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Abstract

Currently, there is great interest in using frozen boar semen to enhance pig-breeding 
processes. Yet semen freezability, as well as its limited lifespan in the uterus, limits the 
efficacy of such a procedure. Pig spermatozoa membrane is less stable and more sensitive 
to low temperatures as it contains lower levels of cholesterol. It is also highly susceptible 
to lipid peroxidation (LPO) during freezing, since it is rich in polyunsaturated fatty acids 
(PUFA). Seminal plasma (SP) has beneficial effects on post-thaw semen quality and its 
composition may have a genetic basis, specifically in protein content. To date, studies on 
boar semen freezability have focused on sperm cell proteins with very little attention hav-
ing been paid to SP proteins. In boar SP, there are 82 identified proteins with spermad-
hesins (90%) and fibronectins (FN) the most abundant. The only plasma protein thus far 
identified as a freezability marker is FN1. Other plasmatic proteins of recognized impor-
tance in the freezing of porcine semen are: DQH, HSP90AA1, NPC2, L-PGDS, ß-HEX, 
SOD, and PON-1. The purpose of this chapter is to examine the most efficacious elements 
of the above plasma proteins with regard to their role as biological or potential biological 
markers of porcine semen freezability.
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1. Introduction

Despite the excellent results in fertility and prolificacy achieved with fresh-cooled boar semen 
in commercial pork production operations [1], interest in the use of frozen boar semen per-

sists. Applications of frozen boar semen include: the transfer of genes between population 
pyramids; availability of in-farm insemination plans; the export of germplasm; prevention 
of particular pathogenic transmission agents; and the establishment of germplasm banks [2]. 
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However, there are clear constraints on the use of frozen semen in commercial pig breeding. 
Most salient among these are the extremely high volumes and concentrations required per 
artificial insemination (AI) dose, as well as lower farrowing rates and litter size [1, 3–5]. Such 
issues are mainly caused by the variability in the capacity of boar spermatozoa to survive 
the freezing and thawing process (freezability) and the shortened lifespan of frozen–thawed 
boar sperm in the uterus [6–8]. Despite following the best-known cryopreservation protocols, 
seminal quality is affected to such an extent [3], that quality may vary as much as 70% [9]. 

Genetic factors [8] and proteomics variations [10–13] are the most commonly cited reasons for 

such variances.

Farrowing rates using frozen semen now approach the 85–90% success rate already seen in 
semen refrigeration techniques, thanks to innovative deep intrauterine insemination and sow 
management methods [9, 14]. Insemination using frozen–thawed boar sperm should not be 
performed using conventional AI but rather through post-cervical or deep intrauterine insem-

ination [15–18].

Lower levels of cholesterol exhibited within its cell membrane renders pig sperm more 
sensitive to cold and less stable [1]. This is evidenced by a molar ratio cholesterol to phos-

pholipids of 0.26 (the bull has a ratio of 0.45) [19]. This makes the sperm more prone to initi-
ate the capacitation and acrosome reaction process [20, 21]. The freezing of porcine semen 
reduces the sperm survival rate by more than 50%, while causing most of the surviving cells 
to prematurely develop a phenomenon similar to capacitation—cryo-capacitation [22, 23]. 

Sperm capacitation is a biochemical process that the sperm must undergo during the passage 
through the reproductive tract of the female on their way to fertilizing an oocyte [24, 25].

Sperm membranes are rich in polyunsaturated fatty acids (PUFA), and therefore highly sus-

ceptible to lipid peroxidation (LPO) in conditions of oxidative stress by the increase of free 
oxygen radicals or reactive oxygen species (ROS), [26, 27]. Within these cells, the oxidative 
stress can be induced by different endogenous and exogenous factors that are activated dur-

ing their passage through the male and female reproductive tracts [28]. As a counterbalance, 
there are multiple protection mechanisms that reduce oxidative injury [29].

It is also known that seminal plasma (SP) has beneficial effects on post-thaw semen quality 
[30]. SP is a mixture of secretions from the testicular network, the epididymis, and the acces-

sory sex glands [25, 31] and there is evidence that its composition may have a genetic basis [8] 

and varies among boars [32, 33], specifically in its protein content [25, 30, 32]. All these sug-

gest that SP is a factor closely related to freezability. SP of the pre-sperm fraction originates 
in the urethral and bulbourethral glands [34, 35]; SP of the fraction rich in sperm comes from 
the prostate, epididymis, and seminal vesicles; and SP of the sperm-poor fraction originates 
solely from the prostate and seminal vesicles [25]. SP is the sole vehicle in which sperm is 
immersed after ejaculation [25, 31] and regulates processes related to nutrition, protection, 

maturation, motility, and sperm capacitation [30, 36, 37].

