
Faculty of Science and Engineering

Evaluating Business Process Compliance
Management Frameworks

by
Mustafa Hashmi

B.Comp. Sci., MSc. (IT)

A dissertation submitted for the degree of
IF49 Doctor of Philosophy

Principal Supervisor: Prof. Guido Governatori

Associate Supervisor: Dr. Moe Thandar Kyaw Wynn

Business Process Management Discipline
Information Systems School

Queensland University of Technology (QUT)
GPO Box 2434, Brisbane QLD 4001, Australia

December 7, 2015

i

Õæ
º
�mÌ'@ 	à@Q

��®Ë @ 	áÓ�
© �H. A

��ë �ñË@ ��I	K
�

@
�
½ 	K @
�

��é�Ôg �P
�
½	K �Y

�
Ë 	áÓ� A�	J

�
Ë I.

�ë �ð A�	J��K

�Y �ë 	X@
�

�Yª�K. A
�	J�K. ñ

�
Ê
��̄ 	̈ 	Q�

��KB
�
A�	J��K. �P

(3:8) : �èPñ�
[Who say], “Our Lord (Allah), let not our hearts deviate after You have guided us
and grant us from Yourself mercy. Indeed, You are the Bestower.” 1

1Holy Qur’an, Juzz 3 Verse 8, Tafsir Al-Tabari Vol (5), Page: 228–229

iii

Queensland University of Technology (QUT)

Thesis for the degree of Doctor of Philosophy

Business Process Management (BPM) Discipline, Information Systems School

Science and Engineering Faculty (SEF)

Copyrights ©2015 Mustafa Hashmi, All Rights Reserved.

All rights reserved. No part of this publication may be reproduced, storied in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise without the prior written permission from the author.

DEDICATION

To my . . .

father (Mohammad ASLAM Hashmi)

† (1937–2010)

who has (and ALWAYS will be) my inspiration

mother (SURAYYAH Begum)

this is all due to your prayers Mom

daughter (SAFA Mustafa)

† (4–29 July, 2012)

a little angel sent to us just for 25 days

v

KEYWORDS

Business Processes; Business Process Compliance; Business Process Compliance

Management; Business Compliance Management Frameworks; Compliance

Frameworks; Regulatory Compliance; Obligations; Norms; Normative Requirements;

Norms Classification; Norms Compliance; Norms Modeling Languages; Temporal

Logic, Defeasible Logic; Semantic Evaluation;

vii

ABSTRACT

Due to the ever-increasing pressure from regulatory authorities, the demand for

organisations to stay-compliant has increased over the past few years. In response to

these demands—and to support the organisational compliance reporting activities,

a plethora of compliance management frameworks (CMFs) have been developed.

These CMFs offer functionalities that address the compliance problem in a variety of

ways to meet organisations’ specific compliance reporting requirements. Regardless

of how good and flexible these CMFs can be, their effectiveness largely depends

on the ability of their underlying conceptual and formal models to provide faithful

representations of normative requirements. A CMF based on weak conceptual and

formal models might not be suitable for providing any certification of compliance

that is acceptable to the certifying bodies.

Given the breadth of the business process compliance domain and the existence

of large number of CMFs, determining the suitability of a CMF is a difficult task.

Despite that there are no methodologies that can be used to evaluate the abilities of

a CMF. This thesis proposes a formal framework to evaluate whether a CMF correctly

represents the normative requirements that a system has to comply with.

The proposed framework provides the following contributions: (i) a classification

model and formal semantics for normative requirements giving a rich and improved

ontology of various types of norms, (ii) systematic conceptual and formal evaluations

of underlying conceptual and formal models of existing CMF that determine their

abilities and shortcomings, and (iii) a deontic extension to Event-Calculus (EC), a

value added contribution.

The framework has been formally defined and validated through the evaluations

of existing CMFs. An example of these evaluations is presented at the end of the

thesis. The developed framework is independent of any specific formalism, and can

fit into any other formal language.

ix

ACKNOWLEDGEMENT

After thanking Almighty ALLAH for all the strength, compassion and mercy, I would

like to quote Nelson Mandela who once rightly said: It always seems impossible until

it’s done. Finally, this journey seems to be coming to an end. The last few years have

been interesting, intriguing, yet challenging ones. Without any doubt, they have

provided me with invaluable opportunities to explore the fathoms of knowledge,

which I have always sought, and have challenged me to extend my own knowledge.

Coming this far, however, would not have been possible without the consistent

guidance, support, and encouragement of so many.

I would like to extend my heartiest gratitude to my supervisors Prof. Guido

Governatori and Dr. Moe Thandar Kyaw Wynn for their excellent support during my

research. Thank you! Guido for your continuous guidance, encouragement, support,

and profound understanding in the difficult times that I faced in (or outside of) this

research. You have always been ready to discuss any questions, and have guided me

to solve the problems that I would face in the best possible way. Thank you! Dr. Moe

for your kindness, encouragement, right guidance, fruitful discussions, and your

patience in correcting my English grammar. You are true mentors.

Also, I would like to extend special gratitude to Prof. Arthur ter Hofstede for

his guidance from the very beginning in choosing the appropriate direction for my

research. My special thanks go to Dr. Ho.-Pun Lam (Brian) with whom I have had

countless and fruitful discussions on defeasible logic and process compliance; these

discussions gave me many valuable ideas and insights on various topics. Brian, you

are truly a friend.

I gratefully acknowledge the generous support of NICTA and QUT in providing

the funding to support the research presented in this thesis, which would not have

been generated without their financial support. Also, my heartiest thanks go to my

colleagues—and friends at NICTA-QRL: Prof. Simon Kaplan, Storm Griffin, Sarah

xi

xii

Sims, Liz Armstrong, Marie Dwyer, and many others; and at QUT: Raffael Conforti,

Anastasiia Pika, and Chathura Ekanayake.

I would like to extend my heartiest thanks to International Student Serivces (ISS)

for their profound academic writing support for improving my academic writing

skills. I would also like to thank Ms. Denise Scott for her nonpareil contribution to

professionally editing my PhD thesis and improving the clarity.

On a more personal note, I would like to thankfully acknowledge the

encouragement of my brother Hashim Zia Ullah who, after the departure of my

father, has always been my support in difficult times. I also acknowledge the prayers

and support of my Mother and other family members. I am profoundly indebted to

my beloved wife Samina Mustafa for her prayers, unconditional love, support,

understanding and patience, especially when I worked till the wee hours. Also, I am

grateful for the beautiful smile of my daughter Iffah Mustafa who brings true

happiness to my life.

Last, but not least, I would like to gratefully thank all those who have directly or

indirectly supported me during this whole period of study.

STATEMENT OF AUTHORSHIP

“The work contained in this thesis has not been previously submitted to meet

requirements for an award at this or any other higher education institution. To the

best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made."

Signature:

Date:

