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Abstract

Surgical treatment for addiction has been proposed after the successful efficacy of deep 
brain stimulation (DBS) for the treatment of neurological movement disorders such as 
Parkinson’s disease (PD). In the field of psychiatric diseases, DBS has been used firstly 
for obsessive compulsive disorder (OCD) and treatment-resistant depression. The role in 
addiction has been proposed only recently. The target areas for DBS in treatment-refractory 
addiction are nucleus accumbens (NAcc), lateral hypothalamus (LH), amigdala, lateral 
habenula (LHb), dorsal striatum, prefrontal cortex (PFC) and subthalamic nucleus (STN). A 
well-documented rationale for the choice of the target is required in order to investigate the 
effectiveness, safety and feasibility. NAcc appears to be the most effective and safe target 
for DBS followed by STN; PFC is another promising target but needs further exploration to 
establish its suitability for clinical purposes. DBS is not free of risks, so every patient has to 
be carefully evaluated and precise ethical standards must be defined in the form of inclu-
sion and exclusion criteria.

Keywords: deep brain stimulation, psychosurgery, addiction, nucleus accumbens, 
nucleus subthalamicus

1. Introduction

The term “psychosurgery” was coined by Egas Moniz in 1935 to indicate the set of surgical 
procedures performed on the brain to treat diseases and psychiatric symptoms. The goal is to 
change the behavioral—obviously pathological—aspects, placing not only clinically but also 
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ethically complex problems. The entry into the neurosurgical practice of neuromodulation 
methods has opened up a new scenario due to their flexibility and reversibility in their pos-

sible application to the treatment of addiction, such as substance abuse, gambling and internet 
gaming. The term “addiction” generally indicates a model of persistent redundant behaviors 
despite adverse medical or psychological results. The common element is recurrent problem-

atic behavior accompanied by a preoccupation with the behavior [1, 2]. It is attested that the 
development of addiction is not simply the effect of the acute impact of the substance or behav-

ior [3–5] but instead represents a state of imbalance in the reward system [6]. Alterations in 

prefrontal, limbic and cortical areas seem to be involved in addiction and maladaptive behav-

ior not only in animal models but also in human neuroimaging studies [7–9]. The areas most 

involved in the manifestations of addiction are represented by the dopaminergic connections 
between ventral tegmental area (VTA) and nucleus accumbens (NAcc), which modulates learn-

ing, memory and repetitive behaviors. Stimulation of NACC in animals has proven to control 
acquired behaviors as a result of alcohol and cocaine consumption [10–12].

2. Neurobiological mechanism

The development of addiction finds its anatomical and neurobiological bases in the so-called 
neurocircuitry of reward, and it is important to better understand when and how the reward 
system is activated [13]. The term “reward” is defined as any event that increases the prob-

ability of a response with a positive hedonic component. The ascending meso-cortico-striatal 
dopamine systems seem to have a key role in the rewarding properties of nearly all drugs 
of abuse [14]. In humans, positron emission tomography studies have shown that intoxicat-
ing doses of alcohol and drugs release dopamine and opioid peptides into the ventral stri-

atum [15, 16], activating low-affinity dopamine D1 receptors, which are necessary for the 
rewarding effects of drugs [17]. This specific circuitry includes not only dopamine and opi-
oid peptides but also γ-aminobutyric acid (GABA), glutamate, serotonin, acetylcholine and 
endocannabinoid systems that act at the level of either the ventral tegmental area or nucleus 
accumbens. Balanced circuits result in proper inhibitory control and decision-making and 
normal functioning of reward, motivation, stress and memory circuits. These circuits also 
interact with circuits that are involved in mood regulation, including stress reactivity (which 
involves the amygdala, hypothalamus and habenula) and interception (which involves the 
insula and anterior cingulate cortex and contributes to the awareness of negative emotional 
states). Drugs of abuse usurp executive function circuits, motivational circuits and stress cir-

cuits via multiple neurotransmitter-specific neuroplasticity circuits. Key neurotransmitters 
that are implicated in these neuroadaptations include dopamine, enkephalins, glutamate, 
γ-aminobutyric acid, norepinephrine, corticotropin-releasing factor (CRF), dynorphin, neu-

ropeptide Y and endocannabinoids.