Findings show that differences in freezability between males disappear when, (1) cryopre-

serving sperm obtained directly from the epididymis (which has had no contact with SP) 
[38] and, (2) are minimized when freezing the sperm peak fraction poor in SP and abun-

dant in sperm (the first 10 ml of the rich fraction) [30]. Moreover, after mixing high and 
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low freezability SP and sperm from boars, the combination of high freezability sperm and 
plasma from boars recorded the highest value of acrosome integrity, while the addition of 
SP from high freezability boars to any category of sperm cell, yielded the highest values of 
membrane structural integrity [39].

The effect of SP on sperm function is extremely variable, and although several proteins and 
their effects have been identified, little is known about their wider effects and potential appli-
cations. It is therefore necessary to examine these molecules and how they interact and impact 
on cell function [40]. SP is composed of water, inorganic ions, citric acid, organic salts, prosta-

glandins, and proteins. The latter has been linked to having the greatest effect on sperm func-

tion and freezability [32]. The literature touches on SP’s cryoprotective effect on capacitation 
and survival of spermatozoa [31], together with its positive correlation to membrane struc-

tural integrity, acrosome integrity, sperm motility, and mitochondrial membrane potential 

after manipulation of semen [35, 39].

The purpose of the following chapter is to review the most relevant aspects of plasma proteins 
recognized as biological or potential biological markers of porcine semen freezability.

2. Plasmatic proteins and your relationship with semen freezability

Current studies on the relationship between protein markers of boar semen freezability 
have been focused on sperm cell proteins with very little attention being paid to seminal 
plasma proteins [12]. Tandem mass spectrometry of two-dimensional liquid chromatogra-

phy (2D–LC) derived samples identifying a total of 82 proteins in the seminal plasma of the 
boar [41]. Proteins with the greatest presence in the porcine SP are spermadhesins (90%) and 
fibronectins (FN) [32, 41]. Other plasmatic proteins of recognized importance in the freez-

ing of porcine semen that are unconfirmed as freezability markers are: DQH protein [42, 

43], Heat shock protein 90 alpha A1 (HSP90AA1), Niemann-pick disease type C2 protein 
(NPC2), Prostaglandin D synthase lipocalin type (L-PGDS) [44], ß subunit of N-acetyl-b-
hexosaminidase (ß-HEX) [45], superoxide dismutase (SOD), and paraoxonase 1 (PON-1) [46]. 

The only plasma protein identified as a freezability marker is Fibronectin 1 (FN1) [12].

2.1. Spermadhesins

The spermadhesins are a family of sperm surface-associated glycoproteins of 12–16 kDa, pos-

sessing between 109 and 133 amino acids, and constituted by a single-domain CUB that serves 
as a structural support [32]. The spermadhesinas are multifunctional proteins that have the 
capacity to unite different ligands. These include: heparin, phospholipids, protease inhibitors, 
and carbohydrates. These change with glucosylation and aggregation, and can be divided into 
heparin-binding (AQN-1, AQN-2, AQN-3, AWN-1 and AWN-2) and non-heparin-binding 
(PSP-I and PSP-II) families [34, 47–50]. AWN, AQN-1, AQN-3, PSP-I, and PSP-II spermad-

hesins are transcribed and translated in seminal vesicles and the prostate. mRNA transcripts 
of these spermadhesins have been detected in caudal epididymis, and, in the case of PSP-I, 
have found mRNA in caput epididymis and rete testis [51]. The spermadhesins increase as the 
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sperm concentration decreases, resulting in a greater concentration of spermadhesins in the 

sperm-poor fraction [25, 52]. The PSP-I and PSP-II spermadhesins make up 50% of the SP pro-

teins [47]. These bind to the sperm membrane in the acrosomal domain [53], and, in the case of 

PSP-II, are known to bind to phosphorylcholine [42], forming a cover that protects sperm from 
premature capacitation [32, 47]. When PSP spermadhesins are added to the semen in sperm 
sexing and freezing processes, they reduce the percentage of sperm with high concentrations 

of intracellular calcium, and maintain the survival, motility, and integrity of the mitochon-

drial membrane [47, 52]. In addition, it is known that exposure of frozen–thawed semen to 
low concentrations of PSP-I and PSP-II spermadhesins maintains viability and sperm motility 
but also has an inhibitory effect on the oocyte penetration rate [35]. In addition, it has been 
found that spermadhesins induce the migration of polymorphonuclear neutrophils within the 

uterine tract of the sow [54].