xiii

CONTENTS

Dedication v

Keywords vii

Abstract ix

Acknowledgement xi

Statement of Authorship xiii

Contents xiv

List of Figures xviii

List of Tables xx

List of Abbreviations xxi

I Background 1

1 Introduction 3

1.1 Problem Area . 3

1.2 Business Process Compliance Management 5

1.3 Problem Statement . 8

1.4 Research Questions . 10

1.5 Research Approach . 12

1.6 Research Contributions . 13

1.7 Publications . 14

xiv

CONTENTS xv

1.8 Structure of the Thesis . 15

2 State-of-the-Art 17

2.1 Compliance Management Frameworks 19

2.1.1 Organisational Compliance Requirements Management 19

2.1.2 Static Compliance Checking Frameworks 21

2.1.3 Policy-Based Frameworks . 23

2.1.4 Internal Controls-based Frameworks 24

2.1.5 Ontology and Semantics-based Frameworks 26

2.2 Design-time Compliance Management 28

2.2.1 Logic–based Approaches . 29

2.2.2 Object-Lifecycle Approaches . 32

2.2.3 Patterns/Graph-based Approaches 33

2.2.4 Query-Based Approaches . 37

2.3 Run-time Compliance Management . 38

2.3.1 Run-Time Compliance Monitoring 38

2.3.2 Logic-based Formal Run-time Approaches 40

2.3.3 Model Checking-based Approaches 40

2.4 Compliance Auditing Approaches . 44

2.4.1 Process Mining Based Approaches 44

2.4.2 Database Technology–based Formal Approaches 45

2.5 Hybrid Approaches . 46

2.6 Existing Evaluation Approaches for CMFs 48

2.7 Summary . 53

II Modelling Process Compliance 55

3 Normative Requirements 57

3.1 Background . 57

3.2 Norms, Time, and Compliance . 59

3.3 Classification of Normative Requirements 61

3.4 Formal Semantics . 65

3.5 Related Work . 74

3.6 Summary . 75

xvi CONTENTS

4 Business Process Compliance 77

4.1 Background . 77

4.2 Formal Foundations of Business Processes 79

4.2.1 Modelling Obligations . 86

4.2.2 Business Process Compliance . 89

4.3 Compliance Checking Approach . 91

4.4 Motivating Example: Complaint Handling Process 92

4.4.1 Compliance Checking of Complaint Handling Process 96

4.5 Evaluation . 100

4.6 Related Work . 102

4.7 Summary . 104

III Evaluating BPC Frameworks 107

5 Conceptual Evaluation of CMFs 109

5.1 Background . 109

5.2 Approach . 110

5.3 Conceptual Evaluation of Compliance Frameworks 115

5.3.1 PENELOPE . 115

5.3.2 COMPAS . 120

5.3.3 DECLARE . 128

5.3.4 Business Process Modelling Notations–Query Language 132

5.3.5 SEAFLOWS . 136

5.3.6 Process Compliance Language (PCL) 140

5.3.7 Business Process Compliance Auditing Framework 142

5.4 Discussion . 143

5.5 Related Work . 147

5.6 Summary . 149

6 Formal Evaluation of CMFs 151

6.1 Background . 151

6.2 COMPAS . 153

6.2.1 Logic Background: Linear Temporal Logic 154

6.2.2 Motivating Example: Privacy Act 156

6.2.3 Modelling Privacy Act with LTL/CRL 157

CONTENTS xvii

6.3 PENELOPE . 161

6.3.1 Logic Background: Event-Calculus 164

6.3.2 Modelling Obligations with PENELOPE 166

6.4 Deontic Extension to Event-Calculus . 172

6.4.1 Issues with Event-Calculus . 173

6.4.2 Extending Event-Calculus . 175

6.4.2.1 DHoldsAt Predicate . 175

6.4.2.2 DTerminates Predicates and Events 177

6.4.2.3 Terminability Predicates 178

6.4.2.4 Compensability Predicates 178

6.4.3 Modelling Obligations with Extended EC 180

6.4.3.1 Punctual Obligation 180

6.4.3.2 Persistent Obligation 181

6.4.3.3 Achievement Obligation 182

6.4.3.4 Maintenance Obligation 183

6.4.3.5 Compensation Obligation 184

6.5 Solving PENELOPE’S Issues with Deontic EC 185

6.6 Related Work . 188

6.7 Summary . 190

7 Epilogue 193

7.1 Synopsis . 193

7.2 Limitations . 197

7.3 Avenues for Future Work . 197

Appendices 201

A Synthetic Business Contract 203

Bibliography 215

LIST OF FIGURES

1.1 Sources of Compliance . 4

1.2 Compliance Management Strategies . 7

1.3 Research Approach . 12

3.1 Temporal Model . 60

3.2 Normative Requirements: Classes and Relationships 62

3.3 Punctual Obligation . 66

3.4 Persistent Obligation . 66

3.5 Preemptive Obligation . 67

3.6 Non–Preemptive Obligation . 67

3.7 Maintenance Obligation . 69

3.8 Compensation Obligation . 71

3.9 Perdurant Obligation . 73

4.1 Transformation of the BPMN Model into an equivalent WF-Net 85

4.2 Business Process Compliance: Abstract Framework 91

4.3 A Complaint Handling Process . 95

5.1 Conceptual Evaluation Approach . 111

5.2 List of BPMN–Q visual patterns to model norms 135

5.3 Primitive and Compliance Rule Graphs . 137

6.1 Data Collection Process . 160

6.2 Complaint–Handling Process . 167

6.3 Terms of payment process fragment . 169

6.4 Violation semantics of Persistent Obligations 171

6.5 Domain–dependent axiom (Simultaneous effects) 174

6.6 Domain–dependent axiom (delayed effects) 174

xviii

List of Figures xix

6.7 Domain dependent axiom(no fluent in the argument) 175

6.8 Recursive Compensation . 179

LIST OF TABLES

2.1 Business Process Compliance Research Canvas 18

4.1 The Compliance Requirements of Complaints-handling Process 94

4.2 Applicable Rules and Obligations in Force for Trace t11 99

4.3 Number and types of obligations and permissions in Section 8 of TCPC . 101

5.1 Articles and # of Citations of Selected CMFs between December 2013–

August 2015 . 114

5.2 Deontic Properties of PENELOPE . 116

5.3 Atomic Patterns and CRL Expression . 121

5.4 Composite Patterns and Equivalent CRL Expressions 122

5.5 Declare Constraint Patterns and Meanings 129

5.6 BPMN–Q Constraints Name, CTL Representation and Meanings 134

5.7 SeaFlows’ Structural Criteria . 138

5.8 Types of Obligations Operators in PCL . 141

5.9 Summary of Conceptual Evaluation of Existing CMFs 145

5.10 Summary of Norms Support in Existing CMFs 146

6.1 Deontic Properties of PENELOPE . 162

6.2 Event-Calculus Predicates and Meanings . 165

6.3 Deontic EC Predicates and Meanings . 176

xx

LIST OF ABBREVIATIONS

BPC Business Process Compliance.

BPM Business Process Management.

BPMN Business Process Modelling Notations.

CMF Compliance Management Frameworks.

CTL Computational Tree Logic.

DT-CM Design-Time Compliance Management.

EC Event-Calculus.

FCL Formal Contract Language.

LTL Linear Temporal Logic.

PENELOPE Process Entailment from Elicitation of Obligations and Permissions.

RCM Regulatory Compliance Management.

SOX Sarbanes-Oxley.

TCPC Australian Telcos Consumer Protection Code.

WF-net Workflow-Nets.

xxi

Part I

Background

1

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Problem Area

The fall of corporate giants such as Enron, WorldCom, American International

Group (AIG) in the US and Parmalat, and Société Générale in Europe caused a severe

depression in the world’s financial markets. The apparent deterioration in the

reliability of information as the result of bad management, the declaration of

insufficient and false reporting of an organisation’s values, and uncontrolled transfer

of money are some reasons given for this depression. Fongon and Grillo (2004)

observed that bad governance, unreliable information and non–conformance to

regulatory laws resulted in a USD 5 trillion loss to organisations between March 2000

and September 2002 alone.

The collapse and ultimate closures of large companies resulted in the urgent need

to design and implement new regulatory laws to control that how businesses should

conduct their operations in the future. Thus, several laws—such as Sarbanes–Oxley

(SOX) Act (US-Government, 2002); BASEL (series of) Acts (BCBS, 2013; SCBS, 2004);

Health Insurance Portability and Accountability Act (HIPAA, 1996)—and Anti–Money

Laundering regulations and monetary de–facto standards (such as the International

Financial Reporting Standard [IFRS] (IFRS, 2014)) emerged. These had a direct

impact on the operations of an ogranisation. Failure to comply with these regulatory

laws can damage investors confidence, and result in financial penalties or (even)

3

4 CHAPTER 1. INTRODUCTION

criminal prosecutions. Hence, adherence to the regulatory laws, internal controls,

and other sources of compliance requirements has become a must–to–do activity for

every organisation in the interests of transparency and more efficient operations of

their daily business (Abdullah et al., 2010).

Compliance is an act of establishing and enforcing internal controls through

which adherence to regulatory laws and standards is secured. Compliance

requirements can stem from different sources and can be categorised into different

classes—for example, regulatory compliance and standardisation compliance (as

shown in Figure 1.1). Regulatory laws such as SOX, MIFID, and EuroSOX aim to

impose conditions on businesses requiring them to run their operations as

stipulated in these laws. In contrast, standardisation compliance rules are

implemented to achieve and maintain the required levels of compatibility,

interchangeability, or commonality in the operational and administrative areas of an

organisation.

Regulatory Standards Contracts

• SOX,EuroSox

• BASEL-III

• US Patriot Act

• HIPPA

• IEEPEA

• MIFID

• ITIL,CoBIT,Prince 2

• Corporate Best
Practices

• ISO9000/IEC20000

• Medical Guidelines

• SLAs,/Warranties

• Nondisclosure
Agreement

• Partnerships
(MoUs/Merger)

• Leases

Figure 1.1: Sources of Compliance

Generally, organisations adopt standardisation compliance voluntarily to

provide improved services, or to adopt procedures required by authorities for

certification purposes. Business contracts, on the other hand, are agreements

between organisations to achieve mutual objectives. In the framework of contracts,

organisations have to fulfil responsibilities outlined in the agreed contracts. Such

contracts can be in the form of customer contracts, such as warranty, service level

agreement, and business partnerships (for example, memorandum of

understandings or mergers). The objectives of compliance management are to

1.2. BUSINESS PROCESS COMPLIANCE MANAGEMENT 5

identify pertinent regulatory laws; to assess the risk of derailing daily work practices

because of applicable regulations; to establish the internal controls to prevent

violations; and to maintain the effectiveness of these controls within an organisation

(Awad and Weske, 2009; Governatori and Sadiq, 2009). Government policies alone

are not the source of compliance requirements but organisations—for their own

benefit, might want to implement policies and controls for better management of

their business operations. Such internal control objectives limit the way an

organisation is allowed to operate.

Organisations develop process models to document and automate their

operational activities. These process models provide them with a high-level view of

how to achieve business objectives, align IT infrastructure, estimate

internal/external resources, and implement policies governing these processes. As

organisations can view their activities through these models, the process models can

also be used to verify the effectiveness of their internal/external regulations and

governing policies (Karagiannis, 2008). This implies that business processes will be

faced with correctness criteria imposed by compliance requirements (Awad and

Weske, 2009). Unlike conventional correctness criteria such as different concepts of

soundness (Dehnert and Rittgen, 2001; van der Aalst, 1997), and correct data flow

(Sadiq et al., 2004), compliance requirements are considered as semantic constraints

on process performance.

Compliance requirements vary from business to business and may be influenced

by sudden changes in existing regulations or internal policy change within an

organisation. These changes can significantly impact on the performance of the

business process or even on the whole lifecycle of each process. This not only

increases the complexity of the compliance management task, but also makes the

need to develop and/or adopt an effective compliance management strategy even

stronger.

1.2 Business Process Compliance Management

The term compliance in its literal meanings is the ability of an object to yield elastically

when a (preferably external) force is applied. In other words, given the presence of

an external force, the object has to respond flexibly without repelling the force

being applied. Generally, compliance is concession to an external force (usually a

6 CHAPTER 1. INTRODUCTION

government or governing body, authority, or a person), where the external force can

be external to group complying, without being external to governing body (Ward,

1995). From a business process compliance perspective, McIntyre (2008) defines

compliance as:

“A desired outcome, with regard to law and regulations, internal policies

and procedures, and commitment to stakeholders that can be consistently

achieved through managed investment of time and resources. The

compliance management includes the legal and tactical activities in

day–to–day business processes”.

The term compliance connects two distinct domains: the business process domain

and the legal domain, as illustrated in Figure 1.2. Each of these domains has its own

specificities, which are designed to achieve specific goals. The business process

domain is more prescriptive detailing how the business activities should be

performed. A business process can be seen as a self-contained temporal, and logical

order in which a set of activities (called tasks) are performed to achieve a specific

business objective. The business process domain is a well-researched and

established domain, where researchers predominantly focus on developing and

improving business process modelling approaches and languages to achieve

flexibility in the business process execution (Becker and Laue, 2012; Johansson et al.,

2012; Lu and Sadiq, 2007; Mili et al., 2010). In contrast, the legal (that is, regulatory)

domain is descriptive in nature; it ascribes the legal boundaries by imposing

conditions that detail which actions can be considered legal and which actions must

be avoided during the execution of business process to stay compliant. Accordingly,

compliance aims to gain more understanding how organisations should operate in a

more sustainable way to continue providing their services while strictly observing all

the applicable regulations that can significantly affect their business operations

(Olivieri, 2014).