3. DBS for the treatment of addiction

The use of deep brain stimulation (DBS) for the treatment of addiction was fortuitous, starting 
from observation in some PD patients the escalation of their intake of dopamine replacement 
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therapeutics in a manner similar in some ways to addiction, a phenomenon known as dopa-

mine dysregulation syndrome (DDS) [18]. Witjas et al. in 2005 described a reduction of the 
behavioral disorders as well as addiction to dopaminergic treatment in two PD patients who 

underwent subthalamic nucleus (STN)-DBS [19]. Subsequently, other studies confirmed the 
resolution of dopamine dysregulation syndrome following STN-DBS for PD [20–22]. In rat 

models it was demonstrated that lesions of the STN decrease motivation to take cocaine sug-

gesting that STN-DBS might be a therapeutic option for addiction [23]. In 2007, during a DBS 
procedure of the nucleus accumbens (NAcc) in a heavy drinker patient with agoraphobia and 
panic attacks, a rapid reduction of the alcohol intake of the patient was observed [24]. Similarly, 
three additional patients receiving accumbens DBS for other indications were reported to have 

spontaneously quit smoking [25].

4. Mechanism of action

The mechanism of action of DBS remains unclear. As to the anatomical organization of the 
nucleus accumbens, it is divided into two major subregions, the core and shell, which differ 
from each other both functionally and anatomically. The core receives projections from the ante-

rior cingulate and dorsal prelimbic, while the shell receives projections from the infralimbic and 
ventral prelimbic cortices [26, 27]. DBS of the accumbens shell or core increased c-Fos immuno-

reactivity, a measure of neuronal activation in these nuclei. c-Fos study indicates that DBS of 
the accumbens shell activates the infralimbic cortex, which could have contributed to the DBS-
induced activation of the shell [12]. DBS applied to either the accumbens core or shell reduced 

alcohol consumption [11]. In contrast, DBS of the medial accumbens shell, but not the accumbens 
core, attenuated cocaine priming-induced reinstatement of drug seeking [12]. Moreover, since 
enhancing neuronal activity in the nucleus accumbens actually promotes the reinstatement of 
cocaine seeking [28, 29], DBS-induced inactivation of the nucleus accumbens via depolarization 
inactivation and/or activation of inhibitory neurons may be responsible for the attenuation of 
cocaine reinstatement [30–32]. Electrophysiological studies showed that accumbens DBS attenu-

ated the spontaneous activity of cortico-accumbal glutamatergic neurons but also stimulated 
cortical interneurons, apparently via recurrent inhibition [33]. However, GABA agonist-induced 
inactivation of the infralimbic cortex attenuated the reinstatement of cocaine seeking induced by 
a priming injection of cocaine [12], which is consistent with accumbens DBS indirectly activating 
GABAergic interneurons. These results suggested that DBS of the accumbens shell produced 
complex effects throughout the circuit in which the shell is embedded. It is generally agreed 
that cocaine self-administration results in aberrant activity in the cortico-accumbal system and 
it appears that normalization of this system is one of the main effects of accumbens DBS [34, 35].

5. Targets

The proposed target areas for DBS in treatment-refractory addiction are several but well-
documented rationale for the choice of the target is required in order to investigate the effec-

tiveness, safety and feasibility.
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5.1. Nucleus accumbens (Nacc)

There is considerable preclinical evidence to support a role for the nucleus accumbens in medi-

ating the motivational effects of conditioned stimuli associated with the drug leading to its 
anticipation. DBS in the NAcc has been successful in treating the behavioral component in 

addiction disorders and substance abuse [36, 37]. Ablative surgeries targeted at the NAcc have 

been used for several years (between 2000 and 2004) in China with mixed results, but a relapse 
rate of 50% and ethical concerns now limit the use of destructive procedures in the treatment 
of addiction [38–40]. The limited outcome and the consecutive side effects (poor concentration, 
poor short-term memory, aconuresis, changes in sexual desire and decreased interest to various 
degrees) are nevertheless expected considering the preclinical data investigating the role of the 
nucleus accumbens. However, there is no clear evidence for a specific alteration of the nucleus 
accumbens in addicted individuals. Despite the reserves considered earlier, few clinical studies 
are considering application of DBS in the accumbens of addicts and therefore as first indication 
with successful results as for example on one case of heroin addiction [41, 42]. Clinical data 

