
17 

Pathogenic Features of Insulin  
Resistance and Critical  

Organ Damage in the  
Liver, Muscle and Lung 

Kei Nakajima1, Toshitaka Muneyuki 2,  
Masafumi Siato1 and Masafumi Kakei2 

1Division of Clinical Nutrition, Department of Medical Dietetics  
Faculty of Pharmaceutical Sciences  

Josai University, Sakado  
2First Department of Comprehensive Medicine, Saitama Medical Center  

Jichi Medical University School of Medicine, Omiya  
Japan 

1. Introduction 

1.1 Overall pathogenic features of insulin resistance  

Over the last two decades, type 2 diabetes and metabolic syndrome (MetS) have been 

increasing worldwide in concert with an increasing obesity pandemic [Grundy, 2005; 

Kopelman, 2007; Dixon, 2010]. In particular, abdominal obesity predisposes to development 

of type 2 diabetes and MetS through the pathogenic feature of insulin resistance, mostly 

accompanied by hyperinsulinemia to compensate for impairment of insulin action, 

especially in the early stage of these diseases [Bartnik, 2007]. In addition to genetic 

background, generally unfavorable lifestyles, such as smoking, infrequent exercise, 

sedentary working, overeating, and unbalanced nutrition provoke insulin resistance and 

cause progress in cooperation with obesity [Grundy, 2005; Kopelman, 2007; Bartnik, 2007; 

American Diabetes Association, 2010]. Once excess abdominal obesity is present, numerous 

cytokines, chemokines, and free fatty acids (FFA) are secreted from hypertrophic visceral fat 

as well as trunk subcutaneous fat, leading to deterioration of such pathogenicity [Capeau, 

2008; Meshkani, 2009; Gustafson, 2010]. Type 2 diabetes and MetS have emerged as major 

public health problems as comorbid conditions not only with microvascular disease but also 

with macrovascular disease [Grundy, 2005; Kopelman, 2007; Dixon, 2010; Bartnik, 2007; 

American Diabetes Association, 2010]. Because insulin resistance and resultant 

hyperinsulinemia are a pivotal pathophysiology, these etiologies simultaneously contribute 

to hypertension, dyslipidemia (increased triglycerides and decreased high-density 

lipoprotein cholesterol), and hyperuricemia in a complex manner, in addition to causing 

abnormal glucose metabolism [Grundy, 2005; Kopelman, 2007; Dixon, 2010; Bartnik, 2007; 

American Diabetes Association, 2010].  
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Currently, insulin resistance is not limited to traditional insulin-sensitive tissues and organs 
such as skeletal muscle; it also affects other critical organs such as the kidney [Kubo, 1999; 
Chen, 2003; Guarnieri, 2010] or possibly the lung [Kaparianos, 2008; Klein, 2010; Fimognari, 
2010], which are involved in the development of cardiovascular diseases and impaired 
quality of life. In addition, glucose and FFA as fundamental energy substrates are closely 
related to each other; this relationship was originally conceptualized as the “glucose-fatty 
acid cycle” by Randle et al. half a century ago [Randle, 1963]. Therefore, clinicians in 
different fields, including cardiology, lipidology, and hepatology, and clinical scientists 
should be aware of the pathophysiology of insulin resistance, extending far beyond the 
narrow range of clinical diabetology, for the prevention, care and improvement of critical 
diseases comprising microvascular and macrovascular diseases, and organ damage.  

1.2 Effect of hyperinsulinemia  

It is unknown whether the insulin resistance exerts similar effects in all tissues and organs. 
Hyperinsulinemia per se has substantial effects on many tissues and organs because in 
addition to precise regulation of glucose metabolism, insulin has pleiotropic actions. These 
actions are mostly anabolic properties, leading to storage of lipids and glucose substrates, 
and increased protein synthesis and cell proliferation and growth, which are activated via 
the MAP kinase pathway [Meshkani, 2009; Godsland, 2009]. However, these often result in 
adverse outcomes such as vascular endothelial thickening, polycystic ovary syndrome, and 
provoking latent cancers as well as acanthosis nigricans, a skin lesion characterized by 
thickened and hyperpigmented plaques around the neck [Harwood, 2007; Higgins, 2008]. 
Furthermore, insulin has been shown to have antinatriuretic actions (Na+ reabsorption by 
the kidney and circulating volume retention) and enhanced sympathetic nervous system 
activation, eventually resulting in elevated blood pressure, which is one of the components 
of MetS. Notably, chronic hyperinsulinemia in turn deteriorates insulin resistance in tissues 
originally sensitive to insulin because the insulin receptor is downregulated by a feedback 
mechanism or is degraded along with insulin [Capeau, 2008].   

1.3 Progression of insulin resistance 

As shown in Figure 1 [Laakso, 2003], the amount of circulating insulin, i.e., 

hyperinsulinemia, normal insulinemia, or hypoinsulinemia, can interfere with the effects of 

insulin resistance in the progression of type 2 diabetes and MetS, with varying degrees of 

glucose toxicity and/or lipotoxicity. However, insulin resistance will continue to progress 

unless the individual improves an unhealthy life style and abdominal obesity, regardless of 

an irreversible and progressive decline in insulin secretion.  

Type 2 diabetes has a strong genetic component [American Diabetes Association, 2010]. Of 

note, the prevalence of impaired glucose tolerance is high in many Asian countries [Sharma, 

2010]. Therefore, a strong gene-environmental interaction may be one of the causes for the 

rapidly increasing rate of diabetes, especially in Asians, who are now becoming accustomed 

to an unhealthy lifestyle [Sharma, 2010]. Among the Asian peoples, particularly the 

Japanese, they show a lower insulin secretory capacity after glucose loading, suggesting a 

smaller potential for pancreatic beta cell function than in Western people [Kaku, 2010]. 

Furthermore, most Asians also have a genetic background of the “thrifty gene”, including 

specific polymorphisms of peroxisome proliferator-activated receptor (PPAR), beta 3-

adrenagic receptor, and ucp- 1 [Hara, 2000; Kahara, 2002].   
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Fig. 1. Insulin resistance, impaired insulin secretion, and fasting glucose in relation to micro-
and macrovascular diseases (Laakso, 2003). 

Worldwide, it is unknown which factor factors occur first, insulin resistance or insulin 
deficiency. People with type 2 diabetes probably have both conditions in varying degrees. In 
this chapter, we discuss the pathophysiology of insulin resistance and organ damage (liver, 
muscle, and lung) particularly in the stages of hyperinsulinemia with mild glycemia, where 
restrict more stringent glucose control soon after diagonosis of diabetes is important for the 
so called “legacy effect” long-term legacy effect that is known as long-term reduction of 
myocardial infarction and all-cause mortality in intensive treatment cohort as compared to 
the standard arm after further 10-years follow up UKPDS [Chalmers, 2008; Murray, 2010]. 

1.4 Common mechanisms of multiple organ damage in relation to insulin resistance 

Common mechanisms of organ damage that relate to insulin resistance appear to be 
dyslipidemia, abnormal glucose metabolism, subtle inflammation, oxidative status, low 
blood flow systemically as well as locally because of reduced nitric oxide (NO) synthesis, 
and hypertension, most of which enhance the renin-angiotensin-aldosterone system (RAAS) 
and Rho/Rho kinase signaling, which attenuate microvessel function in many organs 
[Capeau, 2008; Meshkani, 2009; Gustafson,2010; Lastra, 2010; Choi, 2010]. Several animal 
and cellular studies have shown that activation of the RAAS as well as Rho/Rho kinase 
signaling is associated with impaired insulin signaling and insulin resistance in most 
organs, including the liver, muscle, and kidney [Choi, 2010; Lastra, 2006].  
Regarding abnormal glucose metabolism, euglycemia or mild hyperglycemia with resultant 
hyperinsulinemia is observed in the early stage of type 2 diabetes, whereas reduced insulin 
secretion and chronic hyperglycemia with lasting insulin resistance is still observed in 
advanced stages [Bartnik, 2007; American Diabetes Association, 2010]. Specific mechanisms 
according to organs (liver, muscle, and lung) are described in the following sections. The 
effects of insulin on cell metabolism are mediated by binding of insulin to its receptor on the 
cell surface, leading to phosphorylation of tyrosine residues, followed by the activation of 
phosphatidylinositol 3-kinase (PI 3-kinase) [Liu, 2010; Tatoń, 2010; Tarantino, 2010]. The 
main receptor is insulin receptor substrate (IRS), which has four isoforms (IRS1-4). Many 
organs and tissues have both IRS-1 and IRS-2 with different actions [Tatoń, 2010; Tarantino, 
2010]. IRS-3 is mainly involved in adipocytes and IRS-4 is involved in the kidney/thalamus. 
Insulin resistance appears to occur at the receptor level by the inhibition of receptor tyrosine 
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kinase activity, although a relatively reduced number of insulin receptors on the cell surface 
may also affect insulin resistance. Because a comprehensive description of insulin resistance 
in all organs is beyond the scope of this review, we will highlight major organ damage (liver 
and muscle) as well as the emerging field of the lung. 