Business process and legal domains are two separate worlds, with different

constructs and different goals. There is the possibility of colliding synergies between

the two domains. Thus, a careful study of inter–dependencies of the domains is

required (Governatori and Sadiq, 2009). For this reason, the compliance domain has

received unprecedented attention from industry and academia. This attention is

also motivated by recent regulations such as Sarbanes-Oxley, which requires the

1.2. BUSINESS PROCESS COMPLIANCE MANAGEMENT 7

Legal Domain Compliance Domain Process Domain

Compliance
Checking

Formalised
Rules

Evolution
Process
Models

Monitoring

Analysis

Process
designer

process
engineering/
re-engineering

Domain
expert

Regulatory
Documents

Analysis

Process
Execution

Violation
Response

Process Role(s)

Violation
Response

Process Role(s)

Generated
Logs

Existin
g

New/Updated

Existing

Existing

New/Updated

Existin
g

violation
detection

Auditors

log analysis

violation detection

violation
detection

D
es

ig
n

–t
im

e
(p

re
-E

xe
cu

ti
o

n
)

R
u

n
–t

im
e

(e
xe

cu
ti

o
n

-T
im

e)
A

u
d

it
in

g
(p

o
st

–e
xe

cu
ti

o
n

)

feedback

Figure 1.2: Compliance Management Strategies adapted from (Governatori and
Sadiq, 2009)

establishment of stronger and more enforceable strategies to meet the organisation’s

compliance reporting requirements.

An organisation’s process can be affected by a number of regulations or by its

own internal policies. Identification of the relevant regulations causes frustration, as

regulations are mostly ambiguous and require a great deal of efforts to understand.

Thus, organisations are paying less attention to compliance, even while regulatory

bodies require them to observe strict regulations and recommend severe penalties

(or even criminal prosecution) for non–compliance (Abdullah et al., 2010; Pershkow,

2002). To avoid the problems with the regulatory bodies, organisations are putting

more efforts into compliance related activities, and employ various compliance

8 CHAPTER 1. INTRODUCTION

management strategies namely: pre–execution–time, execution–time and

post-execution time compliance management as depicted in Figure 1.2.

Post-execution (or auditing) is a strategy by which specialised compliance

consultants manually analyse the logs generated by the processes to detect possible

violations. The main drawback of this strategy is the use of manual checks, which

require a great deal of time and resources, and are thus a costly venture.

The increased pressure and threat of possible criminal prosecutions, however,

makes it a less attractive compliance reporting approach. Execution–time (or

run–time) compliance checking, in contrast, is a strategy by which organisations use

specialised software products that produce audit reports while the processes are

being executed. This approach also has limited scope because in many instances it

can perform compliance checks only on a specific piece of legislation (Governatori

and Sadiq, 2009). Also, it requires human intervention to manually rectify the

detected problems. Pre–execution time (or design–time), on the other hand, is a

more preventive compliance management strategy where business processes are

assessed for any non–compliant patterns at the very early stages of the process

design. As such, in this approach, the compliance requirements are captured

through a logic–based requirements modelling framework, and propagated into

business processes. Any non–compliant issues can be detected in the very early

stages, thus saving an organisation efforts, time, and financial resources.

1.3 Problem Statement

In today’s highly process–oriented business environment, business processes are the

core of any organisation. They provide with them an abstract view of the

state–of–the–affairs in relation to the achievemt of business objectives. As earlier

mentioned, to stay compliant, organisations employ various strategies; accordingly,

we list the several reasons, including the compliance reporting demands of the

regulatory authorities making compliance an important activity for organisations.

Given the significance of the compliance problem, and in response to these

demands, the business process management, compliance management, and

computer science research community have shown a wider interest in the topic. As a

result, over the last few years, a plethora of Compliance Management Frameworks

(hereafter CMFs) that provide automated compliance checking has emerged (see

1.3. PROBLEM STATEMENT 9

Chapter 2 for existing CMFs reported in business process compliance literature).

These CMFs bear specific (often customisable) functionalities that address the

compliance problem in a variety of ways to meet an organisation’s specific

compliance requirements. For example, the CMFs by (Milosevic, 2005) and

(El Kharbili and Stein, 2008) focus on policy–based business process compliance,

while (Schleicher et al., 2010) proposes the compliance checking approach via

re–usable process fragments. A few have proposed CMFs based on defeasible and

deontic logic of obligations and violation, focusing on design–time compliance

management (Governatori et al., 2011; Governatori and Rotolo, 2010a; Governatori

and Sadiq, 2009; Sadiq et al., 2007). Some frameworks (Cabanillas et al., 2010;

Cabannilas et al., 2010), on the other hand, are data–centric, addressing the

compliance problem from the data aspect of the business processes.

Regardless of the nature, types, and how good and flexible these CMFs can be,

their effectiveness largely depends on their underlying conceptual and formal

models that provide representations of the normative requirements. In other words

the underlying formal model of a CMF needs to be sound enough to provide

reasoning support for all types of normative requirements. A CMF based on weak

conceptual and formal models might not be suitable to provide any certification of

compliance acceptable to accredited certifying organisations. The literature on

business process compliance (see, Chapter 2) shows that existing CMFs are

grounded on various formal models using different formal languages to reason

about the normative requirements. Given the extensibility of the business process

compliance domain and the existence of a large number of CMFs, determining the

suitability of a CMF for effective compliance reporting is a difficult task that requires

special tools and methodologies to evaluate the abilities of the CMF. To the best of

our knowledge, the business process compliance management domain currently

lacks accepted tools and methodologies that researchers can rely on to evaluate the

abilities of a CMF; in particular, it lacks tools and methodologies to evaluate the

effectiveness of its conceptual and formal models in offering the reasoning support

for various types of normative requirements. Given the lack of tools and

methodologies the question is: how can the abilities of a CMF be evaluated to

determine whether it can model all types of normative requirements, and therefore

be relied upon to issue a certification of compliance. Hence, to fill this gap, this

thesis proposes a formal framework to evaluate whether a CMF correctly represents

10 CHAPTER 1. INTRODUCTION

the normative requirements that a system has to comply with.

1.4 Research Questions

To achieve the main goal of developing a formal framework to evaluate the abilities

of a CMF, this thesis addresses the following specific research questions:

Q1. How to evaluate existing compliance management framework, systems

approaches and languages?

The strength of a CMF largely depends on sound conceptual and formal foundations

of the compliance checking approach upon which it is based. Existing CMFs address

the compliance problem from a variety of perspectives (for example, from control

flow, data aspects etc.) using techniques grounded on different conceptual and

formal models. These models might have their own strengths and complexities,

and be suitable for a specific domain or applicable under specific situations. A

weak or inappropriate conceptual model can severely hinder the effectiveness of the

compliance checking approach proposed in the CMF.

As normative requirements are written in natural language, different people

understand and interpret them differently. For automated compliance checking, the

main task is the formal representation of compliance requirements in a format that

machines can understand. Generally, compliance requirements are represented

using a particular formal language such as Temporal Logic, Event-Calculus, Deontic

and Defeasible Logic. The formal representation with these languages provides the

formal specifications of normative requirements. However, these formal languages

can have varied degree of complexity and expressiveness. The effectiveness of the

compliance checking approach proposed in a CMF particularly depends on how

accurately the chosen language can provide the reasoning support to correctly

represent different types of normative requirements in a conceptually sound way.

Wrong interpretation or incorrect representation of the normative requirements can

significantly reduce the effectiveness of the CMF.

Given the varying nature of the existing CMFs incorporating different conceptual

and formal models, we investigate how to evaluate existing CMFs, systems and

languages to determine their suitability to issues a certification of compliance. The

business process compliance domain currently lacks tools and methods that can be

used to evaluate the abilities of CMFs. In particular, we investigate how to evaluate

1.4. RESEARCH QUESTIONS 11

the conceptual and formal models of existing CMFs, and whether a CMF is able to

provide compliance management support in a conceptually sound way.

Accordingly, in order to find the answers to these questions, we first need to

identify the generic classes of normative requirements for which a CMF must be able

to provide full reasoning and proper modelling support. Hence, the second question

of this research is:

Q2. What are the classes of normative requirements and how can they be formally

modelled?

Compliance is about legal norms (known as normative requirements). Norms aim

to control the behaviour of their subject by defining what is legal and what is not.

Generally, norms are prescriptive and define the conditions under which they are

applicable and the effects they produce when applied. The structure and properties

of norms have been subject to extensive research in Artificial Intelligence and Law

and Legal Reasoning with respect to various property aspects such as reification,

rules semantics, normative effects, contraposition, and rules validity, to name but a

few.

From a business process compliance perspective, norms prescribe conditions

(otherwise ‘compliance rules’) relating to how activities should be carried out and

impose penalties for any divergent behaviour. Generally, normative requirements are

written in natural language and must be translated into a machine–readable format,

giving the formal specifications of norms for automated compliance checking.

Norms can have different structure and properties (depending upon the conditions

of applicability and circumstances under which they are applicable); they can be

classified according to their relevant properties. Given the different types of norms’

properties, from the specifications of normative requirements for an automated

compliance checking, we investigate which are the generic classes of normative

requirements and whether they can be further classified according to the relevant

property?

The main idea of business process compliance is to determine whether the

constraints (normative requirements) imposed by a regulatory framework are met

by IT systems. Thus, it is particularly important that a CMF offers a faithful

representation of normative requirements and is able to appropriately reason with

the normative requirements. A non–faithful representation of, and inappropriate

reasoning with the norms, can have a significant impact on the effectiveness of a

12 CHAPTER 1. INTRODUCTION

compliance checking approach in the CMF. Thus, we investigate ways how to

formally represent different classes of normative requirements as per their semantic

definitions in a proper and conceptually sound way. Currently, most approaches

largely neglect the aspect whether the method they propose suitably represents the

normative requirements.

1.5 Research Approach

The main objective of this research is to develop a formal framework to evaluate the

abilities of existing CMFs, in particular, CMFs with a design-time compliance focus.

The term design–time compliance refers to the compliance management approach

(Governatori and Sadiq, 2009) that allows the process designers to take corrective

measures at the very early stages of the process design; in this way, potential

violations of the business rules can be prevented. Figure 1.3 illustrates our research

approach to designing the framework.