The spermadhesin AWN-1 makes up between 7 and 8% of the total protein of SP [55], binding to 

cholesterol and phosphorylcholine of the plasma membrane, during storage in the epididymis 

and during ejaculation [42]. This protein is considered a decapacitating factor, with 90% being 
released during the sperm capacitation [55]. In addition, the AWN-1 participates in the union 
between gametes through its ability to bind to ß-galactosides from the zona pellucida [32].

The spermadhesin AQN-1 is related to the union of the spermatozoon with the epithelium of 
the uterus in the reservoir located in the uterotubal junction [56]. This is due to its ability to bind 
to different ligands, including mannose [32]. This protein is united to the acrosome membrane, 
and 50–75% are released during the sperm capacitation, suggesting a decapacitating effect [55].

2.2. Fibronectins

Fibronectin (FN) is an abundant soluble constituent of plasma (300 μg/ml) and other body 
fluids and also part of the insoluble extracellular matrix; FN can be subdivided into two forms: 
soluble plasma FN (pFN) and less-soluble cellular (cFN) FN [57]. The fibronectins are products 
of expression of a single gene, the final protein may vary since alternative splicing of a single 
pre m-RNA is generated up to 20 variants in humans [58]. FN generally is a dimer with 2 
similar ∼250 kDa subunits linked covalently; each monomer is made up of 3 types of repeating 
units (type I, type II and type III) and approximately 90% of the FN sequence consists of 12 type 
I repeats, two type II repeats, and 15–17 type III repeats [57, 59]. All three types of FN repeat are 
also found in other molecules, suggesting that FN evolved through exon shuffling [59].

In boar seminal plasma, FN1 has also been identified and described as one of the most abun-

dant proteins in the seminal plasma of this species [41, 60]. FN1 is considered a molecular 
marker for boar sperm freezability since it presents different concentrations of high and low 
freezability among males [12]. These differences were also confirmed by Rungruangsak et al. 
[61]. FN1 is related to defects of the intermediate tract and tail of the spermatozoon. Binding 
to the plasma membrane through integrins, and providing a protective protein of sperm; 
FN1 interacts with albumin, which reduces oxidative stress [60]. The binding of FN2 to the 
phosphorylcholine of the sperm membrane may prevent the movement of phospholipids and 
maintain membrane stability. Meanwhile, its binding to heparin may also enable cholesterol 

release during sperm capacitation [32].
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2.3. Aspartic acid-glutamine-histidine protein or DQH protein

While DQH is a protein with a structure distinct from that of the spermadhesins, it forms a 

complex with spermadhesins AWN and AQN to perform similar functions [60]. This protein 
is produced in seminal vesicles and is not detected in spermatozoa of the epididymis [43]. It 
interacts with cholesterol, and also binds to phosphorylcholine of the spermatic membrane, to 

glycoproteins of the zona pellucida of the oocyte [42] and to epithelial cells of the oviduct. It 
is thus related to the formation of the spermatic reservoir and the sperm-oocyte junction [43].

2.4. Heat shock protein 90 alpha A1

In a study of the genes that code for heat shock proteins of 90 kDa (HSP90) or HSP90 (Heat 
shock protein 90 kDa), carried out by Chen et al. [62], 17 different genes were grouped into the 
following 4 classes: HSP90AA, HSP90AB, HSP90B, and TRAP. HSP90A indicates that the pro-

tein is cytosolic, HSP90B that the protein is from the reticulum endoplasmic and TRAP that 
the protein is mitochondrial. In addition, the HSP90A class was divided into two categories: 
(1) alpha (HSP90AA) to indicate that the gene is inducible and (2) beta (HSP90AB) to indicate 
that the gene is constitutive.

HSP90 proteins are highly conserved molecular companions that recognize hydrophobic 
regions exposed in denatured proteins and, in case of folding defects, to correct them in order 

to avoid irreversible protein aggregation [63]. These proteins intervene as protectors in oxida-

tive stress, mediate cell repair, and increase resistance in case of persistent damage [64]; they 

have also been associated with cellular protection in thermal stress caused by high and low 
temperatures [63]. Another HSP90 function is the interruption of the apoptosis process via the 
interaction with and structural conservation of protein kinase B [65]. The thermal shock pro-

tein 90 alpha (inducible) A1 (cytosolic) (HSP90AA1) has been found in the sperm flagellum 
and has been associated with freezability in boars [13]; there are also reports of the existence 

of mRNA for this protein in sperm cells [66], which is synthesized from spermatogenesis and 

spermiogenesis [67]. The HSP90 interact with other proteins in different biochemical path-

ways to ensure a correct folding and proper functioning [65]. In the sperm capacitation pro-

cess, the transduction signals that initiate phosphorylation are mediated by the cyclic AMP 
pathway and protein kinase A [24]. The phosphorylation of HSP90AA1 demonstrates the pos-

sibility of mediating this protein through threonine/serine kinases or by tyrosine kinase [68]. 