2. Insulin resistance and liver and skeletal muscle 

It is now commonly accepted that in addition to critical immune functions such as natural 
killer cells and digestive function such as formation of bile acid as well as actions of 
detoxification, the liver plays a central role in regulating systemic metabolism, including 
protein, carbohydrate, and lipid metabolism, all of which are under close control by a series 
of hormones secreted from various organs [Tarantino, 2010]. Of these hormones, in 
particular, circulating insulin substantially interferes with these hepatic functions and 
systemic metabolism [Capeau …] 2008; Meshkani, 2009; Gustafson, 2010; Lastra, 2010; Choi, 
2010; Liu, 2010; Tatoń, 2010; Tarantino, 2010; Samuel, 2010].  
Originally, simple steatosis, i.e., fatty liver, was thought to remain benign throughout life. 
However, currently, fatty liver or so called non-alcoholic fatty liver disease (NAFLD) and its 
worsened condition, non-alcoholic steatohepatitis (NASH), have been emerging as one of 
the conditions that cause critical organ damage in the general population, mostly 
accompanied by type 2 diabetes and MetS [Capeau, 2008; Meshkani, 2009; Liu, 2010]. Similar 
to other lifestyle-related diseases, most people with NAFLD remain untreated with few or 
no symptoms until a blood test or abdominal ultrasound are conducted in the clinical 
setting. Generally, serum hepatic enzymes, especially alanine aminotransferase, are often 
elevated beyond the normal range [Schindhelm, 2006; Chang, 2007; Ghouri, 2010]. However, 
these hepatic enzymes occasionally remain within the normal ranges [Chang, 2007] and are 
overlooked until an abdominal ultrasound test is performed. Importantly, NASH may 
occasionally progress to cirrhosis (10-15%) and rarely to hepatic cancer after several decades 
[Estep, 2010]. NAFLD generally follows the presence of abdominal hypertrophic fat cells in 
clinical practice. Plausible main causes are direct influx via the portal vein of FFA (long 
chain FFA), glycerol, and proinflammatory cytokines comprising tumor necrosis factor 
(TNF)-ǂ, interleukin (IL)-6, and IL-1 from visceral and upper body fat, which follow insulin 
resistance at visceral fat tissues by activating hormone sensitive lipase and adipose tissue 
triacylglycerol lipase [Capeau, 2008; Meshkani, 2009; Gustafson, 2010; Nakajima, 2010].  

2.1 FFA metabolism in hepatic cells 

Chronically elevated fatty acids can impair the function of pancreatic ǃ-cells [Bollheimer, 
1998]. In addition, elevated fatty acids enter hepatic cells via fatty acid transporter protein 
CD 36 and fatty-acid-binding protein [Makowski, 2004], providing a major amount of FFA, 
which are converted into triglycerides (TG) and secreted by the liver in the form of very low 
density lipoprotein (VLDL). FFAs from lipolysis of adipose fat account for approximately 
60% of the total FFA in the liver [Donnelly, 2005]. In contrast, chylomicron, an exogenous 
triglyceride-rich lipoprotein synthesized from the diet in the intestine, enters the circulation 
via the thoracic duct after being absorbed into the lymph duct, and eventually is taken up 
through remnant receptors by the liver, and this accounts for 15% of the total FFA in the 
liver. The rest of the FFAs are those newly synthesized by the liver. Therefore, theoretically, 
a substantial improvement of NAFLD and NASH would not occur until body fat is 
substantially reduced. FFA has lipotoxic effects and exerts hepatic injury, whereas TG 
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formation, which may be less toxic, is protective in hepatic cells [Capeau, 2008; Tarantino, 
2010; Cnop, 2001]. These FFAs do not develop significant metabolic disturbances as long as 
they are successfully oxidized in well-functioning mitochondria in target tissues. 
Consistently, in the early stage of NAFLD, fat accumulation in the form of TG with intact ǃ-
oxidation is considered to be rather benign and is called the “first hit” stage. However, 
excess ǃ-oxidation increases reactive oxygen species (ROS), and this is considered to 
provoke the so called “second hit“ process to NASH [Gentile, 2008; Tessari, 2009]. 
Insufficient action of superoxide dismutase, which neutralizes superoxide free radicals, may 
contribute to increased ROS in the cytosol [Faraci, 2004; Miao, 2009]. Increased ROS in turn 
activates the immune system and hepatocytes and stellate cells, followed by increased 
collagen synthesis and transforming growth factor secretion, resulting in development and 
progression of hepatic fibrosis [Gressner, 2008; Matsuzaki, 2009].  

2.2 FFA metabolites and impairment of insulin signaling 

Excess long-chain fatty acyl CoAs, diacylglycerol (DAG), and FFA metabolites cause IRS-1 
serine phosphorylation via protein kinase C (PKC), thereby inhibiting the PI 3-kinase 
pathway [Shulman, 2000]. In this situation, inhibition of FOXO1 via Akt does not occur, 
resulting in increased glyconeogenesis and reduced glycogen synthesis [Sharma, 2010], 
because glucose enters the liver through glucose transporter GLUT2, which is always 
present at the cell membrane, independent of insulin action. TNF–ǂ inhibits insulin signal 
transduction by activating Jun kinase and IKKǃ, which cause serine phosphorylation of IRS 
[Gustafson, 2010; Shulman, 2000; Popa, 2007].  
With regard to glucose metabolism, the liver appears to play a pivotal role because liver IRS 

knockout mice show systemic insulin resistance, whereas muscle IRS knockout mice do not 

have insulin resistance, regardless of increased fat mass and circulating fatty acids [Brüning, 

1998; Kim, 2000]. Nevertheless, controversy still remains because extra-hepatic IRS2-

dependent mechanisms may be involved in the regulation of glucose homeostasis 

[Simmgen, 2006]. 

Under most conditions, hepatic insulin resistance and peripheral insulin resistance progress 

in parallel, although the clinical relevance and mechanisms have not been fully elucidated. 

Under conditions of hepatic insulin resistance, glucogenolysis and gluconeogenesis are 

stimulated because of decreased suppression by insulin, resulting in hyperglycemia, 

especially in the fasted state, and the storage of glycogen in the liver is reduced.    

The liver has both IRS-1 and IRS-2 with different actions [Capeau, 2008; Meshkani, 2009, 

Tatoń, 2010; Morino, 2006]. Kubota et al. showed that IRS-2 mainly functions during fasting 

and immediately after refeeding, and IRS-1 functions primarily after refeeding [Kubota, 

2008]. Furthermore, liver-specific IRS-2-knockout mice display insulin resistance during 

fasting but not after refeeding. Therefore, IRS-2 may be involved in the fasting state via 

limitation of hepatic glucose production by controlling phosphoenolpyruvate carboxykinase 

and glucose 6-phoshatase [Capeau, 2008; Haeusler, 2008]. Thus, insufficient amount of 

hepatic IRS-2 during fasting due to insulin resistance may result in abnormal glucose 

metabolism with postprandial hyperglycemia [Kubota, 2008].   

2.3 Insulin resistance and abnormal lipogenesis 

There is a paradoxical mechanism in the lipogenic metabolism of hepatocytes in subjects 
with insulin resistance. Although the mechanism has not been fully elucidated yet, de-novo 
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lipogenesis is activated by sterol regulatory element- binding protein (SREBP)-1c, which is 
insulin sensitive and is enhanced by elevated insulin [Eberlé, 2004; Ferré, 2007]. 
Alternatively, such lipogenesis is partially explained as a result of endoplasmic reticulum 
stress, activating the cleavage of SREBP-1c [Ferré, 2007; Ferré, 2010].  
The three SREBP isoforms, SREBP-1a, SREBP-1c and SREBP-2, have different roles in lipid 
synthesis. Animal studies using transgenic and knockout mice suggest that SREBP-1c is 
involved in FFA synthesis and glucose metabolism, whereas SREBP-2 is relatively specific to 
cholesterol synthesis [Eberlé, 2004; Ferré, 2007; Ferré, 2010]. The SREBP-1c isoform appears 
to be mainly regulated at the transcriptional level by insulin. Indeed, SREBP-1c knockout 
mice are likely to have high plasma glucose during a carbohydrate feeding period [Liang, 
2002], suggesting that SREBP-1c expression is involved in the pathophysiology of type 2 
diabetes and MetS. Although extensive studies have been limited to animal studies, liver X 
receptor, which is a nuclear hormone receptor highly expressed in the liver and it responds 
to oxysterol, enhances fatty acid synthesis by activating SREBP-1c, which in turn activates 
lipogenesis as well as VLDL assembly and secretion [Liang, 2002; Okazaki, 2010]. Therefore, 
there is a complicated relationship between glucose metabolism and lipid metabolism, 
which includes many transcriptional factors  
The liver can store extra fat that should be originally accumulated in adipose tissue or 

skeletal muscle. However, such fat accumulation eventually aggravates organ function. 