Pilot Study
Classification

Model

Compliance

Checking

Approach

Conceptual

Evaluations

Formal

Evaluations

Phase–I

Background

Phase–II

Framework Development
Phase–III

Evaluations of CMFs

Figure 1.3: Research Approach

As a first step, we conducted a requirement analysis to identify various types

of normative requirements and the functional, non–functional, and operational

capabilities of CMFs. This analysis laid the foundations for a classification model

that gives various classes of normative requirements using a well-known divide

and conquer strategy. The classification model provides an exhaustive ontology of

norms along temporal dimensions. The temporal criteria were selected from other

properties of normative requirements; this is because generally norms have a life

span, and produce effects when applied. We then provided formal semantics for

each class of the classification model without restricting ourselves to any specific

formalism. Normative requirements were chosen as the main criteria to the design

1.6. RESEARCH CONTRIBUTIONS 13

the evaluation framework because, for any CMF, to be effective, it must be able to

support all types of norms. This, in turn, is because legal documents can prescribe

conditions that might be applicable under various situations and could produce

legal effects when applied.

Several compliance approaches were then analysed to find a suitable model to

design our compliance checking approach. We chose to use formal and case study

methods. With the formal methods, formal specifications of business processes and

that of normative requirements were provided. We adopted the idea of providing an

intermediary mechanism to integrate these specifications from Sadiq et al. (2007),

and used case study method to further elaborate on the compliance checking

approach. The developed classification model and the compliance checking

approach provide the foundations to evaluate whether a CMF gives a conceptually

sound representation of normative requirements.

Finally we carried-out several evaluations to examine the conceptual and formal

foundations of the CMFs whether they offer the reasoning and modelling support

for various types of normative requirements. For the conceptual evaluations, we

used the classification model (presented in Chapter 3) to determine the coverage of

the concepts by several representative CMFs (as exemplified in Chapter 5). The

representative frameworks were selected based on the expert discussions and

available in literature using the methodology from (Bandara et al., 2011). The formal

evaluations—built on the methods developed in Chapter 4, were carried out to

establish the mappings between the language and semantics of a CMF and the

semantics and definition of compliance as provided in Chapter 4. Examples of such

mappings for Event-Calculus (EC) and Linear Temporal Logic (LTL) based CMFs are

provided in Chapter 6.

1.6 Research Contributions

The outcomes of this research provide the following key contributions:

(1). A classification model and formal semantics of normative requirements that

provides a rich ontology of the various types of norms every CMF should

be able to provide the reasoning support for. The formal semantics defines

the normative requirements and provides the foundations for representing

different classes of the norms. The formal semantics is independent of any

14 CHAPTER 1. INTRODUCTION

specific formalism and provides the basis for the evaluations of several CMFs.

(2). Systematic conceptual and formal evaluations that examine the conceptual and

formal models of existing CMFs to investigate their abilities and shortcomings

in terms of the formal representations of normative requirements

(3). A deontic extension to Event-Calculus (EC) that underlines the formal language

of PENELOPE, and addresses the issues with EC predicates that prevent

PENELOPE from providing full reasoning support for all types of norms. The

proposed extension provides the insights into ways to rectify the problems with

a formal language, thus enabling it to faithfully represent all types of

normative requirement in a conceptually sound way.

1.7 Publications

The research conducted for this thesis resulted in the following publications:

1 Governatori, G. and Hashmi, M. (2015b). Permissions in Deontic

Event-Calculus. In Proceedings of the 28th International Conference on Legal

Knowledge and Information Systems (Jurix’ 15), Braga Portugal. [Short Paper]

2 Hashmi, M., Governatori, G., and Wynn, M. (2015a). Normative Requirements

for Regulatory Compliance: An Abstract Formal Framework. Information

Systems Frontiers, pages 1–27. [Online First]

3 Governatori, G. and Hashmi, M. (2015a). No Time for Compliance. In

Proceedings of 19th IEEE the Enterprise Computing Conference (EDOC’15),

Adelaide Australia.

4 Hashmi, M. (2015). A Methodolgy for Extracting Legal Norms from Regulatory

Documents. In Proceedings of 8th International Workshop on Evolutionary

Business Processes (EVL-BP 2-15), co-located with EDOC 2015, Adelaide

Australia.

5 Hashmi, M., Governatori, G., and Wynn, M. T. (2014). Modeling Obligations

with Event-Calculus. In Proceedings of 8th International Symposium, RuleML

2014, Prague, Czech Republic, pages 296–310

6 Hashmi, M. and Governatori, G. (2013). A Methodological Evaluation of

Business Process Compliance Management Frameworks. In Song, M., Wynn,

M. T., and Liu, J., editors, Asia Pacific Business Process Management, volume

159 of LNBIP, pages 106–115. Springer, Switzerland

1.8. STRUCTURE OF THE THESIS 15

7 Hashmi, M., Governatori, G., and Wynn, M. T. (2013). Normative Requirements

for Business Process Compliance. In Proceedings of 3rd Symposium (ASSRI’13)

on Service Research and Innovation, Sydney, Australia, pages 100–116

8 Hashmi, M., Governatori, G., and Wynn, M. T. (2012). Business Process Data

Compliance. In Proceedings of 6th International Symposium, RuleML 2012,

Montpellier, France, pages 32–46

The following papers are under review:

9. Hashmi, M., Governatori, G., and Wynn, M. T. (2015b). Norms Modelling

Constructs of Business Process Compliance Management Frameworks: A

Conceptual Evaluation. Enterprise Information Systems Journal. [Submitted]

1.8 Structure of the Thesis

To conclude this chapter, we describe the structure of the thesis. The thesis is

divided into three parts namely: background, framework development and

evaluation of CMFs—each having dependencies between various chapters.

Part–I: Background

The first part consists of two chapters. Chapter 1 is dedicated to a discussion on

business process compliance management (see, Section 1.2). Following the pilot

study in Phase 1, we formulated the research problem to develop a formal

framework in Section 1.3. Chapter 2 presents a detailed discussion on the

state–of–the–art in the business process compliance domain structured around the

compliance management strategies, and lists generic compliance management

requirements.

Part–II: Framework Development

The second part consists of two chapters. Chapter 3 proposes a classification model

of normative requirements based upon the temporal validity and the effects of

norms giving a rich ontology of the norm classes, see Section 3.3. A formal semantics

defining (and required to model) different classes of norms is discussed in

Section 3.4. Chapter 4, then provides a compliance checking approach detailing the

steps required to properly model the legal component of compliance. The

developed framework comprising the ontology, the formal semantics of norms, and

the compliance checking approach addresses the problem formulated in Chapter 1,

16 CHAPTER 1. INTRODUCTION

and provides the foundations for conceptual and formal evaluations in Part 3 of the

thesis.

Part–III: Evaluations of CMFs

The third part also consists of two chapters. Chapter 5 reports on detailed

methodological evaluations of seven CMFs selected based on a pre-defined set of

evaluation criteria to examine their conceptual foundations to deal with the

normative requirements. Chapter 6, then presents the formal evaluations of Linear

Temporal Logic (LTL), and Event-Calculus (EC) based CMFs. Specifically, we

investigate whether they are able to provide sound reasoning support for the classes

of the classification model and formal semantics proposed in Chapter 3 and

Chapter 4 respectively. Also, it proposes a deontic extension to EC as a value added

contribution.

Finally, Chapter 7 concludes the thesis by summarising its contributions and

limitations, and sheds some light on the avenues for future work.

C
H

A
P

T
E

R

2
STATE-OF-THE-ART

Apart from many challenges that come from different sources of compliance

requirements, the most prevalent challenges when considering how technology

might help enterprises to deal with the compliance problem are namely:

1. how to exhibit compliance of business processes against the governing rules,

2. how to handle ever-changing regulatory requirements, and

3. how to maintain business agility in dynamic business environments governed

by the regulations.

To deal with these challenges—and to meet their compliance reporting

requirements, enterprises employ different compliance management strategies.

Governatori and Sadiq (2009) provides a very useful discussion on such compliance

management strategies namely: (i) preventative compliance detection (that is,

design-time or before-the-fact); (ii) run-time automated detection; and

(iii) retrospective or backward compliance checking (that is, after-the-fact). These

strategies lead the emergence of several CMFs, methods, approaches, and systems.

Table 2.11 categorises some of the existing CMFs that are reported in business

process compliance (BPC) literature. These frameworks address the compliance

problem in a variety of ways and offer different functionalities. However, in the BPC

literature, there is no single study that systematically evaluates the legal

1This is not an exhaustive list of all representative frameworks in their respective category.

17

18 CHAPTER 2. STATE-OF-THE-ART

Table 2.1: Business Process Compliance Research Canvas

Compliance Frameworks
Liu et al. (2007), El Kharbili et al. (2008),
Karagiannis et al. (2007), Bonazzi and Pigneur
(2009), Ly et al. (2012), Yip et al. (2007), Namiri
and Stojanovic (2008a), Sadiq et al. (2007),
Governatori and Milosevic (2005), Namiri and
Stojanovic (2007a), Namiri and Stojanovic (2007b),
Hoffmann et al. (2009), Schumm et al. (2010),
Jiang et al. (2014)

Design-Time Compliance Management
Logic Based Approaches

Governatori and Milosevic (2005), Governatori
et al. (2006a), Milosevic et al. (2006a), Milosevic
et al. (2006b), Goedertier and Vanthienen (2006c),
Governatori and Rotolo (2010b), Governatori and
Rotolo (2006) Governatori and Rotolo (2010a),
Governatori et al. (2011), Letia and Groza (2013),
Lomuscio et al. (2008)

Patterns Based Approaches
Han et al. (2007), Yu et al. (2008),Schmidt et al.
(2007), Yu et al. (2006), Namiri and Stojanovic
(2007a), Förster et al. (2005, 2006), Wang et al.
(2014)

Run-Time Compliance Management
Keller and Ludwig (2002), Milosevic et al. (2002),
Kabilan et al. (2003a), Kabilan et al. (2003b),
Leitner et al. (2009) Leitner et al. (2010), Giblin
et al. (2005), Alberti et al. (2007), Governatori and
Rotolo (2008a), Bai et al. (2009), Gilliot and Accorsi
(2009), de Moura Araujo et al. (2010), Birukou et al.
(2010)

Compliance Auditing Approaches
van der Aalst et al. (2005), de Medeiros and
van der Aalst (2005), Doganata and Curbera
(2009), van der Aalst et al. (2010), Arya et al. (2010),
Agrawal et al. (2006), Johnson and Grandison
(2007)

Hybrid Approaches
Ghanavati et al. (2007), Sapkota et al. (2011),
Cunningham et al. (2001), Rifaut and Dubois
(2008), Kähmer et al. (2008)

2.1. COMPLIANCE MANAGEMENT FRAMEWORKS 19

requirements to properly model the legal component of business process

compliance. In this chapter, we review the existing literature on business process

compliance management, and divide the presented state-of-the-art literature into

two parts: (i) the literature on business process compliance management frameworks,

and (ii) the literature on studies that evaluate existing compliance management

frameworks and highlight their shortcomings.