In addition, this protein is responsible for the signals of the activation of phosphorylation in 
tyrosine residues of flagellar proteins [69].

There is evidence of decreased intracellular concentration of HSP90AA1 during freezing, con-

comitant with reduced sperm motility, which is possibly associated with the protective func-

tion of this protein and its relationship with the activation of the enzyme nitric oxide synthase 
[70] and the beneficial role of nitric oxide in mobility [71]. In a study conducted by Hou et al. 
[72], it was found that the antibiotic geldanamycin, which is a specific inhibitor of HSP90, 
increases the production of nitric oxide and promotes sperm capacitation in the boar—a fact 
that indicates a different role of the HSP90 in these processes involving the porcine species.

HSP90AA1 is considered a molecular marker for boar semen freezability and it is found intra-

cellularly in lower quantities in low freezability than in higher freezability spermatozoa [13]. 
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This may be due to their exit from the spermatozoa into the extracellular space because of the 
loss in the integrity of the plasma membrane during the cooling [70]. The concentration of the 
HSP90AA1 protein increased in seminal plasma during the period from ejaculation up to 3 h 
of holding time, and this increase was greater among low freezability spermatozoa [44].

2.5. Niemann-pick disease type C2 protein

Niemann-pick C disease is a hereditary disease in which there is accumulation of cholesterol 
in the endosomes and lysosomes of the cell; it is caused by the mutation of two genes: NPC2 
and NPC1 [73]. The mutation of the NPC2 gene causes a defect in the exit of cholesterol from 
the lysosomes, due to the absence of the Niemann-pick protein type C2 (NPC2) (also called 
HE1, which is expressed in lysosomes) [74]. The NPC2 protein is in different tissues and is 
most widely secreted in the epididymis of humans [75] and porcine [76]; it is also secreted in 

seminal vesicles, prostate, and vas deferens, and is therefore found in seminal plasma [77]. In 
the porcine species 2 isoforms of 19 and 16 kDa have been found, with differences in weight 
due to the greater amount of carbohydrates added by N-glycosylation in the 19 kDa. Both 
exhibit a micromolar affinity to cholesterol to the extent that for each mole of protein, one 
mole of cholesterol is attached [76]. The importance of the NPC2 protein is that it binds to 
the cholesterol of the sperm membrane with great efficiency [77], In contrast, NPC2 isoform 
16 kDa does not have this capacity [76].

The exit of cholesterol from the membrane is a trigger of the sperm capacitation process [78] 

and the procedures performed on semen during freezing encourage this output. This leads to 
premature capacitation or cryo-capacitation [79]. NPC2 maintains the proportion of choles-

terol in the sperm membrane and is a decapacitating factor [80]. In addition, this protein has a 
heparin-binding capacity, which suggests an action in sperm capacitation, due to the fact that 

heparin has a capacitating effect in bovine species [81].

Two isoforms of 16 and 19 kDa of the NPC2 protein have been found [44, 76]. The concen-

tration of 19 kDa was higher in boars with seminal plasma of good freezability, with this 
concentration reducing in the period between ejaculation and the conclusion of 3 hours of 
interaction with spermatozoa. These results may be associated with the ability of NPC2 to 
bind to the cholesterol of the sperm membrane and suggest a better preventative mechanism 
against cryocapacitation [44]. These findings serve as a basis to confirm this protein as a new 
marker of boar freezability.

2.6. Prostaglandin D synthase lipocalin type

Prostaglandin D synthase type lipocalin (L-PGDS) is the only lipocalin that has enzymatic 
activity of prostaglandin H2 transformation, produced from arachidonic acid by cycloxygen-

ase, in prostaglandin D2 [82]. L-PGDS is the most abundant protein in cerebrospinal fluid and 
is 75% similar to a homologous protein of 26 kDa. The latter is found in seminal plasma and 
is related to fertility in bulls [83] and boars [84]. The synthesis of this protein is mainly carried 
out in epididymal epithelial cells, with mRNA having also been found in Leydig cells in the 
testis and in prostate epithelial cells [85]. The main function of lipocalins is the transportation 
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of lipophilic substances, and in the case of L-PGDS, a high affinity has been recorded between 
it and retinoids, such as retinoic acid and retinol [86]. Stillwell and Wassall [87] reported 