Ectopic fat deposition, especially as triglycerides, in the liver may be a rough hallmark of 

insulin resistance, particularly in adipose tissue. However, organ damage does not occur 

yet, although impaired insulin signaling is imminent. Excess fat accumulation and their 

metabolites may provoke a second stage. Therefore, NAFLD and NASH may be more severe 

clinical conditions than simple obesity regardless of the visceral or subcutaneous type. 

Tarantino et al. [Tarantino, 2010] suggested that hepatocytes are the last type of cell to store 

fat when other cell types are full with fat. Therefore, lifestyle intervention and possible 

treatments should be initiated at simple steatosis instead of overt steatohepatitis. 

2.4 Possibility of pharmacological treatment 

Recently, it has been shown that a relatively long time (1-2 years) of treatment with vitamin 

E and thiazolidinediones improves NAFLD and NASH [Aithal, 2008; Duvnjak, 2009; Sanyal, 

2010; Musso, 2010], suggesting that anti-oxidative agents and PPAR-Ǆ agonists may improve 

the pathophysiology of the liver as well as clinical variables in patients with NASH and 

NAFLD. PPAR-Ǆ, which belongs to the nuclear hormone receptor family, is mainly 

expressed in adipose tissues [Anghel, 2007] and exerts substantial actions such as adipocyte 

differentiation and fibroblast differentiation into mature adipocyte types [Anghel, 2007; 

Mandrup, 1997]. Therefore, improvement of NASH and NAFLD may be predominantly 

caused through improvement of the etiology in the visceral tissue or upper subcutaneous 

fat, although the precise underlying mechanism is unknown. Considering the discrepancy 

between the site of PPAR-Ǆ expression and that of the pharmacological effects, the plausible 

mechanism is that thiazolidinediones restore fat accumulation from the liver or muscle into 

adipose tissues and confine it in adipose tissue at the long term expense of adipose cells 

[Samuel, 2010]. Mayerson et al. [1997] showed that treatment with rosiglitazone results in a 

significant reduction of hepatic triglyceride content along with successful suppression of 

adipocyte lipolysis. Unexpectedly, there is also increased intramyocellular fat as 

triglycerides accompanied by improved insulin sensitivity in muscle. This suggests that 
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intramyocellular fat alone is unlikely to reflect insulin resistance, similar to triglyceride 

accumulation in the liver and the “first hit” stage in the second hit theory of NASH. 
 Such apparent improvement in insulin resistance often results in adverse outcomes, such as 
an increase in the amount of adipose cells by differentiation of adipose cells, eventually 
leading to weight gain and systematic edema [Duvnjak, 2009; Sanyal, 2010], which in turn 
loads the heart and aggravates latent heart failure. Long-term treatment of 
thiazolidinediones, in which pioglitazone may be better than rosiglitazone in terms of less 
side effects [Tang, 2006; Tzoulaki, 2009], can result in intolerance for some people with 
diabetes because of these adverse effects, regardless of whether they provoke heart failure. 
Likewise, the safety and efficacy of long-term treatment with vitamin E has not been 
established yet in the clinical setting. Metformin (biguanide), an insulin-sensitizer, is 
considered as the first choice for type 2 diabetes because it has fewer side effects and a mild 
lipid-lowering property. However, the outcomes of clinical trials are conflicting [Duvnjak, 
2009]. Therefore, it is not recommended to treat NAFLD patients with metformin unless 
they have abnormal glucose metabolism. 
 In contrast, 3-hydroxy-3-methyglutaryl-coenzyme A (HMG-CoA) reductase inhibitors 
(statins) do not seem to be an effective treatment for NASH, with conflicting outcomes 
[Nelson, 2009; Kimura, 2010]. Statins are used in clinical practice to improve lipid 
metabolism, particularly low density lipoprotein-cholesterol. In addition, they have a 
pleiotropic effect including anti-inflammatory actions [Davignon, 2004] in which 
proinflammatory cytokines, such as C-reactive protein (CRP) and TNF-ǂ, are substantially 
reduced by the use of statins. Notably, although CRP and TNF-ǂ are related to insulin 
resistance and metabolic abnormalities, statins are unlikely to improve the histology of 
NALD and NASH. This finding might be related to the fact that statins are associated with 
deterioration of glucose metabolism [Sattar, 2010; Koh, 2010]; however, further in depth 
studies are required. 

2.5 Liver cirrhosis and insulin resistance 
Liver cirrhosis causes hepatic insulin resistance, resulting in hyperinsulinemia and diabetes 
because of both decreased insulin clearance and increased secretion of insulin from the 
pancreas [Petrides, 1994; Hickman, 2007; Garcia-Compean, 2009]. A substantial amount of 
patients with cirrhosis have glucose intolerance (~96%) and a relatively small amount of 
them may have overt diabetes (~30%) [Hickman, 2007; Garcia-Compean, 2009]. In patients 
with liver cirrhosis, particularly in the decompensated stage, substantial hyperglycemia as 
well as hypoglycemia occur as a result of a lack of glucose control because of lack glucose 
uptake in the postprandial state and glucose secretion by the liver in the fasting state. Such 
diabetes and abnormal glucose metabolism, which develop as a complication of cirrhosis, 
are known as “hepatogenous diabetes” [Garcia-Compean, 2009] and they worsen the clinical 
outcomes of patients along with malnutrition associated with advanced cirrhosis. Hepatitis 
C virus (HCV) and hemochromatosis are known to frequently accompany diabetes and 
insulin resistance [Hickman, 2007; Garcia-Compean, 2009]. Although underlying 
mechanisms between HCV infection and insulin resistance are not clearly known, HCV 
induces insulin resistance primarily because of TNF-ǂ overproduction, regardless of obesity 
and hepatic fibrosis stage [Kawaguchi, 2010]. 

2.6 Skeletal muscle and insulin resistance  

Skeletal muscle is a large organ that consumes a variety of nutrients including glucose, 
lipids, and proteins. After a meal, approximately one third of absorbed glucose is taken up 
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by the liver and the rest is mainly taken up by the skeletal muscle [Abdul-Ghani, 2010]. 
Therefore, skeletal muscle can substantially interfere with systemic glucose metabolism and 
alter peripheral insulin sensitivity as well as hepatic insulin sensitivity [Samuel, 2010; 
Turcotte, 2008]. Therefore, the pathogenic features of skeletal muscle need to be considered 
in relation to the liver and adipocytes. In liver and muscle, there are many common 
mechanisms of lipid and glucose metabolism. Ectopic fat accumulation in skeletal muscle is 
often observed in patients with type 2 diabetes and MetS. Such fat deposition is considered 
to be the cause of insulin resistance [Tarantino, 2010; Samuel, 2010; Abdul-Ghani, 2010]. 
However, while the amount of intramyocellular lipids can be used as a marker of insulin 
resistance in general, similar to the liver, these neutral triglycerides themselves are not 
thought to be harmful [Abdul-Ghani, 2010; Eckarde, 2011]. In addition, storage of 
carbohydrates as glycogen in muscle is impaired in people with insulin resistance [Samuel, 
2010].  
FFA metabolism and increased fatty acid metabolites such as long-chain acyl CoA, DAG, 

and ceramide, are likely to play a pivotal role in the development of insulin resistance in 

skeletal muscle [Samuel, 2010]. Accumulated DAG has a high affinity for PKC, which in 

turn cause a reduction of tyrosine phosphorylation of IRS-1, followed by reduced glucose 

uptake via GLUT4. A plausible reason why lipid intermediates accumulate in muscle cells is 

because of an unbalance between a higher rate of FFA uptake and a lower rate of FFA 

disposal, which is primarily performed by ǃ–oxidation in the mitochondria. High circulating 

FFA may result from adipocyte lipolysis because of insulin resistance in adipose tissue. 

Because higher circulating FFA are correlated with a higher uptake of FFA by muscle, 

consequent high FFA in muscle may be related to insulin resistance in adipose tissue. 