This chapter is organised as follows: Section 2.1 discusses the CMFs from an

organisational perspective, and highlights the strengths and weaknesses of different

techniques they use in these CMFs followed by a detailed discussion of design-

time compliance CMFs in Section 2.2. Run-time approaches categorised into run-

time monitoring and run-time detection approaches are discussed in Section 2.3.

Process mining and database technology-based compliance auditing approaches

are discussed in Section 2.4. Hybrid approaches incorporating a mixer of different

techniques are discussed in Section 2.5. Then, a detailed discussion of existing

studies that evaluate different features of CMFs and highlight the shortcomings of

these evaluations is given in Section 2.6. This chapter concludes with some remarks

on the shortcomings of the existing works, thus positioning the scope of the research

presented in this current study in Section 2.7.

2.1 Compliance Management Frameworks

Generally non-compliance with regulatory laws or internal control policies is

categorised as a risk factor. Non-compliance with regulatory laws can lead to severe

financial penalties, criminal prosecutions, or even business closures (Abdullah et al.,

2010). Hence, it is inevitable for businesses to track a risk type, record it, and develop

policy control that guarantees the compliance. Thus, compliance management

becomes a mandatory activity for every enterprise. Many dedicated research efforts

have proposed compliance management frameworks that address the issues of

tracking and documenting the compliance requirements.

2.1.1 Organisational Compliance Requirements Management

More and more enterprises are both venturing globally and even incorporating new

technologies to provide a wide range of, and better services to their customers. On

the one hand, such new business ventures and the use of new technologies increase

20 CHAPTER 2. STATE-OF-THE-ART

the customer base of an enterprise; on the other, they bring new challenges from

an internal management and regulatory perspective because of the increased role

of compliance in their processes. Several research efforts have focused on the ever-

increasing compliance requirements of enterprises. The COSO standard (COSO,

1994) provides the guidelines for establishing business objectives, and for integrating

compliance requirements into business processes for effective operations. However,

the standard neither proposes a compliance model nor it describes any compliance

controls.

The OCEG’s2 governance and risk compliance (GRC) (OCEG, 2012) and

CoBIT (COBIT, 2007) initiatives provide governance models for enterprises

operating in specific domains. For example, the CoBIT standard provides the

governance models for establishing, refining and concreting the control objectives

for effective and efficient management of IT resources and operations in large

enterprises. However, these initiatives are not meant to suggest ways in which to

define and correlate the compliance concepts, and to integrate them into their

business processes (see Elgammal, 2012); they simply provide guidelines for

managing and refining the compliance requirements.

The major threat of non-compliance is the risk of financial loss and/or loss of

trust, which can lead to drastic consequences for enterprises. Effective risk

management is one of the key determinants of compliance, and minimising the

operational risks has been highly emphasised in the COSO framework. Ashby (2008)

suggests that the adoption of a ‘process–based–comprehensive’ approach to effective

risk management. However, Ashby also suggests that the thoughful management of

risk does not only encompass the adoption of a comprehensiveness of a

process-based approach—a carefully selected GRC framework is also inevitable to

ensure that all business processes are fully integrated in order to manage the risk

effectively and efficiently. Evans (2014) discusses the adoption of an end-to-end

process-based approach to the management of risk. To improve business

agility Evans also signifies the importance of choosing the right GRC framework for

the successful management of risk. The study lists eight determinants from the

OCEG’s capability model—such as context, organisation, assessment of threats and

opportunities etc., for aligning the business strategy with the business processes for

effective management of compliance related risks at various levels of an enterprise.

2OCEG: Open Compliance Ethics Group, available at http://www.oceg.org/ retrieved 23rd
January 2014

http://www.oceg.org/

2.1. COMPLIANCE MANAGEMENT FRAMEWORKS 21

Vicente and Mira da Silva (2011) proposed a rather similar compliance model based

on the GRC framework.

A few studies conceptualise the risks and business processes, and proposed

conceptual models for managing and connecting the compliance controls into

business processes; for example conceptual models proposed by Strecker et al.

(2011), Namiri and Stojanovic (2007a), Rosemann and zur Muehlen (2005), and

Namiri and Stojanovic (2008b) to name but a few. These studies identify several

business artefacts that represent the varying segments of business operations such

as processes, accounts, control objectives, and risks—and their relationship to

business process compliance. Namiri and Stojanovic (2008b) listed a set of

properties of the internal control systems of an enterprise, contend that these

properties can minimise (or even remove) the risk of non-compliance, thus

increasing the likelihood of promoting, rather than inhibit the business. Accordingly,

Rifaut and Dubois (2008) use a real business case study using BASEL-II (SCBS, 2004)

from the financial sector for managing the operational risks, and proposed a

goal-oriented approach to assessing the regulatory requirements for business

processes.

2.1.2 Static Compliance Checking Frameworks

Static compliance checking is concerned with the techniques associated with a

thorough analysis of the behavioural properties of a system to investigate whether

a property satisfies applicable requirements is performed. For static compliance

checking it is not necessary for the system to be fully functional and running. This

also implies that such techniques can be applied to the properties, that are in an

intermediate (potentially incomplete) state. The static compliance checking method

provides several benefits over its counterpart, traditional dynamic (or run-time)

compliance checking. This is because static techniques can frequently produce

counter-examples from the violations, and allow the posing of ‘What—If ’ question

(James and Jonathan, 2011). This, in turn, facilitates a greater understanding of

behavioural properties, and a detailed analysis to rectify the potential problems.

Model checking and the design-time compliance checking approaches fall into the

category of static checking methods.

Liu et al. (2007) proposed a static compliance checking framework that uses a

static method to check business process models against business rules. They employ

22 CHAPTER 2. STATE-OF-THE-ART

a classical model checking approach and used high-level specifications languages

such as BPEL and BPSL. Their approach enables the formalization of a business

process model with π–calculus and transforms them into a finite state machine

(FSM) representation. In the case where process modeller discovers a non–compliant

process, the counter–examples are automatically created at process design level.

This makes the compliance checking process rather easier and less error prone, thus

reducing the risk of non-compliant operations. This framework provides effective

support for compliance checking, as the process designers can immediately react to

any non-compliant behavior; however, this support is limited to run–time only which

limits the scope of this framework. In case of violations, furthermore, the report need

to be in a more meaningful and readable format, even for non–expert users. However,

it is unclear how transparent the compliance checking is. Similarly, it is also unclear

if π -calculus accurately represents the mapping between the process models and

compliance rules, and the subsequent transformation into FSM representation.

Nishizaki and Ohata (2013) propose a rather similar approach for checking the

compliance of business processes for information systems, using the UPPAAL

(Pattersson and Larson, 2000) model checker. The business processes are defined as

timed automata, and the regulatory rules are translated into computational tree

logic (CTL) specifications, which are then fed to the model checker. The model

checker automatically searches for all execution paths to verify the compliance of

the rules. Where some rules prove to be non–compliant, the model checker provides

a counter–example against the violated regulations as transitions traces. The use of

the timed automata in this approach allows the specification and verification of

queries using a real-time clock variable to represent the timed constraints. This

makes the model checker suitable for verifying the compliance of real–time systems.

This approach differs from Liu et al. (2007) in terms of the underlying formalism

used to model the regulatory rules. Liu et al. employ BPSL for the specifications of

rules, while Nishizaki and Ohata (2013) use timed automata and timed CTL. Despite

the fact that use of real–time automata allows for a description of the real-time

properties of the system, this latter approach is less practical because of its limited

capabilities in defining and verifying the compliance issues. It does have the

advantage, however the model checker generates counter-examples to make

corrections in the model; this is not possible with Liu et al. (2007) framework.

2.1. COMPLIANCE MANAGEMENT FRAMEWORKS 23

2.1.3 Policy-Based Frameworks

In Chapter 1 we discussed the fact that regulatory documents alone are not the only

source of compliance requirements. Organisations can also implement their own

policies for transparency and effective management of their business operations.

Namiri and Stojanovic (2008b) provides a taxonomy of properties that organisations

can use to verify their internal control systems. An organisation’s internal control

systems are generally responsible for implementing the external compliance

requirements. If these internal control systems are compliant, it is relatively easy for

enterprises to satisfy the external compliance requirements. Some key policy and

internally–based compliance management approaches are El Kharbili et al. (2008);

Governatori and Milosevic (2005); Namiri and Stojanovic (2008a); Sadiq et al. (2007).

The framework reported by El Kharbili et al. (2008) defines and integrates

compliance requirements by means of policies within an enterprise. Due to the

vertical nature of the compliance problem, the authors define the semantics of

several enterprise models and enriched them with compliance requirements

modelled as elements of the policy ontology. As enterprise models and compliance

management models are two distinct notions, a synergistic relation between these

two notions is hence mandatory to achieve compliance. The El Kharbili et al.’s

framework proposes the integration of compliance requirements into the enterprise

goals and strategies to provide a better understanding of compliance at different

levels; for example, operational processes and business objectives levels. The

multi–layered approach introduces mandatory transformations of the different

components defined in each layer. The use of business rules as a source to realize

and monitor the compliance requirements on a process model has also been

proposed. In contrast, the work of Karagiannis et al. (2007) sees the compliance as

more of an enterprise-wide problem than a project based issue. They propose a

method to link regulatory laws to business processes supported by the ADONIS

platform and the SOX portal. The usability of proposed method was verified by

implementing the regulatory rules from SOX Act, and claimed that a significant

degree of compliance at run-time was achieved.