about the efficacy of NAcc stimulation exist in the literature in small case series. In two sin-

gle case studies, two patients who underwent bilateral NAcc stimulation for heroin addiction 
experienced abstinence from opioids to the last follow-up, respectively, at 6 years and 6 months 
[42, 43]. A similar outcome was observed in other two separate cases of patients with chronic, 
severe alcoholism who were treated with DBS in the NAcc reporting abstinence at 1 year [24, 25, 
44]. In a single case of NAcc DBS for obsessive compulsive disorder (OCD), quit smoking was 
reported [45], but a subsequent analysis of 10 patients who received DBS of the NAcc for OCD, 
TS, or anxiety found that only three patients achieved nicotine abstinence within 30 months 
[46]. These case reports show the potential for treatment of substance abuse disorders with 

DBS of the NAcc, but randomized and blinded studies are lacking. However, DBS of NAcc, as 
any other basal ganglia targets, can be associated with unpredictable limbic symptoms such as 
mania and depression [47]. A recent study showed that the DBS of different NAcc subregions 
had different effects on a natural reward such as the motivation for food intake. Specifically, 
the stimulation of the lateral shell decreased the motivation to food while the stimulation of the 

core was without effects [48]. According to some authors, there would be a different response 
of NAcc neurons to natural rewards with respect to secondary rewards to drug intake even 
if it was not possible to demonstrate a preferential localization of such neurons in the core or 
in the shell [49]. The NAcc shell is unlikely to be a good candidate for DBS, considering the 
empirical evidence for its detrimental effect on general motivation and impulse control [50]. In 

conclusion, the NAcc DBS seems to be able to exercise a significant control over drug abuse and 
behavioral components mostly in alcohol and oppiate addictions; therefore, alternative struc-

tures have been considered for DBS with limited preclinical empirical or theoretical support.

5.2. Lateral hypothalamus (LH)

The hypothalamic drive control of food-motivated behavior has been extended to drug 
reward [51]. The lateral portion of the hypothalamus (LH) may be a possible target in the 
treatment of addiction as it has been demonstrated at this level of important transcrip-

tional modifications in subjects with compulsive drug intake and significant control of alco-

hol intake following radiofrequency stereotactic lesions of the ventromedial nucleus [52].  
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The side effects of hypothalamotomy consist of amnesia, vegetative crisis and reduction of 
libido and sexual desire [41]. The unconventional electrical stimulation of LH in rats while 
reducing the stimuli that induce the use of cocaine does not change the motivation for its 

intake [53]. Therefore, electrical stimulation of the posterior hypothalamus seems to have 
similar effects to the lesion producing a reduction of cocaine intake but preserving the pro-

cesses of motivation [54]. The lack of effectiveness on motivation and possible severe adverse 
effects make lateral hypothalamus a target that cannot be used in addiction at the moment.

5.3. Amygdala

Amygdala is involved in the process of evaluating the positivity or negativity of experience 
and in the formation of connections between experience and other signals becoming the cen-

ter of emotional memory and learning [55]. In humans, the reduction of amygdala volume 
has been related to increase in desire for alcohol and cocaine intake and greater tendency 
to relapse [56], while in rats its functional block leads to increase in compulsivity of cocaine 
intake and seeking and reduction of its anxiety-producing effect [57, 58]. However, DBS of the 
amygdala does not find a clinical application in the treatment of addiction at present, even if 
it has been proposed by some authors [59].

5.4. Lateral habenula (LHb)

The lateral habenula (LHb) is a critical brain structure modulating aversive and rewarding 
behaviors through the GABAergic and glutaminergic efferent projections to the ventral teg-

mental area (VTA) by means of the fasciculus retroflexus (FR). The selective degeneration of 
this bundle in drug abuse led to a possible use of deep brain stimulation for the treatment 

of this condition. In rats, deep brain stimulation of LHb with low-frequency (10 Hz)-high-
frequency alternate stimulation (100 Hz) attenuates cocaine self-administration, extinction 
training and reinstatement of cocaine seeking while conventional high-frequency stimulation 
did not have any effect and low-frequency stimulation increases cocaine self-administration 
[60]. The effect of unconventional LHb DBS on cocaine reinforcement may be due to reduction 
of the cocaine-induced increase in glutaminergic input to the VTA.