Muscle oxidation capacity is reduced in patients with type 2 diabetes and obesity, leading to 
increasing oxidative stress in skeletal muscle [Abdul-Ghani, 2010; Turcotte, 2008; Eckardt, 
2011; Tsutsui, 2011]. Increased oxidative stress, such as ROS, in the muscle deteriorates 
exercise capacity [Tsutsui, 2011], resulting in muscle weakness and disuse muscle atrophy.  
 It is well known that favorable modulation of mitochondrial oxidative capacity in skeletal 

muscle by exercise training improves the oxidation of fatty acids, leading to effective insulin 

downstream signaling. It has been suggested that insulin resistance of muscle in the elderly 

may contribute to the development of sarcopenia [Volpi, 2004; Boirie, 2001], an unintended 

loss of muscle mass, strength, and function. In fact, when glucose is ingested with a regular 

meal, it is likely that increased insulin has a negative effect on muscle protein synthesis, 

particularly in older individuals [Volpi, 2004], suggesting that increasing muscle protein 

synthesis via insulin may be impaired in the elderly. It is unknown whether this negative 

effect is also observed in patients with type 2 diabetes; studies in relation to insulin effects 

on skeletal muscle are required to prevent “diabetes disability” in the elderly and people 

with insulin resistance. 

 Adiponectin, a hormone secreted by normal-sized adipocytes, stimulates AMPK activation, 
fatty-acid oxidation, glucose uptake, and lactate production in skeletal muscle [Yamauchi, 
2002]. Adipocyte-myocyte crosstalk is an important modulator in the development of 
skeletal muscle insulin resistance [Havekes, 2010]. Accumulating evidence suggests that not 
only adipose cells but also skeletal muscle synthesize and secrete specific cytokines called 
“myokines” that modify metabolic crosstalk between organ systems. A substantial amount 
of IL-6 is released from skeletal muscle during and after exercise, i.e., contracting skeletal 
muscle, which is correlated with increases in AMPK activity in many tissues [Pedersen, 
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2007]. A slight to mild increase in serum IL-6 levels is often observed in obese people and 
individuals with type 2 diabetes, whereas a greater increase in IL-6 levels after exercise is 
considered as a facilitator of increased fuel metabolism, leading to adipocyte lipolysis and 
fat oxidation. Therefore, under certain conditions, IL-6 and other muscle-derived cytokines 
may play a role in preventing metabolic abnormalities such as type 2 diabetes [Pedersen, 
2007] and damage to skeletal muscle. 

3. The lung and insulin resistance 

Complications of diabetes affect many tissues and organs, resulting in retinopathy, 

nephropathy, neuropathy, cardiovascular diseases, peripheral vascular diseases, stroke, and 

periodontal pathologies. Diabetes as well as MetS and hypertension, which are associated 

with insulin resistance and hyperinsulinemia, contribute to these complications and organ 

damage/failure. We discuss here impaired lung function in relation to the pathogenic 

features of insulin resistance. 

Impaired lung function and lung diseases have been rarely discussed in terms of metabolic 

abnormalities. Although the diabetic lung was topically discussed in early human studies 

[Kaparianos, 2008; Klein, 2010], there have been limited investigations for metabolic 

abnormalities and impaired lungs. 

With regard to respiratory function, respiratory diseases are generally divided into 

obstructive or restrictive lung diseases. To date, chronic obstructive pulmonary disease 

(COPD) is a leading cause of mortality in many countries and is increasing mainly because 

of the expanding number of smokers as well as the advancing age of the population. The 

association of COPD with all-cause mortality and cardiovascular events has been intensively 

studied in numerous prospective and cross-sectional studies [Fimognari, 2010; Rabe, 2007]. 

Molecular and cellular studies have explored the detailed mechanisms of COPD, which are 

considered to be related to local inflammation in the lung and systemic inflammation as 

assessed by elevated CRP and TNF-ǂ levels [Fimognari, 2010; Rabe, 2007]. Although 

elevated CRP levels have been considered to be related to insulin resistance [Ndumele, 2006; 

Lu, 2010], metabolic abnormalities including type 2 diabetes and MetS have not been found 

to be involved in the etiology of COPD or an obstructive spirometric pattern [Fimognari, 

2010]. Accumulating evidence is now questioning the association between the pathogenic 

features of insulin resistance and COPD because of elevated plasma adiponectin and the 

absence of either dyslipidemia, at least quantitatively [Basili, 1999], or insulin resistance 

[Fimognari, 2010] in COPD patients. 

3.1 Restrictive lung disease and metabolic abnormalities 

In recent years, some studies have addressed the association between low vital capacity, i.e., 

restrictive lung disease (RLD), and fatal and critical diseases. However, the magnitude of the 

increased mortality risk for RLD, e.g., the hazard ratio, appears to be comparable with that 

of mild-to-moderate COPD [Mannino, 2003a, 2003b; Purdue, 2007]. Although the etiology 

and cause of RLD are unknown, the prevalence of RLP is similar to that of COPD; it is 

approximately half to equal that in COPD or obstructive lung disease in some studies 

[Mannino, 2003a, 2003b; Purdue, 2007; Ford, 2004, Guerra, 2010]. 

In addition to earlier studies on the diabetic lung [Kaparianos, 2008], relatively recent cross-
sectional studies and prospective studies, which investigated the relationship between 
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restrictive lung disease and cardiometabolic risks, have yielded almost uniform outcomes. 
They found that the restrictive pattern is associated with MetS (insulin resistance, 
dyslipidemia), type 2 diabetes, and inflammatory markers, especially CRP [Fimognari, 2010; 
Ford, 2004; Nakajima, 2008; Lin, 2006; Fimognari, 2007; Lee, 2008; Yeh, 2008; Chance, 2008].  
Fimognari et al. [2007] revealed an association between RP and MetS in older persons in 
terms of insulin resistance. They observed that insulin resistance was much higher in the 
restriction group than that in the obstruction group and normal controls. Intriguingly, type 1 
diabetes has been reported to be predominantly associated with features of RP [Schnack, 
1996; Makkar, 2000; Boulbou, 2003]. Generally, type 1 diabetes is not accompanied by 
insulin resistance. Therefore, the results suggest a possible link between endocrine 
disorders, i.e., insufficient insulin action and impaired pulmonary function.  

3.2 Determination of RLD in the clinical setting 

Pulmonary function testing is often used and recommended for the assessment and 
management of impaired pulmonary function. However, spirometer-diagnosed COPD and 
RLD in such large studies could be equivocal because of controversy regarding the 
definitions and limitations in each facility. Furthermore, RLD may involve characteristics 
that reflect a restrictive pattern, some of which are caused by extrapulmonary impairment. 
This restrictive pattern includes various etiologies including classical RLDs such as 
interstitial lung diseases, respiratory muscle weakness, congestive heart failure, pneumonia, 
restrictive thoracic cage and, possibly, severe obesity. Theoretically, the determination of 
RLD should be assessed based on the reduction of total lung capacity (TLC) instead of a 
decline in vital capacity or forced vital capacity (FVC). According to the American Thoracic 
Society and the European Respiratory Society (ATS/ERS) task force [Pellegrino, 2005], a 
restrictive ventilatory defect is characterized by a reduction in TLC below the 5th percentile 
of the predicted value and a normal forced expiratory volume in 1 second (FEV1)/vital 
capacity (VC). Therefore, it is not possible to accurately diagnose RLD using only an 
ordinary spirometer. However, measuring TLC is unfeasible in large studies as it is time 
consuming, expensive, and requires special facilities and trained technicians. It has been 
reported that a slightly increased FEV1/FVC is often caused by submaximal inspiratory or 
expiratory efforts, or peripheral air flow obstruction [Pellegrino, 2005]. In our previous 
study, we showed that a stricter restrictive pattern was substitutively defined as a 
combination of low FVC assessed by lower limits of normal and relatively high FEV1/FVC 
(≥ 85%) [Nakajima, 2008].  
Despite these limitations in the assessment of RLD, RLD and COPD have been associated 
with mortality and fatal incidents from cardiovascular disease [Mannino, 2003a, 2003b; 
Purdue, 2007; Hozawa, 2006, Guerra, 2010], but there is a lack of adequate understanding of 
the underlying mechanisms. Mannino et al. [2003b] reported that moderate and severe 
COPD were associated with an increased mortality risk in current and former smokers, but 
not in people who never smoked. In contrast, RLD was associated with an increased risk of 
mortality to a similar extent in all three smoking categories (current, former, and never 
smoked), suggesting that the mortality risk of COPD is mostly dependent on smoking 
status, whereas that of restrictive pattern is not. Likewise, in white people who have never 
smoked, the incidence of stroke is significantly increased along with reduced FVC, but not 
FEV1/FVC [Hozawa, 2006]. Similar trends have also been recognized in other studies 
[Mannino, 2003a; Purdue, 2007] Therefore, factors other than smoking appear to deteriorate 
the fundamental pathogenesis of RLD. 
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3.3 Relation of RLD to cardiometabolic risks 