Bonazzi and Pigneur (2009) used a holistic layered approach to deal with the

compliance management problem to achieve agreement among all related

regulations, policy controls and stakeholders. The layered approach first identifies

all pertinent regulations, conflicts between the involved parties and then the level of

24 CHAPTER 2. STATE-OF-THE-ART

the parties’ compliance with the rules requirements. The authors used IT solutions

and proposed a model to track down the compliance requirements. All business

units are required to divulge compliance based on the established relationship in the

previous step. The proposed model establishes control among all involved activities

to achieve compliance. This framework provides an effective solution to the

compliance problem by defining the relationship between all stakeholders at top

management level and the relevant regulations; however, the framework does not

appear to cover the whole business process model of an enterprise. In addition, no

compliance requirements have been specifically generated. This gives the rise to

question: How will the processes of each business unit comply with the regulatory

laws?

2.1.4 Internal Controls-based Frameworks

Namiri and Stojanovic (2008a) presented a formal framework to define and relate an

enterprise’s internal controls to ensure that business operations are in alignment

with the regulatory requirements. The proposed framework first identifies internal

policies and controls and validates their inter-dependency against governing rules.

These controls are then formally defined using a semantic approach. The framework

provides the support necessary to verify whether a system implements the required

set of rules, and establishes the relationship among the business processes, and

remains consistent during its evolution. The formal model introduced in this

framework provides a rich formal representation of risks, involved entities and their

semantic relationship with business processes and controls; however, it only

captures the entities involved in the process, not the internal syntax and semantics

of each entity. Furthermore, the capturing of the interdependence and contradiction

of semantic relations is not possible; that is the formal model is not capable of

automatically detecting any contradicting and interdependent controls. This

identification of contradicting controls with respect to every entity is highly

desirable. It is necessary for the gathering of all information relating to the semantic

relationship between entities and/or processes in order to determine whether a

process is compliant with a set of rules. Another problem with this framework is that

it does not provide a fully automated solution to the compliance problem as some

tasks are carried out manually while defining relationship between processes and

internal controls. There is also no evidence to suggest that this framework identifies

2.1. COMPLIANCE MANAGEMENT FRAMEWORKS 25

and proposes remedial actions when a rule is violated, and this restricts its scope.

Since compliance aims to align the business process specifications and business

rules specifications which are two distinct worlds, the idea of maintaining a separate

controls directory in order to align the business practices with controls objectives

was coined in Sadiq et al. (2007). The proposed framework allows a formal

representation of control objectives in formal compliance language FCL (cf.

Governatori and Milosevic, 2005), and links these control objectives to processes in

the form of control tags. These control tags, which can be derived from the FCL to

analyse and visually annotate graph–based process models. The analysis of the

process models enriched with these controls tags, allows redesign of compliant

business processes. The control objectives are concerned with the data related to the

entities involved in a process, and impose constraints on the data. A limitation of

this approach is that there is no evidence to show where the contents of the control

tags will come from (especially with respect to the data for the data tags); nor is there

any evidence of the way in which the data constraints can be implemented on a

business process. The same is true for other control tags for resources, temporal and

control–flow tags. In addition, Sadiq et al. (2007) primarily focuses on the preventive

compliance measures to check controls–related violations at design–time. However,

in some situations, not all details related to a process might be available thus

compliance measures can be checked only at run-time; however, no such support is

provided.

Rather, similar works by Namiri and Stojanovic (2007a,b) use a pattern–based

approach to managing the control directory of different actors in the compliance

management process, and present in detail the relationship between a business

process and control objectives. Their approach suggests remedial recovery actions

that react to the violation of a control objective, and can be linked to each control

objective. For the most part, these run–time compliance monitoring approaches,

monitor the control objectives when processes are running, and no mechanism is

provided for design–time compliance checking.

Hoffmann et al. (2009) presents a formal framework for annotated process

models, and introduced the notion of clausal compliance constraints. They devised

a lower–order polynomial time I–algorithm to check the completeness of

compliance constraints as partly exact, partly approximate, or guaranteeing only.

The proposed approach has a number of issues: (i) the I-algorithm does not seem to

26 CHAPTER 2. STATE-OF-THE-ART

work in the presence of conflicts between the obligations, because the algorithm

operates in polynomial time and can only be used for checking the constraints on

basic processes (that is, the processes that have no loops); (ii) from a

constraint–modelling perspective, the formalism used in their work lacks

expressiveness for modelling the compliance requirements (For example, modelling

preference–based norms such as ‘if you cannot do P, then do at least Q’, is an example

of permission-based [or CTD] requirements, and such requirements cannot be

modelled); and (iii) from a business process modelling perspective, the proposed

framework suffers from several difficulties as data contents and temporal aspects of

the behaviour of activities cannot be modelled using I-algorithm. Similarly, it is not

possible to annotate the predicates that represent the qualitative properties of the

data. Accordingly, the support for the temporal behaviour is limited only to what is

encoded in the control–flow of the process. Hence, it is not possible to quantitatively

measure that how long an activity takes to complete, and it cannot be formally

expressed.

Schumm et al. (2010) use the idea of re–using business processes, and

introduced the notion of compliance fragments to embed them into a business

process at design-time. They combined the formalism of compliance requirements

and automated verifications of a given process in a template that can be reused for

another processes. This template–based approach is less advantageous, given the

varying nature of compliance requirements, and the need to add, remove, and

update these requirements. For example, in the process model, when a new task (or

a sub–process) is introduced and has its own requirements, then the previously

stored compliant fragment has to be concretised (or even) fully re–customised

because previously stored requirements might not be captured in the template

fragment. In addition to that, only those specific requirements those relevant to the

control-flow aspect of a business process can be handled with these compliant

fragments.

2.1.5 Ontology and Semantics-based Frameworks

In the context of SeaFlows3, Ly et al. (2012) report a compliance management

framework to address the challenge of the semantic constraints condition on

3Semantic Constraints in Process Management Systems: http://www.uni-ulm.de/en/in/institute-

of-databases-and-information-systems/research/projects/seaflows.html

2.1. COMPLIANCE MANAGEMENT FRAMEWORKS 27

business processes to comply with regulatory laws. The framework incorporates a

graphical modelling language to capture process–related compliance rules which

provides primitives to capture complex compliance rules in the form of directed

graphs. In addition, it indicates the need for an independent compliance

requirements repository that is maintained separately from the business process

repository. The framework does not only simply provide YES/NO type answer to

show compliance with a process; rather, it is capable of validating semantic

constraints, and of checking compliance and the violations of compliance rules,

both at design-time and run-time. The compliance support is provided in textual

description of violations (log files), and is enriched with compliance rules violations

and compensation activities that can be used as input to process analysis and

evaluations.

While it is claimed that the Ly et al. (2012) framework provides so–called,

“life–time compliance”, it does have its drawbacks. For example, there is no

indication of how well the semantic constraints can be represented in a process

model, or how the implicit constraints are derived. Moreover, the semantic

constraints can be often redundant and conflicting. Furthermore, there is no

indication of how the redundancies and conflicts among the semantic constraints

hare handled. Theoretically, a process model, or an instance, that violates semantic

constraints, might still be syntactically correct; however, this is not applicable in real

situations because it is semantically incorrect. Hence, it is essential to have

implicitly derived constraints free from any conflicts and redundancies for effective

compliance and the challenging task of balancing the semantic constraints. Another

issue with this framework arises from the validation of the consistency of semantic

constraints and compliance rules across different processes. Ly et al. offer no explicit

solution or technique to address this issue. Moreover, no solution for establishing

and verifying the relationship between the compliance rules and a business process

to achieve full compliance has been proposed.

Yip et al. (2007) discussed an ontology-based framework in the scope of an

intelligent compliance management (iCMP) project to explore the application of

semantic web rules and OWL4 ontology to represent business domain and

compliance knowledge. They, first extracted the compliance requirements and

documented them semi–automatically, and then check the business rule constraints.

4Web Ontology Language:http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/

28 CHAPTER 2. STATE-OF-THE-ART

This approach facilitates the extraction of compliance requirements from source

documents; it also deals with data incompleteness, which is a major deficiency of

semantic web technologies. Ideally, the orientation of the Yip et al. (2007) framework

is diverse as it offers solution to defining model compliance data; for example,

policies and requirements in formal and clearly defined data structures. However,

the provided support is limited to the extraction of compliance requirements from

data only, as the semantic constraints imposed on other business process aspects

such as control–flow, time and resources have not been supported. Moreover, the

complexity of ontological mapping of compliance requirements and reasoning

about these mappings, is especially challenging work, as compliance rules are

expanded, removed or even updated. This can increase the compliance rules

repositories quite significantly, and handling huge repositories is quite difficult task.

Accordingly, with added rules, computation complexity might also increase. There is

no indication of how this complexity of compliance requirements can be handled, as

no support is provided for the management of the changes in the compliance rules

repositories can be managed. These factors limit the effectiveness of the Yip et al.’s

framework.

2.2 Design-time Compliance Management

The design-time compliance management (DT-CM) approaches are efficient ways of

verifying the compliance in the early stages of a process design and fall into the

category of ‘static compliance checking’ methods. Design–time approaches aim to

check the compliant behaviour of business processes against all the applicable rules,

thus preventing the actual execution of non-compliant processes (Kharbili et al.,

2008). The design–time approaches can be divided into two sub-categories namely:

(i) design–time compliance checking, and (ii) design–time compliance verification.

Design-time compliance checking targets the implementation and checking of

regulatory rules while a process is being modelled. This allows the process designers

to take corrective measures in the very early stages of the process design thus

completely preventing potential violations of the business rules. However, because

of their rigid nature, the design-time compliance checking approaches cannot be

fully automated. Thus, they are more suitable for cases such as business contracts

where business processes are derived from the defined specifications (Awad and

2.2. DESIGN-TIME COMPLIANCE MANAGEMENT 29

Weske, 2009).

A number of design–time compliance checking approaches have been reported

in literature, and these can be categorised based on their underlying technique(s),

such as logic-based approaches, object lifecycle–based approaches, pattern–based,

and query–based approaches. In contrast design-time verification is used to verify

whether a designed process conforms to the policies before actual execution. Unlike

design–time checking, design–time verification approaches are rather flexible in

nature and allow a higher degree of automation. The rest of this section gives a

comprehensive view of the reported literature related to both these sub–categories of

design-time compliance management, and discusses their languages, tools, systems,

and formal approaches in these categories.