5.5. Dorsal striatum

Recent studies documented that deep brain stimulation of the dorsolateral caudate/puta-

men significantly attenuates cocaine seeking following chronic cocaine self-administration 
and withdrawal in rats [61] and also an increase of gray matter in both the ventral and the 
dorsal striatum in human addicts [62]. The application of DBS in the dorsal striatum may 
induce undesirable hypokinetic symptoms similar to Parkinson’s disease symptoms due to 
the spread of current to the close motor regions.

5.6. Prefrontal cortex (PFC)

Cingulotomies have been performed for the drug-dependence treatment in order to inter-

rupt obsessional thoughts about drug use. Significant complications have progressively been 
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documented like impaired motivation, attention and executive functions [55, 56], in addition 
to very low effectiveness over addictive behaviors. Recent data showed decreased prefrontal 
activity on fRMN in drug-abuse patients and increased compulsive behavior after DBS of the 
lateral orbital cortex. The latter effect makes this procedure counterproductive [63].

5.7. Nucleus subthalamicus (STN)

High-frequency stimulation of the subthalamic nucleus (STN) in Parkinsonian patients is 
reported to induce primarily motor effects but also psychiatric effects. The likely explana-

tion for these effects is the partitioning of the STN into sensorimotor, associative and limbic 
anatomo-functional territories. The sensorimotor territory (posterolateral) is the target for 
PD, while the associative-limbic territory (anteromedial) is the target for OCD. STN-DBS has 
not yet been tested in addicts, but there are clinical observations in PD patients after STN-
DBS, reporting craving for sweet food in some cases or decreased addictive behavior toward 
DAergic treatment [19–22]. To date, there is no report of STN-DBS effects on any form of 
addiction in OCD patients, but in these patients, the compulsive component of the disease is 
reduced by the stimulation [64]. STN-DBS may play a role in preventing the loss of control 
of drug intake in addicts. The interest on STN-DBS in the treatment of addiction is based 

on clinical reports and preclinical data obtained in rats subjected to either lesion or DBS 

of STN. The stimulation of this target is able to dissociate various rewards, decreasing the 
motivation for the drug without diminishing other forms of motivated behaviors. This ability 
is demonstrated in two original studies. The first study documented the opposite effect of 
STN-DBS on the motivation for cocaine and for the natural reward; the other study proved 
that the stimulation of this target reduces motivation for cocaine while increasing motiva-

tion for sucrose, emphasizing the potential beneficial effects of STN-DBS for the treatment 
of cocaine addiction [23, 65]. Moreover, it was demonstrated that lesions of STN decreased 
incentive motivation (seeking behavior) for cocaine while inducing the opposite effect (facili-
tating incentive motivation) for food [23, 65–68]. This result suggests that STN-DBS may not 
be appropriate for all forms of addiction, but this remains to be investigated in other models 
of alcohol addiction. Therefore, STN represents a potentially effective target for the treatment 
of addiction that can decrease the desire for some drugs without influencing other motivated 
behaviors.

6. Conclusion

Ethics in the history of psychosurgery has played a secondary role in experimentation due 
to the lack of effective medical therapy for mental disorders. The highest ethical standards 
for the use of DBS should be applied. The great suffering of patients and their poor quality 
of life, as well as the high social costs, are in favor of the use of this method in patients resis-

tant to pharmacological therapy. Some fundamental ethical problems are mostly extendable 
to all clinical interventions as well as to neurostimulation procedures in neurological and 

psychiatric disorders. The reversibility of the method and the potential benefits are impor-

tant ethical arguments for the use of DBS in addiction. On the other hand, DBS is not free of 
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risks (hemorrhages, infections, battery life), so every patient has to be carefully evaluated, 
and precise ethical standards must be defined in the form of inclusion and exclusion criteria. 
Beyond the negative parabola of psychosurgery, a rational scientific solid, a precise experi-
mental protocol and adherence to a rigid ethical code are key factors to ensure the success of 
these researches. As to the target, the nucleus accumbens is very promising. We must keep in 
mind when choosing new optimal neural targets that likely the local and surrounding DBS 
influences might depend on the stimulated structure and its specific afferents, efferents, cell 
types, ratio of projection neurons to interneurons and transmitter systems.
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