Our laboratory and other investigators [Nakajima, 2008; Lee, 2008; Yeh, 2008, Klein, 2010] 
have reported that the mean FVC in persons with MetS or diabetes is reduced by 
approximately 6.0% compared with those without the diseases. In three studies [Nakajima, 
2008; Lee, 2008; Yeh, 2008], the mean predicted FVC in persons with metabolic 
abnormalities, MetS, or diabetes (88-97%) ranges within the normal limit but it is higher in 
patients with a specific RLD, e.g., nonspecific interstitial pneumonia (59-83%) [Martinez, 
2006]. The clinical relevance of a 6-7% decline in FVC within the normal range is unclear. 
Additional tests such as the 6-minute walk test and ventilation function test (carbon 
monoxide diffusion capacity) may give additional information on the features of the 
metabolic disorder-related restrictive lung pattern.  
Regarding plausible underlying mechanisms between RLD and metabolic abnormalities, 

central obesity, particularly visceral fat and fatty liver diseases such as NAFLD, may 

physically impede the descent of the diaphragm, leading primarily to restrictive respiration 

impairment. However, a significant association between the restrictive pattern and type 2 

diabetes and MetS remains, even after statistical adjustment for body mass index (BMI) and 

after stratification by BMI [Ford, 2004; Nakajima, 2008; Lin, 2006; Fimognari, 2007; 

Nakajima, 2010]. This suggests that for a given BMI, individuals with cardiometabolic 

abnormalities have a lower vital capacity than those without cardiometabolic abnormalities. 

Therefore, metabolic abnormalities and, possibly in part, mechanical limitation, may 

contribute to the development and progression of the restrictive pattern. 

With regard to the cause of RLD, some prospective studies appear to suggest that restrictive 

patients are expected to develop metabolic abnormalities such as diabetes compared with 

subjects with normal spirometry. In the NHANES study [Ford, 2004], non-diabetes subjects 

with a restrictive pattern had an increased risk of developing diabetes in the follow-up. In 

the ARIC study [Yeh, 2008], low pulmonary function, defined as low forced vital capacity 

and low FEV1, predicted the new onset of diabetes.  

Metabolic abnormalities may cause impaired lung function. For example, insulin resistance 

may reduce the uptake of glucose by respiratory muscle, resulting in respiratory muscle 

weakness and poor ventilatory performance [Fimognari, 2010]. Nevertheless, regarding the 

cause-effect relationship, it has not been established which occurs first, the restrictive 

pattern or metabolic abnormalities. Alternatively other factor such as insulin resistance 

might cause both simultaneously.  

3.4 Possible underlying mechanisms  

Given that insulin resistance and related etiologies are the main cause of the restrictive lung, 

a plausible explanation for this is that several malignant cytokines, such as IL-6, CRP, TNF-

ǂ, and PAI-1, as well as decreased levels of adiponectin, which originate mostly from 

visceral and trunk subcutaneous adipocytes [Capeau, 2008; Meshkani, 2009; Gustafson,2010; 

Nakajima, 2010; Wannamethee, 2010], hyperglycemia, nonenzymatic glycosylation 

[Kaparianos, 2008; Chance, 2008], and diabetes-related growth hormones, such as insulin-

like growth factor-I, insulin-like growth factor binding proteins, and transforming growth 

factor-ǃ [Ezzat, 2008; Pilewski, 2005], may be related to histopathological alterations and 

functional abnormality because of oxidative and inflammatory processes. These molecules 

and resultant hyperinsulinemia, as well as ectopic fat deposition, leukocyte-endothelial cell 

adhesion, extracellular matrix deposition, fibroblast proliferation, pulmonary capillary leak, 
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pulmonary microangiopathy, and thickening of alveolar epithelia, may all converge into 

decreased lung compliance and diffusing capacity. Postmortem studies support the notion 

that the lung is a target organ for diabetic microangiopathy [Kaparianos, 2008; Klein, 2010]. 

Insulin resistance and resultant hyperinsulinemia may result in diastolic dysfunction of the 

lung via respiratory muscle weakness and functional failure by a similar pathology of 

skeletal muscle. Notably, lung-derived surfactant protein (SP)-A is associated with altered 

glucose tolerance and insulin resistance [Fernández-Real, 2008]. Fernández-Real (2008) 

found that SP-A levels in the blood were significantly higher among patients with glucose 

intolerance and type 2 diabetes than in those with normal glucose tolerance, even after 

adjustment for BMI, age, and smoking status. Additionally, SP-D, a lung-derived innate 

immune protein, is also associated with inflammation and metabolic abnormalities 

including insulin sensitivity [Fernández-Real, 2010]. Indeed, in the obese type 2 diabetes 

animal model, many qualitatively similar changes as in type 1 diabetes develop with 

extensive lipid deposition, altered alveolar type-2 cell ultrastructure and surfactant protein 

expression patterns [Foster, 2010]. Foster et al. (2010) recently reported in their study using 

obese diabetic rats that numerous lipid droplets were visible within alveolar interstitium, 

lipofibroblasts, and macrophages, particularly in subpleural regions, and that triglyceride 

content was higher not only in the liver but also in the lung. These findings suggest a 

definite relationship between metabolic abnormalities relating to insulin resistance and 

impairment of the lung. Potential histopathological features in the diabetic or metabolic 

abnormal lung are presented in Figure 2. 

 
 

 
 

Fig. 2. A. Diastolic dysfunction of lung due to reduced respiratory muscle and increased 
diaphragm impedance. B. Histopathological features of alveolar space referring to Foster et 
al., 2010 and Klein et al., 2010. Lipid droplets are present in alveolar interstitium. Alveolar-
capillary membrane is thickened with fibrotic changes.  

3.5 Possible treatment for impaired lungs 

The use of statins has been frequently discussed for patients with COPD [Fimognari, 2010; 
Dobler, 2009; Young, 2009], but their effect is unknown in RLD [Keddissi, 2007]. Statins 
prevent the decline in FEV1 and FVC, irrespective of obstructive or restrictive disease 
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[Keddissi, 2007]. Considering that statins have a pleiotropic effect, this lung-protective effect 
may be because of the pleiotropic effect, including anti-inflammatory, anti-oxidant, anti-
thrombogenic, and vascular function-restoring actions [Davignon, 2004]. Therefore, the 
mechanism underlying the association between metabolic disorders and RLD might be, at 
least in part, similar to that between cardiometabolic risk and cardiovascular disease. In 
addition, statin use is associated with slower rates of lung function decline in the elderly. 
These findings suggest a possible treatment for patients with impaired lung function and 
this possibility should be investigated further. However, lifestyle intervention is critical 
beyond any medications because insulin resistance and related etiologies develop and 
progress according to an unfavorable lifestyle. 

3.6 Clinical perspective with respect to impaired lung function 

Both types of impaired lung function, obstructive and restrictive lung disease, have been 
associated with an increased risk for high mortality and critical pathophysiology such as 
cardiovascular diseases probably because of chronic inflammation and oxidative stress. 
However, there is likely to be a difference in the underlying mechanism between obstructive 
and restrictive lung disease in terms of metabolic abnormalities. 
Metabolic abnormalities, especially insulin resistance, and restrictive lung/reduced vital 
capacity belong to apparently unrelated fields. If there is a real association between insulin 
resistance and restrictive lung, it would be of substantial clinical interest and important for 
preventing possible synergic effects on the development and progression of fatal diseases. 
Although restrictive lung has been confirmed to be associated with increased mortality, 
particularly from diabetes, in recent studies [Fimognari, 2010, Guerra, 2010], it is unclear 
whether the restrictive pattern associated with metabolic abnormalities is a direct cause of 
mortality. Alternatively, RLD or the restrictive pattern might represent complications of 
longitudinal diabetes such as the three major complications of diabetes, because reduced 
lung volume and alveolar perfusion are correlated with extrapulmonary microangiopathy 
[Schnack, 1996]. Once RLD occurs in such patients, it may in turn worsen diabetes and 
metabolic abnormalities, resulting in aggravation of the pathogenesis. Intervention of the 
restrictive pattern by pulmonary rehabilitation or medication would clarify the cause-effect 
relationship between the restrictive pattern or RLD and cardiometabolic risks.  
Further prospective as well as cross-sectional studies and clinical trials that address both 
fields are required to consider the potential importance of the subclinical restrictive pattern 
compared with obstructive lung, and to elucidate the complicated relationships between 
them.  