2.2.1 Logic–based Approaches

Governatori and Milosevic (2005) present a formal system for describing contracts in

terms of deontic concepts of obligations, permission, and prohibitions. The

formalism supports reasoning about violations of the obligations of business

contracts. The proposed formalism lays the foundation for contract specification

language known as business contract language (BCL). Later, the same authors

extended their formalism and proposed FCL (Governatori et al., 2006a), a new

business contracts modelling language to check the compliance of business

processes and business contracts. They used logic-based formalism for the

expression of contracts and their violations, coupled with new semantics specifically

developed for compliance checking. These semantics can help in determining the

current state of affairs; that is ‘ideal’, ‘sub-ideal’, and ‘non–ideal’, when comparing

business processes and contract conditions. However, these semantics support

relatively simple normative expressions in which deontic constraints are expressed

as single events; the support for rather complex events relationships is very limited.

In addition, the handling of deadlines in FCL obligations modalities is poorly

expressed.

Milosevic et al. (2006a,b) use FCL and achieved compliance in a progressive

manner. Initially, collaborative interaction or contract framing behaviour among all

involving parties is identified; then, internal process compliance and the contract

behaviour for each party are determined. Different heuristics are applied at this

point to reflect different contract conditions, and to specify a set of actions to be

30 CHAPTER 2. STATE-OF-THE-ART

taken when a violation occurs. The likelihood of contract violations is then checked

at supplementary stages of a process design.

Goedertier and Vanthienen (2006c) achieve design-time process compliance

using a rules set of permissions and obligations (deontic logic). They proposed

PENELOPE (process entailment from the elicitation of obligations and permission),

a declarative language to elicit business rules imposed either by internal policies or

external regulations in the form of temporal deontic expressions. These expressions

are used to generate compliant processes covering control–flow and temporal

constraints among activities in a business process. Aiming to achieve compliance at

design–time, PENELOPE focuses on the verification and validation of a process

model at design-time, and does not intend to apply deontic rules at run–time. The

proposed language has limitations, however. A major issue arises from the

underlying formalism the Event–Calculus (EC) used for modelling the obligations

and permissions. Furthermore, the language can only model a subset of obligations

types. Governatori and Rotolo (2010b) proposed Process Compliance Logic (PCL),

an extension of FCL (Governatori et al., 2006a), for capturing various types of

normative requirements. The proposed logic is based on defeasible logic (cf. Nute,

2003), and deontic logic of violations (cf. Governatori and Rotolo, 2006), which

transforms the deontic obligations subject to a business process into normal forms,

and represents them as a PCL expression. These PCL constraint expressions for

deontic systems define a behavioural and state space to identify the differences

between the process execution paths and the PCL constraints. To test the

effectiveness of the PCL, the authors used a three-step compliance–checking

algorithm that they previously proposed (Governatori and Rotolo, 2010a).

In Governatori et al. (2011), also present a formal approach, using defeasible logic to

integrate the business policy constraints and the organisational goals in such a way

that allows a business process to simultaneously fulfill the policy constraints and its

organisational goals. As is the case with Governatori and Rotolo (2010b) study

primarily deals only with the control-flow aspects of a business process, the data,

resources, and temporal aspects are not addressed.

Letia and Groza (2013) report a logic–based model–checking approach for

compliance verification of the integrated business process models. The proposed

approach extends the norm temporal logic of Ågotnes et al. (2007), and introduces

obligation and permission operators into the temporal logic to model the various

2.2. DESIGN-TIME COMPLIANCE MANAGEMENT 31

compliance requirements from HACCP standard5 in the food safety domain. The

compliance checking is performed by a four-step mechanism where, in the first step

the domain knowledge—that is, the normative requirements—is translated into

Norms Temporal Logic and Attribute Language with Complement (NTL–ALC) logic.

Then a WF–net using a Kripke structure is generated with states that are labelled

with all normative requirements, specified in the form of normative formula f

pertaining to the state. Each formula f in the state in the WF–net is verified if the

formula f representing the norm holds in the state. If f does not hold, the state

violating the norm is added to the set of breached states. The proposed approach

allows the integration of subsumption–based reasoning, with the possibility of

checking the compliance of various types of norms. By the virtue of the extended

logic NTL–ALC, the proposed approach allows the integration of the abstract and

concrete business processes, thus making it a more explicit in representation of the

compliance requirements for business process models.

Governatori et al. (2006a) addressed the problem of compatibility checking

between business processes and business contracts. The compliance checking

approach involves the use of logic–based formalism to express business contracts

and check their violations. The authors develop a semantics approach to determine

ideal, sub–ideal and non-ideal scenarios for the comparison of business process

execution paths and the contract conditions. Governatori and Sadiq (2009) reported

an algorithm to check the deontic modalities of a business contract against a

business process. To achieve this, activities involved in the process are annotated as

having certain effects. Lomuscio et al. (2008) report a rather similar approach where

they use multi-agent systems to verify the contract-regulated service compositions.

However, their approach only enables the checking of compliance violations and

does not suggest any remedies if any violations of contract rules occur.

Governatori and Shek (2013) report a rule–based compliance checking

framework–the Regorous–6based on compliance-by-design methodology proposed

in (Governatori and Sadiq, 2009). The main aspect of the proposed methodology is

to extend the business processes with formalised rules, which are then verified by a

compliance checking algorithm (Governatori and Rotolo, 2008a). For this purpose

5The Hazard Analysis Critical Control Point System, available at http://www.standards.org/
standards/listing/haccp, retrieved 20 Feb 2014

6Regorous Compliance Checker, available at https://www.regorous.com/ Retrieved 10
October 2013.

 http://www.standards.org/standards/listing/haccp
 http://www.standards.org/standards/listing/haccp
https://www.regorous.com/

32 CHAPTER 2. STATE-OF-THE-ART

the rules are first modelled using FCL, and are then evaluated by the

above-mentioned algorithm, which uses a logic-based reasoning engine SPINdle7

(see Lam and Governatori, 2009) to validate the rule compliance. In case any

non–compliance issues are detected, the compliance checker returns the processes

(along with the traces and tasks) and the rules that have been violated. The objective

of the verification is to ensure that a business process complies with all pertinent

regulations before the actual deployment of that process.

2.2.2 Object-Lifecycle Approaches

Küster et al. (2007) introduce the notion of object lifecycle and coverage to check

whether a process model is compliant with the referenced object lifecycle at

design–time. The proposed technique first generates a process model from one or

more referenced object lifecycles. In the first step, the object lifecycle is used to

generate a set of actions for the process model to identify transitions in the given

object lifecycles. This ensures that invalid composite states cannot be reached in the

composite object lifecycle. The order of the process model is then determined, and

actions are combined with process fragments in the second and third step

respectively. The process fragments are connected in the final step. This approach

provides support to process designers; however, it is not fully automated as

synchronization points among the process object lifecycles have to be defined

manually in the case of several objects lifecycles. In addition, in some cases, the

number of object life cycles can be very large, and this can increase the size of the

process model. The increased size of the process models can make them difficult to

handle. In this approach, no mechanism is provided to determine how the

compliance checking will be affected if the size of the process models becomes

relatively large; how a large number of referenced object lifecycles are taken as an

input; or how compliance will be preserved if a generated process is customised.

This also poses the question that of whether the dependencies between the dynamic

compliance rules and alternatives be a matter of concern (that is, in achieving the

correct compliance rules) when a process model is customised.

Schleicher et al. (2009) extend the work of Küster et al., to solve the issue of a

synchronisation point (variability) and to preserve compliance in customised

7SPINdle Reasoner, available at http://spin.nicta.org.au/spindle/, retrieved 21 August
2013.

http://spin.nicta.org.au/spindle/

2.2. DESIGN-TIME COMPLIANCE MANAGEMENT 33

process models. The authors introduce an approach based on the concept of a

business process template that implicitly contains compliance constraints and

points of variability to prevent process designers from bothering with compliance

constraints at design-time. The reported algorithm ensures that compliance

constraints are not violated when a process model is customised. The problem with

the algorithm is that it does not provide any mechanism to handle dependencies

between the alternatives and dynamic compliance rules, as mentioned above.

2.2.3 Patterns/Graph-based Approaches

Automated compliance checking of the legal requirements of the business processes

is highly desirable. These requirements are often written in natural language, and

must be translated into a machine–readable format for automated verification.

Generally, formal languages (such as Event–Calculus, Temporal Logic, Deontic

Logic), which provide the reasoning support, are used to translate the legal

requirements. However, due to their complexity, the comprehension and usability of

these languages is difficult, especially for non-technical users such as process

analysts and compliance experts. Thus, the usability of the formal languages is one

of the main concerns for non-technical users who possess less knowledge of these

languages (Elgammal, 2012). To address the usability concern of the formal

languages, researchers proposed to embed the formulas in a formal language that

translates the compliance requirements into easy–to–understand visual patterns or

graphs. This lead to the emergence of graph/pattern based compliance verification

approaches in the business process compliance domain.

Han et al. (2007) propose such a pattern–based property specification language,

PROPOLS8 for specifying temporal business rules. The PROPOLS defines a collection

of properties for a service composition, with each property being a rule or a logical

composition of rules that govern the ordering of the primary services within a

service composition. Each rule consists of a pattern element and a scope element.

Because each pattern specifies the existence behaviour of a single business activity or

temporal relationship among activities, PROPOLS enables process designers to insert,

delete, or rearrange processes to be compliant, based on temporal business rules.

Deviations from the business rules are identified using finite state automata (FSA) to

8PROPOLS is an ontology-based property specification language based on PPS to specify service
composition properties.

34 CHAPTER 2. STATE-OF-THE-ART

inform process designers about non–compliant behaviour. The automata are derived

from a set of business rules and existing process schema. Yu et al. (2008) extend

Han et al.’s work and propose a synthesis framework to generate a process models

from a set of temporal business rules. The proposed approach generates a process

model and a requirements model (temporal rules) to achieve intuitive specifications

and correction–by–design. This helps the process designers to rectify design time

mistakes. In addition, it also allows automated verification of semi-automatically

generated process models.