that the presence of these two molecules in the plasma membrane affects their permeability 
by interacting with phospholipids, which results in greater ion entry from the outside. This 
could be related to capacitation, given that the beginning of the molecular cascade of this 
event is signaled by the change of membrane permeability to ions such as calcium, which 
results in acrosome reaction and hypermotility [88]. Gerena et al. [83] detected that L-PGDS 
is present in the acrosomal membrane in ejaculated spermatozoa, and then disappears in 
spermatozoa with acrosome reaction. In addition, in vitro incubation of spermatozoa with 
the L-PGDS protein increases the union of these with the zona pellucida [89], an action that is 

only possible after membrane changes that occur during capacitation [90]. L-PGDS also has 
an affinity for docosahexaenoic acid, of which it is also a transporter [91]. Docosahexaenoic 

acid interacts with other membrane lipids such as cholesterol and can play an important role 

in local structure and membrane function [92].

Another of the most important functions of the L-PGDS is its intervention in spermatogenesis 
and sperm maturation, through the thyroid hormone (triiodothyronine, T3) that regulates the 
growth, maturation, and functioning of Sertoli cells. This is made possible due to the ability 
of this protein to pass through membranes and to establish a connection between the blood 

fluid, the testicle, and the epididymis [83]. This protein is a potential marker of boar freezabil-
ity because it has been found in different concentrations in the seminal plasma of semen with 
both high and low freezability [44].

2.7. ß subunit of N-acetyl-b-hexosaminidase

Among the most important enzymes related to the freezability of swine semen is the ß subunit 
of N-acetyl-b-hexosaminidase (ß-HEX). ß-HEX binds to the acrosome and is released during 
the acrosome reaction. A reliable indicator of sperm cryotolerance, this enzyme was found to 
be negatively correlated with motility, plasma membrane integrity, and post-thawing lipid 
peroxidation [45].

2.8. Antioxidants enzymes

In sperm cells, there are multiple protection mechanisms against oxidative stress [29], most 

saliently the antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and 
glutathione peroxidase (GPx) [93]. Spermatozoa may also depend upon the presence of extra-

cellular free-radical scavenging systems, which interact with biochemical components of the 
seminal plasma [94].

2.8.1. Paraoxonase type 1

The paraoxonase (PON) enzyme family is functionally linked to cholesterol and is composed 
of three members: PON-1, PON-2, and PON-3 [95]. PON-1 and PON-3 are extracellular 
enzymes present in blood plasma, while PON-2 is an intracellular enzyme not found in blood 
plasma [95, 96].
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PON-1 is an high-density lipoprotein associated enzyme that possess antioxidant and anti-
inflammatory properties, which prevents low-density lipoprotein and high-density lipopro-

tein oxidation and, consequently, protects cells against oxidative stress [96].

Barranco et al. [97] revealed and characterized the presence of the antioxidant enzymes 
PON-1 and PON-2 in boar semen. PON-1 binds to membrane cholesterol, preventing its oxi-
dation and thereby positively influencing both motility and the sperm membrane integrity 
[46]. Likewise, the presence of this protein is correlated with quality, functionality of liquid-
stored semen samples and can also be related to fertility outcomes in boars. Its antioxidant 
properties, specifically the decrease of intracellular ROS generation, could contribute to the 
superior ability of the spermatozoa present in the sperm-peak portion of the ejaculate and to 
colonize the sperm reservoir in the oviduct [98]. The sperm-peak portion contains SP with 
better antioxidant capacities, greater cryotolerance, and lower ROS generation than the post 
sperm-rich fraction. This coincides with high SOD and PON-1 values in this portion [46].

Given the fact that PON-1 is positively related to total motility and viability of frozen–thawed 
boar semen, [46], that there is evidence that activity levels in SP differ among boars [98], and 

the possibility exists that PON-1 levels are genetically determined [96], it can be concluded 

that PON-1 is a potential molecular marker of boar semen freezability.

2.8.2. Superoxide dismutase

Superoxide dismutases are a family of metalloenzymes involved in intracellular and extra-

cellular antioxidant defense system by catalyzing the dismutation of superoxide anions into 

hydrogen peroxide and oxygen. In mammals, three SOD isoenzymes have been described 
by their cellular localization, metal composition in the active site, and sensitivity to inhibi-
tors [99, 100]. It is known that there are two subtypes of copper and zinc containing SOD 
(Cu/Zn-SOD): cytosolic and secretory extracellular SOD, occurring in the seminal plasma 
(EC-SOD). However, there are no research on its properties and functions. The EC-SOD is an 
important antioxidant enzyme of boar seminal plasma, which plays an important physiologi-

cal role in counteracting oxidative stress in spermatozoa [94].
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