4. Conclusion 

Insulin resistance plays pivotal roles in all organs and tissues including the kidney and skin 
lesions. Ectopic fat deposition in the liver, muscle, and lung may be an initial hallmark of 
peripheral insulin resistance, particularly adipose tissue, which predominantly accumulates 
surplus energy as fat. If such conditions continue without proper treatment or intervention, 
second stages comprising oxidative stress, inflammation, and degeneration can occur and 
worsen organ function, along with impairment of insulin downsignaling in the cells of the 
target organ. Although some candidates have been considered for pharmacotherapy, these 
drugs may transiently improve the pathophysiology by redistribution of fat and change the 
direction of surplus lipids and carbohydrates, i.e., push back accumulated fat to original 
adipose tissues. Because of controversial clinical data concerning pharmacological therapies 
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as well as the cost and unknown adverse reactions, lifestyle interventions seem to be the 
only fundamental treatment for insulin resistance-related organ damage.  
Further animal and human studies considering systemic organ damage and abnormal 
metabolism are required to explore the underlying complicated mechanisms and effective 
treatment and medications. 

5. References 

Abdul-Ghani MA, DeFronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J 
Biomed Biotechnol. 2010;2010:476279. 

Aithal GP, Thomas JA, Kaye PV, Lawson A, Ryder SD, Spendlove I, Austin AS, Freeman JG, 
Morgan L, Webber J. Randomized, placebo-controlled trial of pioglitazone in 
nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008 
;135(4):1176-84. 

American Diabetes Association Diagnosis and Classification of Diabetes Mellitus Diabetes 
Care, Vol 33 2010 

Anghel SI, Wahli W. Fat poetry: a kingdom for PPAR gamma. Cell Res. 2007 ;17(6):486-511. 
Bartnik M, Norhammar A, Rydén L. Hyperglycaemia and cardiovascular disease. J Intern 

Med. 2007 ;262(2):145-56. 
Basili S, Ferroni P, Vieri M, Cardelli P, Ceci F, Paradiso M, Labbadia G, Gazzaniga PP, 

Cordova C, Alessandri C. Lipoprotein(a) serum levels in patients affected by 
chronic obstructive pulmonary disease. Atherosclerosis. 1999 Dec;147(2):249-52. 

Boirie Y, Gachon P, Cordat N, Ritz P, Beaufrère B. Differential insulin sensitivities of 
glucose, amino acid, and albumin metabolism in elderly men and women. J Clin 
Endocrinol Metab. 2001 Feb;86(2):638-44. 

Bollheimer LC, Skelly RH, Chester MW, McGarry JD, Rhodes CJ. Chronic exposure to free 
fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin 
secretion that is not compensated for by a corresponding increase in proinsulin 
biosynthesis translation. J Clin Invest. 1998  1;101(5):1094-101. 

Boulbou MS, Gourgoulianis KI, Klisiaris VK, Tsikrikas TS, Stathakis NE, Molyvdas PA. 
Diabetes mellitus and lung function. Med Princ Pract. 2003 Apr-Jun;12(2):87-91. 

Brüning JC, Michael MD, Winnay JN, Hayashi T, Hörsch D, Accili D, Goodyear LJ, Kahn 
CR. A muscle-specific insulin receptor knockout exhibits features of the metabolic 
syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998 ;2(5):559-
69. 

Capeau J. Insulin resistance and steatosis in humans. Diabetes Metab. 2008 Dec;34(6 Pt 
2):649-57. 

Chalmers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med. 2008  9;359(15):1618-20. 
Chance WW, Rhee C, Yilmaz C, et al. 2008. Diminished alveolar microvascular reserves in 

type 2 diabetes reflect systemic microangiopathy. Diabetes Care 31: 1596-60  
Chang Y, Ryu S, Sung E, Jang Y. Higher concentrations of alanine aminotransferase within 

the reference interval predict nonalcoholic fatty liver disease. Clin Chem. 2007 
;53(4):686-92 

Chen J, Muntner P, Hamm LL, Fonseca V, Batuman V, Whelton PK, He J. Insulin 
resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc 
Nephrol. 2003 Feb;14(2):469-77. 

Choi K, Kim YB. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. 
Korean J Intern Med. 2010 ;25(2):119-29. 

www.intechopen.com



Pathogenic Features of Insulin Resistance  
and Critical Organ Damage in the Liver, Muscle 

 

317 

Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between 
cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride 
accumulation. Diabetes. 2001 ;50(8):1771-7. 

Foster DJ, Ravikumar P, Bellotto DJ, Unger RH, Hsia CC. Fatty Diabetic Lung: Altered 
Alveolar Structure and Surfactant Protein Expression Am J Physiol Lung Cell Mol 
Physiol 2010 

Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation. 2004 Jun 
15;109(23 Suppl 1):III39-43. 

Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol. 2010 Mar 
25;316(2):104-8 

Dobler CC, Wong KK, Marks GB. Associations between statins and COPD: a systematic 
review. BMC Pulm Med. 2009 Jul 12;9:32. 

Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty 
acids stored in liver and secreted via lipoproteins in patients with nonalcoholic 
fatty liver disease. J Clin Invest. 2005 ;115(5):1343-51. 

Duvnjak M, Tomasic V, Gomercic M, Smircic Duvnjak L, Barsic N, Lerotic I. Therapy of 
nonalcoholic fatty liver disease: current status. J Physiol Pharmacol. 2009 Dec;60 
Suppl 7:57-66. 

Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master 
regulators of lipid homeostasis. Biochimie. 2004 ;86(11):839-48. 

Eckardt K, Taube A, Eckel J. Obesity-associated insulin resistance in skeletal muscle: Role of 
lipid accumulation and physical inactivity. Rev Endocr Metab Disord. 2011 Feb 19. 

Estep JM, Birerdinc A, Younossi Z. Non-invasive diagnostic tests for non-alcoholic fatty liver 
disease. Curr Mol Med. 2010 ;10(2):166-72. 

Ezzat VA, Duncan ER, Wheatcroft SB, Kearney MT. 2008. The role of IGF-I and its binding 
proteins in the development of type 2 diabetes and cardiovascular disease. Diabetes 
Obes Metab 10: 198-211. 

Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel 
wall. Arterioscler Thromb Vasc Biol. 2004 ;24(8):1367-73. 

Fernández-Real JM, Chico B, Shiratori M, Nara Y, Takahashi H, Ricart W. Circulating 
surfactant protein A (SP-A), a marker of lung injury, is associated with insulin 
resistance. Diabetes Care. 2008 May;31(5):958-63. 

Fernández-Real JM, Valdés S, Manco M, Chico B, Botas P, Campo A, Casamitjana R, 
Delgado E, Salvador J, Fruhbeck G, Mingrone G, Ricart W. Surfactant protein d, a 
marker of lung innate immunity, is positively associated with insulin sensitivity. 
Diabetes Care. 2010 Apr;33(4):847-53. 

Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription 
factor SREBP-1c. Diabetes Obes Metab. 2010 ;12 Suppl 2:83-92 

Ferré P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical 
perspective. Horm Res. 2007;68(2):72-82. 

Fimognari FL, Pasqualetti P, Moro L, et al. 2007. The association between metabolic 
syndrome and restrictive ventilatory dysfunction in older persons. J Gerontol A 
Biol Sci Med Sci 62: 760-65.  

Fimognari FL, Scarlata S, Antonelli-Incalzi R. Why are people with "poor lung function" at 
increased atherothrombotic risk? A critical review with potential therapeutic 
indications. Curr Vasc Pharmacol. 2010 Jul;8(4):573-86. 

Ford ES, Mannino DM. 2004. Prospective association between lung function and the 
incidence of diabetes: findings from the National Health and Nutrition 
Examination Survey Epidemiologic Follow-up Study. Diabetes Care 27: 2966-70. 

www.intechopen.com



Recent Advances in the Pathogenesis, Prevention and  
Management of Type 2 Diabetes and its Complications 

 

318 

Garcia-Compean D, Jaquez-Quintana JO, Gonzalez-Gonzalez JA, Maldonado-Garza H. 
Liver cirrhosis and diabetes: risk factors, pathophysiology, clinical implications and 
management. World J Gastroenterol. 2009 Jan 21;15(3):280-8. 

Gentile CL, Pagliassotti MJ. The role of fatty acids in the development and progression of 
nonalcoholic fatty liver disease. J Nutr Biochem. 2008 ;19(9):567-76. 

Ghouri N, Preiss D, Sattar N. Liver enzymes, nonalcoholic fatty liver disease, and incident 
cardiovascular disease: a narrative review and clinical perspective of prospective 
data. Hepatology. 2010 ;52(3):1156-61. 

Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression 
of cancer. Clin Sci (Lond). 2009  23;118(5):315-32. 

Gressner OA, Gressner AM. Connective tissue growth factor: a fibrogenic master switch in 
fibrotic liver diseases. Liver Int. 2008 ;28(8):1065-79 

Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss 
RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F; American Heart Association; 
National Heart, Lung, and Blood Institute.Diagnosis and management of the 
metabolic syndrome: an American Heart Association/National Heart, Lung, and 
Blood Institute Scientific Statement. Circulation. 2005 Oct 25;112(17):2735-52. 

