

BLN-1 RNA in human oligodendroglia cells [55]. The top 10 most upregulated genes were 

PI3, RND3, BLZF1, SOD2, EPGN, SBSN, INSIG1, OSMR, CREB3L2, and MSMO1, and the 

top 10 most downregulated genes were KRTAP2–4, FLRT2, DIDO1, FAT4, ESCO2, ZNF804A, 

SUV420H1, ZC3H4, YAE1D1, and NCOA5. Gene ontology revealed that hsEBLN-1 may regu-

late the expression of genes related to the cell cycle, the mitogen-activated protein kinase 

pathway, p53 signaling, and apoptosis [55].
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Unlike ERVs, EBLs are thought not to be transposable themselves. Nevertheless, the hsE-

BLN-1 locus is silenced by several epigenetic blocks, dominantly histone deacetylation 

and DNA methylation, similar to the case of human immunodeficiency virus (HIV) provi-
rus silencing [9, 56, 57]. This contrasts with the silencing mechanism of ERVs because, as 

described above, DNA methylation but not histone deacetylation plays a major role [58]. 

Thus, the silencing mechanisms for the hsEBLN-1 locus might be more similar to those of 

exogenous retroviruses than to those of ERVs. This epigenetic alteration around hsEBLN 

integration may affect the epigenetic status of its neighboring loci and, consequently, the 
expression of nearby genes. Histone deacetylase (HDAC) inhibitor treatment did not affect 
transcription of the COMMD3 gene in mouse and rat cells, which have no EBLN sequence 

at the locus syntenic to the hsEBLN-1 locus, whereas the treatment led to decreased tran-

scription of COMMD3 orthologues in human and monkey cells, which have the EBLN 

sequence at the locus. COMMD3 belongs to the copper metabolism gene MURR1 domain-

containing (COMMD) family. COMMD proteins have a structurally conserved COMM 

domain, and they are all able to interact with different NF-κB subunits [59]. Because one 

of the central roles of NF-κB is induction of proinflammatory mediators like cytokines, 

Figure 3. Influence of EBLs on gene expression. (1) An EBL-derived lncRNA regulates the expression of a neighboring 

gene. piRNAs derived from EBLs may have the potential to provide antiviral responses against bornaviruses. (2) An 

EBL protein inhibits bornavirus transcription. Likewise, some EBL proteins may possibly regulate host gene expression. 

(3) Alteration of the epigenetic environment to restrain the EBL expression may influence the expression of neighboring 
genes. The ochre broken line circle (Ac) indicates deacetylation of the EBL locus.
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chemokines, and adhesion molecules, EBLN-1 may regulate immune responses indirectly 

through the COMMD3-NF-κB pathway [59, 60]. Moreover, suppression of the hsEBLN-1 

RNA induced by HDAC inhibitor treatment using siRNA against hsEBLN-1 RNA elimi-

nated the HDAC inhibitor-induced downregulation of COMMD3 gene expression. Thus, 

hsEBLN-1 RNA may function as a lncRNA that scaffolds transcriptional repressors of the 
COMMD3 gene around the locus, thereby downregulating its expression.

Several EBLN-derived small RNAs in mouse and rat are annotated as PIWI-interacting RNAs 

(piRNAs) in the GenBank database [61]. piRNAs are 25–33 nucleotides in length, are found 

in diverse organisms such as flies, fish, and mammals [62], and protect germ-line cells from 

transposons [62]. piRNA clusters are transcribed as long single-stranded precursor RNAs 

derived from the piRNA clusters in the host genome, which are further processed into small 

mature piRNAs. Mature piRNAs guide Argonaute proteins, such as PIWI and MIWI proteins, 

to complementary target sequences. Argonaute proteins cleave the target RNAs, suppress-

ing their expression. piRNAs are also known to epigenetically silence the target gene loci. 

All piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral 

nucleoprotein mRNA [61]. These observations offer a possible role for the EBLN-derived 
piRNA-like RNAs in interfering with bornavirus mRNAs [61].

3.2. Gene regulation by EBLN proteins

Among the human EBLNs, hsEBLN-1 and hsEBLN-2 have maintained long open read-

ing frames with the potential to code for proteins of 366 and 225 amino acids, respectively. 

Indeed, some studies have reported that hsEBLN-1 proteins were detected in particular cell 

lines [63]. Moreover, Kobayashi et al. reported that EBLNs encode functional proteins in 

afrotherians [10]. Therefore, it is still possible that EBLN proteins regulate gene expression 

in trans. Furthermore, EBLNs may potentially inhibit the replication of related exogenous 

viruses, similarly to certain ERVs. EBLN from the thirteen-lined ground squirrel (Ictidomys 
tridecemlineatus) genome, named itEBLN, is associated with bornavirus RNPs and inhibits 

bornavirus polymerase activity [7].

4. Conclusions

The researches on gene regulation by EVEs have provided us with important knowledge 

about the evolution of regulatory sequences in the genome [5, 64]. Although integrated viral 

sequences are usually eliminated from the host genome, some eventually reach fixation and 
form EVEs. Such EVEs are not merely genetic parasites; rather, they introduce useful genetic 

novelties to the genome. In this article, we briefly reviewed two types of EVEs, ERVs and 
the non-LTR EVEs, EBLs. ERVs provide novel regulatory sequences and sites for epigenetic 

regulation. Transcripts derived from ERVs can also function as lncRNAs or protein-coding 

mRNAs, which may regulate gene expression. In particular, ERV-related transcripts are 

often associated with pluripotency. EBLs might also function as regulatory DNA elements 

such as promoters and enhancers. They are transcribed in one tissue at least, suggesting that 
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EBL transcripts may function as lncRNAs or protein-coding mRNAs. Consistently, we have 

shown the evidence for the roles of EBL transcripts as lncRNA molecules in gene expression. 

In particular, several EBLs are associated with antiviral responses against related viruses. 

Additionally, both ERVs and EBLs regulate not only host gene expression, but related viral 

gene expression also. Further extensive studies on EVEs will augment our understanding of 

their biological significance in gene expression and their involvement in the co-evolution of 
viruses and mammals.
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EVE endogenous viral element

LTR long terminal repeat

ERV endogenous retrovirus

Pol II RNA polymerase II

EBL endogenous bornavirus-like element

LINE-1 long interspersed nuclear element-1

RNP ribonucleoprotein complex

HERV human endogenous retrovirus

lncRNA long non-coding RNA

MLV murine leukemia virus

KDM lysine-specific histone demethylase

ZGA zygotic genome activation

ADHD attention-deficit hyperactivity disorder

HIV human immunodeficiency virus
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