Guarnieri G, Zanetti M, Vinci P, Cattin MR, Pirulli A, Barazzoni R. Metabolic syndrome 
and chronic kidney disease. J Ren Nutr. 2010 Sep;20(5 Suppl):S19-23. 

Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD. Morbidity and 
mortality associated with the restrictive spirometric pattern: a longitudinal study. 
Thorax. 2010 Jun;65(6):499-504 

Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010 
Apr 30;17(4):332-41. 

Haeusler RA, Accili D. The double life of Irs. Cell Metab. 2008 ;8(1):7-9. 
Hara K, Okada T, Tobe K, Yasuda K, The Pro12Ala polymorphism in PPAR gamma2 may 

confer resistance to type 2 diabetes. Biochem Biophys Res Commun. 2000 Apr 
29;271(1):212-6. 

Harwood K, Vuguin P, DiMartino-Nardi J. Current approaches to the diagnosis and 
treatment of polycystic ovarian syndrome in youth. Horm Res. 2007;68(5):209-17. 

Havekes B, Sauerwein HP. Adipocyte-myocyte crosstalk in skeletal muscle insulin 
resistance; is there a role for thyroid hormone? Curr Opin Clin Nutr Metab Care. 
2010 Nov;13(6):641-6. 

Hickman IJ, Macdonald GA. Impact of diabetes on the severity of liver disease. Am J Med. 
2007 Oct;120(10):829-34. 

Higgins SP, Freemark M, Prose NS. Acanthosis nigricans: a practical approach to evaluation 
and management. Dermatol Online J. 2008  15;14(9):2. 

Hozawa A, Billings JL, Shahar E, Ohira T, Rosamond WD, Folsom AR. 2006. Lung function 
and ischemic stroke incidence: the Atherosclerosis Risk in Communities study. 
Chest 130: 1642-49 

Kahara T, Takamura T, Hayakawa T, Nagai Y, Prediction of exercise-mediated changes in 
metabolic markers by gene polymorphism. Diabetes Res Clin Pract. 2002 
Aug;57(2):105-10. 

Kaku K. Pathophysiology of Type 2 Diabetes and Its Treatment Policy. JMAJ 53(1): 41–46, 
2010 

Kaparianos A, Argyropoulou E, Sampsonas F, Karkoulias K, Tsiamita M, Spiropoulos K. 
Pulmonary complications in diabetes mellitus. Chron Respir Dis. 2008;5(2):101-8. 

www.intechopen.com



Pathogenic Features of Insulin Resistance  
and Critical Organ Damage in the Liver, Muscle 

 

319 

Kawaguchi T, Sata M. Importance of hepatitis C virus-associated insulin resistance: 
therapeutic strategies for insulin sensitization. World J Gastroenterol. 2010  
28;16(16):1943-52. 

Keddissi JI, Younis WG, Chbeir EA, Daher NN, Dernaika TA, Kinasewitz GT. 2007. The use 
of statins and lung function in current and former smokers. Chest 132: 1764-71. 

Kim JK, Michael MD, Previs SF, Peroni OD, Mauvais-Jarvis F, Neschen S, Kahn BB, Kahn 
CR, Shulman GI. Redistribution of substrates to adipose tissue promotes obesity in 
mice with selective insulin resistance in muscle. J Clin Invest. 2000 ;105(12):1791-7. 

Kimura Y, Hyogo H, Yamagishi S, Takeuchi M, Ishitobi T, Nabeshima Y, Arihiro K, 
Chayama K. Atorvastatin decreases serum levels of advanced glycation 
endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with 
dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of 
NASH. J Gastroenterol. 2010 ;45(7):750-7. 

Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between 
lung function and Type 2 diabetes mellitus. Diabet Med. 2010 Sep;27(9):977-87. 

Koh KK, Quon MJ, Han SH, Lee Y, Kim SJ, Shin EK. Atorvastatin causes insulin resistance 
and increases ambient glycemia in hypercholesterolemic patients. J Am Coll 
Cardiol. 2010  23;55(12):1209-16. 

Kopelman P. Health risks associated with overweight and obesity. Obes Rev. 2007 Mar;8 
Suppl 1:13-7. 

Kubo M, Kiyohara Y, Kato I, Iwamoto H, Nakayama K, Hirakata H, Fujishima M. Effect of 
hyperinsulinemia on renal function in a general Japanese population: the Hisayama 
study. Kidney Int. 1999 Jun;55(6):2450-6. 

Kubota N, Kubota T, Itoh S, Kumagai H, Kozono H, Takamoto I, Mineyama T, Ogata H, 
Tokuyama K, Ohsugi M, Sasako T, Moroi M, Sugi K, Kakuta S, Iwakura Y, Noda T, 
Ohnishi S, Nagai R, Tobe K, Terauchi Y, Ueki K, Kadowaki T.  Dynamic 
functional relay between insulin receptor substrate 1 and 2 in hepatic insulin 
signaling during fasting and feeding. Cell Metab. 2008 ;8(1):49-64. 

Laakso M and J. Kuusisto J. Understanding patient needs Diabetology for cardiologists 
(2003) 5 (Supplement B), B5–B13 

Lastra G, Dhuper S, Johnson MS, Sowers JR. Salt, aldosterone, and insulin resistance: impact 
on the cardiovascular system. Nat Rev Cardiol. 2010 ;7(10):577-84. 

Lastra G, Manrique C, McFarlane SI, Sowers JR. Cardiometabolic syndrome and chronic 
kidney disease. Curr Diab Rep. 2006 ;6(3):207-12 

Lee HM, Le TV, Lopez VA, Wong ND. 2008. The association of C-reactive protein to 
reduced forced vital capacity in a non-smoking U.S. population with metabolic 
syndrome and diabetes. Diabetes Care 2008 Oct;31(10):2000-2 

Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic 
response to fasting/refeeding and liver X receptor agonists in mice with selective 
deficiency of sterol regulatory element-binding protein-1c. J Biol Chem. 2002  
15;277(11):9520-8. 

Lin WY, Yao CA, Wang HC, Huang KC. 2006. Impaired lung function is associated with 
obesity and metabolic syndrome in adults. Obesity (Silver Spring) 14: 1654-61.  

Liu Q, Bengmark S, Qu S. The role of hepatic fat accumulation in pathogenesis of non-
alcoholic fatty liver disease (NAFLD). Lipids Health Dis. 2010  28;9:42. 

Lu B, Yang Y, Yang Z, Feng X, Wang X, Zhang Z, Hu R. Insulin resistance in Chinese 
patients with type 2 diabetes is associated with C-reactive protein independent of 
abdominal obesity. Cardiovasc Diabetol. 2010 Dec 19;9:92. 

www.intechopen.com



Recent Advances in the Pathogenesis, Prevention and  
Management of Type 2 Diabetes and its Complications 

 

320 

Makkar P, Gandhi M, Agrawal RP, Sabir M, Kothari RP. Ventilatory pulmonary function 
tests in type 1 diabetes mellitus. J Assoc Physicians India. 2000 Oct;48(10):962-6. 

Makowski L, Hotamisligil GS. Fatty acid binding proteins--the evolutionary crossroads of 
inflammatory and metabolic responses. J Nutr. 2004 ;134(9):2464S-2468S. 

Mandrup S, Lane MD. Regulating adipogenesis. J Biol Chem. 1997  28;272(9):5367-70. 
Mannino DM, Aguayo SM, Petty TL, Redd SC. 2003. Low lung function and incident lung 

cancer in the United States: data from the First National Health and Nutrition 
Examination Survey follow-up. Arch Intern Med 163: 1475-80. 

Mannino DM, Buist AS, Petty TL, Enright PL, Redd SC. 2003. Lung function and mortality 
in the United States: data from the First National Health and Nutrition Examination 
Survey follow up study. Thorax 58(5): 388-93. 

Martinez FJ, Flaherty K. 2006. Pulmonary function testing in idiopathic interstitial 
pneumonias. Proc Am Thorac Soc 3: 315-21 

Matsuzaki K. Modulation of TGF-beta signaling during progression of chronic liver 
diseases. Front Biosci. 2009  1;14:2923-34 

Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, Enocksson S, Inzucchi 
SE, Shulman GI, Petersen KF. The effects of rosiglitazone on insulin sensitivity, 
lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 
2 diabetes. Diabetes. 2002 ;51(3):797-802. 

Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular 
disease. Clin Biochem. 2009 Sep;42(13-14):1331-46. 

Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free 
Radic Biol Med. 2009  15;47(4):344-56. 

Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in 
humans and their potential links with mitochondrial dysfunction. Diabetes. 2006 
;55 Suppl 2:S9-S15. 

Murray P, Chune GW, Raghavan VA. Legacy effects from DCCT and UKPDS: what they 
mean and implications for future diabetes trials. Curr Atheroscler Rep. 2010 
;12(6):432-9. 

Musso G, Gambino R, Cassader M, Pagano G A meta-analysis of randomized trials for the 
treatment of nonalcoholic fatty liver disease. Hepatology. 2010 ;52(1):79-104. 

Nakajima K, Ebata M, Saito M. The relationship between low vital capacity and impaired 
glucose metabolism in men. Diabet Med. 2010 Dec;27(12):1460-1. 

Nakajima K, Kubouchi Y, Muneyuki T, Ebata M, Eguchi S, Munakata H. A possible 
association between suspected restrictive pattern as assessed by ordinary 
pulmonary function test and the metabolic syndrome. Chest. 2008 Oct;134(4):712-8. 
Epub 2008 Jul 14. 

Nakajima K. Pharmacotherapy of mixed dyslipidemia in the metabolic syndrome. Curr Clin 
Pharmacol. 2010  1;5(2):133-9. 

Ndumele CE, Pradhan AD, Ridker PM. Interrelationships between inflammation, C-reactive 
protein, and insulin resistance. J Cardiometab Syndr. 2006 Summer;1(3):190-6. 

Nelson A, Torres DM, Morgan AE, Fincke C, Harrison SA. A pilot study using simvastatin 
in the treatment of nonalcoholic steatohepatitis: A randomized placebo-controlled 
trial. J Clin Gastroenterol. 2009 -;43(10):990-4 

Okazaki H, Goldstein JL, Brown MS, Liang G. LXR-SREBP-1c-phospholipid transfer 
protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem. 
2010  26;285(9):6801-10. 

Pedersen BK. IL-6 signalling in exercise and disease. Biochem Soc Trans. 2007 Nov;35(Pt 
5):1295-7. 

www.intechopen.com



Pathogenic Features of Insulin Resistance  
and Critical Organ Damage in the Liver, Muscle 

 

321 

Pellegrino R, Viegi G, Brusasco V, et al. 2005. Interpretative strategies for lung function tests. 
Eur Respir J 26: 948-68. 

Petrides AS, Vogt C, Schulze-Berge D, Matthews D, Strohmeyer G. Pathogenesis of 
glucose intolerance and diabetes mellitus in cirrhosis. Hepatology. 1994 ;19(3):616-
27. 

Pilewski JM, Liu L, Henry AC, Knauer AV, Feghali-Bostwick CA. 2005. Insulin-like growth 
factor binding proteins 3 and 5 are overexpressed in idiopathic pulmonary fibrosis 
and contribute to extracellular matrix deposition. Am J Pathol 166: 399-407. 

Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-alpha in 
chronic inflammatory conditions, intermediary metabolism, and cardiovascular 
risk. J Lipid Res. 2007 ;48(4):751-62. 

Purdue MP, Gold L, Järvholm B, Alavanja MC, Ward MH, Vermeulen R. 2007. Impaired 
lung function and lung cancer incidence in a cohort of Swedish construction 
workers. Thorax 62: 51-6. 

Rabe KF, Beghé B, Luppi F, Fabbri LM. 2007. Update in chronic obstructive pulmonary 
disease 2006. Am J Respir Crit Care Med 175: 1222-32. 

Randle PJ, Garland PB, Hales CN, Newsholme EA.The glucose fatty-acid cycle. Its role in 
insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 
Apr 13;1(7285):785-9. 

Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the 
mechanism. Lancet. 2010  26;375(9733):2267-77. 

Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-
Tetri BA, Lavine JE, Tonascia J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner 
DE, Hoofnagle JH, Robuck PR; NASH CRN. Pioglitazone, vitamin E, or placebo for 
nonalcoholic steatohepatitis. N Engl J Med. 2010  6;362(18):1675-85. 

Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, Seshasai SR, McMurray 
JJ, Freeman DJ, et al. Statins and risk of incident diabetes: a collaborative meta-
analysis of randomised statin trials. Lancet. 2010  27;375(9716):735-42. 

Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ. Alanine 
aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 
2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev. 2006 -
;22(6):437-43. 

Schnack C, Festa A, Schwarzmaier-D'Assié A, Haber P, Schernthaner G. Pulmonary 
dysfunction in type 1 diabetes in relation to metabolic long-term control and to 
incipient diabetic nephropathy. Nephron. 1996;74(2):395-400. 

Sharma V, Kumar V. Diabetes in Asia. Lancet. 2010 Mar 20;375(9719):982. 
Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000 ;106(2):171-6 
Simmgen M, Knauf C, Lopez M, Choudhury AI, Charalambous M, Cantley J, Bedford DC, 

Claret M, Iglesias MA, Heffron H, Cani PD, Vidal-Puig A, Burcelin R, Withers DJ. 
Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic 
glucose and lipid metabolism in mice. Diabetologia. 2006 ;49(3):552-61. 

Sykiotis GP, Papavassiliou AG. Serine phosphorylation of insulin receptor substrate-1: a 
novel target for the reversal of insulin resistance. Mol Endocrinol. 2001 
;15(11):1864-9 

Tang WH. Do thiazolidinediones cause heart failure? A critical review. Cleve Clin J Med. 
2006 ;73(4):390-7. 

Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation and 
hormone/growth factor/adipokine imbalance. World J Gastroenterol. 2010 Oct 
14;16(38):4773-83. 

www.intechopen.com



Recent Advances in the Pathogenesis, Prevention and  
Management of Type 2 Diabetes and its Complications 

 

322 

Tatoń J, Czech A, Piatkiewicz P. Insulin as the main regulator of cellular glucose utilization--
aetiological aspects of insulin resistance. Endokrynol Pol. 2010 -;61(4):388-94. 

Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic 
fatty liver disease. Nutr Metab Cardiovasc Dis. 2009 ;19(4):291-302. 

Tsutsui H, Kinugawa S, Matsushima S, Yokota T. Oxidative stress in cardiac and skeletal 
muscle dysfunction associated with diabetes mellitus. J Clin Biochem Nutr. 2011 
Jan;48(1):68-71. 

Turcotte LP, Fisher JS. Skeletal muscle insulin resistance: roles of fatty acid metabolism and 
exercise. Phys Ther. 2008 Nov;88(11):1279-96. 

Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A, Hughes RI, Khunti K, 
Wilkins MR, Majeed A, Elliott P. Risk of cardiovascular disease and all cause 
mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: 
retrospective cohort study using UK general practice research database. BMJ. 2009  
3;339:b4731. 

Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab 
Care. 2004 Jul;7(4):405-10. 

Wannamethee SG, Shaper AG, Rumley A, Sattar N, Whincup PH, Thomas MC, Lowe GD. 
Lung function and risk of type 2 diabetes and fatal and nonfatal major coronary 
heart disease events: possible associations with inflammation. Diabetes Care. 2010 
Sep;33(9):1990-6. 

Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, 
Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, 
Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and 
fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002 
Nov;8(11):1288-95. 

Yeh HC, Punjabi NM, Wang NY, et al. 2008. Cross-sectional and prospective study of lung 
function in adults with type 2 diabetes: the Atherosclerosis Risk in Communities 
(ARIC) study. Diabetes Care 31: 741-46.  

Young RP, Hopkins R, Eaton TE. Pharmacological actions of statins: potential utility in 
COPD. Eur Respir Rev. 2009 Dec 1;18(114):222-32. 

www.intechopen.com



Recent Advances in the Pathogenesis, Prevention and

Management of Type 2 Diabetes and its Complications

Edited by Prof. Mark Zimering

ISBN 978-953-307-597-6

Hard cover, 442 pages

Publisher InTech

Published online 29, August, 2011

Published in print edition August, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Type 2 diabetes â€œmellitusâ€ ​ affects nearly 120 million persons worldwide- and according to the World

Health Organization this number is expected to double by the year 2030. Owing to a rapidly increasing disease

prevalence, the medical, social and economic burdens associated with the microvascular and macrovascular

complications of type 2 diabetes are likely to increase dramatically in the coming decades. In this volume,

leading contributors to the field review the pathogenesis, treatment and management of type 2 diabetes and

its complications. They provide invaluable insight and share their discoveries about potentially important new

techniques for the diagnosis, treatment and prevention of diabetic complications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kei Nakajima, Toshitaka Muneyuki, Masafumi Siato and Masafumi Kakei (2011). Pathogenic Features of

Insulin Resistance and Critical Organ Damage in the Liver, Muscle and Lung, Recent Advances in the

Pathogenesis, Prevention and Management of Type 2 Diabetes and its Complications, Prof. Mark Zimering

(Ed.), ISBN: 978-953-307-597-6, InTech, Available from: http://www.intechopen.com/books/recent-advances-

in-the-pathogenesis-prevention-and-management-of-type-2-diabetes-and-its-complications/pathogenic-

features-of-insulin-resistance-and-critical-organ-damage-in-the-liver-muscle-and-lung



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