Schmidt et al. (2007) discuss an ontology–based approach to representing

service processes and their compliance requirements, to verify whether the designed

service processes are compliant. The proposed approach employs two distinct

ontologies: a process ontology defining the concepts that are needed to represent

service processes and a compliance requirements ontology consisting of the

concepts that represent the objectives and requirements of compliance rules. The

authors report three distinct categories of compliance requirements in their model:

syntactic, semantic and pragmatic. To verify the compliant process elements on the

semantic requirements of service processes, a reasoner is applied. The problem with

the proposed approach is that it isolates only processes whose requirements are

instantiated as compliant processes; other uninstantiated processes are not

included. Moreover, there is no indication of how the proposed approach deals with

non-compliant processes as no remedial actions can be taken in the proposed

approach.

Yu et al. (2006) introduce a compliance verification approach to BPEL schema,

which employs an ontology language for property specifications. The verification

process starts with a high–level description of a BPEL schema to implement in the

process. Then, semantic mapping between the operations is defined in the ontology

language, and a finite and deterministic labelled transition system (LTS) model is

generated. From this LTS model, a total and deterministic finite automata (TDFA) is

built. This includes the set of final states and error states to collect a list of all the

unwanted events of each state. In the last step, verification of the compliance BPEL

schema determines whether all acceptable event sequences of the BPEL schema are

present in the list of acceptable sequences generated in the form of TDFA.

Förster et al. (2005, 2006) present a pattern-driven process approach to visually

express the compliance constraints on the process behaviour. The authors use PPSL,

2.2. DESIGN-TIME COMPLIANCE MANAGEMENT 35

an extension of UML activity diagrams (OMG, 2011). The activity diagrams are used

to specify possible patterns that need to be applied in the business process models.

This enables the process designers to have an abstract view of a possible behaviour

of a business process. For example, UML activity diagram patterns that extend the

edges with the stereotype ≪ a f ter ≫ show that it is not necessary that two

activities be strictly executed sequentially. These patterns are then used to check

whether business process conform, by transforming them into temporal logic

systems. While, business processes are transformed into a labelled transition system

defined by a semantic domain meta-model that enables the application of

model–checking to ensure the conformance of the business processes to patterns.

Although the proposed approach provides a flexible way for the process designers to

check the quality of conformance, the approach is not free of issues. The definition

of process behaviour as visual patterns at design-time is one such issue, because

these patterns might depend on each other, or even might reflect contradictory

behaviour. Currently, the approach does not provide any mechanism to gain

(potentially prior) knowledge of the interdependencies among different patterns.

Furthermore, these patterns are not able to expressively model a negation; that is, a

rule might stipulate conditions that prevent some activities from ever happening,

while others have already been executed. Essentially, from a business

process-compliance perspective, negation is an important aspect of modelling

prohibitions, however, no explicit support is provided in this framework for

modelling the negations. In addition, this approach only focuses on the control flow

aspect of business processes and does not provide any support for modelling and

checking their compliance with the data, resources aspects of a business process.

Namiri and Stojanovic (2007a) employ a pattern-based approach to modelling

an enterprise’s internal controls. They build their model on the de-facto internal

control standard (otherwise known as COSO9). In the process execution phase, a

bi-directional interaction between BPM and internal control management is

established. Later, all information about the current instance of the business process

is enacted. In case of any violations, a recovery action (defined in the controls) is

executed. The major benefit of their approach is its ability to define different

controls beyond workflows, and in different environments, to reuse of the process

models. However, the proposed model is not fully automated because it requires

9Internal Control, An Integrated Framework. The Committee of Sponsoring Organisations of the
Treadway Commission COSO (1994): http://www.coso.org/

http://www.coso.org/

36 CHAPTER 2. STATE-OF-THE-ART

manual selection of a control pattern and its design on a business process

corresponding to the domain specific compliance requirements. Furthermore, there

is no support for handling inter-control dependencies; for example, different

controls can contradict, subsume or even block the execution of other controls in a

business process interaction. This signifies the need to establish a stronger

correlation between processes and controls. Moreover, this approach does not

support compliance verification beyond the run-time, nor does it support resource

and temporal aspects of the business process.

Arbab et al. (2009) present REO Tool–kit, a channel–based coordination language

for the design-time verification of business process models. The language uses

modelling checking and bisimulation techniques to formally analyse the correctness

of the business processes against imposed constraints. For the verification of

compliant behaviour, in this approach, business process are first modelled either in

BPMN (OMG, 2010) or UML (OMG, 2011) activity diagrams, which can be mapped

into constraints automata. The compliance requirements are represented using

Linear Temporal Logic (LTL), and then the model-checking techniques embedded

into REO tool-kit are used to verify the compliance of business processes. The work

reported in Schumm et al. (2010) is grounded in the REO tool–kit, where the REO is

used for the automated compliance verification of business process fragments

against the business constraints mapped in LTL.

Wang et al. (2014) propose a formal approach that addresses the issue of

determining the compliance of the PLM10 systems and workflow management

systems by using the data of the design objects which may evolve over the various

versions of the product lifecycle in the PLMs. This compliance–by–design checking

approach employs the workflow nets, which are annotated by defining the

version–annotated processes. In the annotated processes, the version annotations

are specified with the certain tasks, as per the specifications of the access control

privileges. The aim of the access control privileges is to control some operations at a

particular state of the product lifecycle, which may be subject to some restrictions.

Later, the semantic and syntactical properties of the annotated process are defined,

and these are then used to verify the behavioural and syntactical compliance of the

annotated processes by merging the version-annotated process and transformed

WF–nets. A version–annotated process is considered compliant only if its

10Product Recycle Management (Rangan et al., 2005)

2.2. DESIGN-TIME COMPLIANCE MANAGEMENT 37

compliance properties correspond to the soundness properties of the WF–net. If the

soundness properties of both nets do not match, it means that the data design

object’s lifecycle is not compliant. The existence of non–live tasks in the process can

be one of the reasons for a non–compliant version annotated process. Remedial

action(s) can be taken to correct the problem by modifying the process model or

access control specification from the task. The proposed approach provides

technical foundations for merging the two types of process models to create a new

type of compliant WF–net. The proposed approach has fundamental issues with the

annotating process. This process is semi–automated, which means that some of

annotation task have to be manually performed by the domain experts. Annotating

the hundreds of tasks in a process model—each task having (possibly) several

related compliance rules—is a tedious task, and potentially error-prone.

2.2.4 Query-Based Approaches

Awad et al. (2008a) discuss a BPMN–Q, a query–based approach to compliance

checking. The approach is capable of answering Yes/No questions to verify whether

a process is compliant. The authors use a graph reduction technique to gain the

Yes/No answer. As an execution of a query graph, the graph reduction approach

splits a process graph into a set of execution paths from the first to last nodes in the

graph. Then, the order of execution is determined with respect to an execution path

by finding the precedence between the occurrences of nodes. In the final step, a

process graph is matched to a query graph. If it satisfies all sequence flow and path

edges, the BPMN–Q returns a YES to a rule representing a complaint process. In the

case where BPMN–Q does not find a match, a NO is returned to convey a violation of

a rule. The Awad et al. (2008a) approach provides an answer to the rule query

effectively, and enables order checking between activities involved in a process.

However, one problem with the graph reduction approach is that it might remove

some activities that, at first glance, might not be pertinent to a query. This might

include those activities which have to play a significant role in the completion of a

process.

The work is later extended with the authors introducing the ways to visualise the

violations of control flow ordering in the compliance rules (Awad and Weske, 2009).

Again, they use structural BPMN–Q queries to express the compliance rules, which

are called ‘patterns’. These queries are used to find the set of process models that are

38 CHAPTER 2. STATE-OF-THE-ART

subject to compliance checking in a process repository. Temporal formulas are then

derived from the queries to check against the process model. In the final step,

anti-patterns are derived automatically from BPMN–Q queries to report any rule

violations in the process models. Because Awad et al. use a graph reduction and

model checker in this later (Awad and Weske, 2009) approach, the proposed solution

to derive anti-patterns queries has some limitations. The generated anti-patterns

depend on the input state transition system of the process model. If the transition

system is generated from a reduced process model, the resulting anti-pattern would

not be usable on the original process model. Similarly, as the generated

anti-patterns are given as a disproof of rule violation, it is possible that some

violations are not reported by the model checker. Moreover, re–implementation of a

translation software will be required in the case where some changes are made in the

model checker software.

2.3 Run-time Compliance Management

Once a process model has been designed and the actual execution of the process

instance is initiated, continuous monitoring of the running process instances is

pivotal to detect any divergent behaviour while the processes are still running. The

aim of the run–time compliance checking is to monitor the running processes

continuously to check if they violate the internal controls or policies imposed on

their execution. For this purpose, a process engine keeps track of the process

behaviour and alerts process designers to any violations. The process designers can

then take appropriate actions to rectify the detected violations. The run–time

compliance checking approaches can be broadly categorised into run–time

compliance monitoring approaches and run–time compliance detection approaches.

These can be further classified into monitoring–based approaches, logic–based

approaches, and model–based approaches. The rest of this section gives a short

overview of some approaches from the run–time compliance–checking domain.

2.3.1 Run-Time Compliance Monitoring

Keller and Ludwig (2002) introduce an architecture to monitor service level

agreements (SLAs) for dynamic electronic services, in particular, web services. In the

blocked architecture, the SLA requirements are first automatically generated by the

2.3. RUN-TIME COMPLIANCE MANAGEMENT 39

SLA–driven system administration block, for further interaction with the web service

level agreement (WSLA) monitoring environment. In the WSLA monitoring phase,

the monitoring is divided into two sub-phases: (a) measurement service, which

measures all subsets of the SLA parameters generated by system administration

block; and (b) the condition evaluation, which obtains measured values of SLA

parameters from the measurement service and verifies these parameters against

guarantees specified in the SLA. During the testing, if a breach is detected, a

violation trigger is invoked to alert parties involved in the SLA. This verification of

the SLA parameters can be done periodically, or when a new SLA parameter is

available.

Work by Milosevic et al. (2002) discusses a compliance–monitoring mechanism

for electronic contracts. In their role-based architecture, the authors introduce a

discretionary enforcement mediator (DEM) to measure the performance of a

contract. The DEM can signal a non–conformance of a contract event if it detects

any deviating behaviour of the event. The DEM maintains a separate notary block in

which it collects information about each violation, and this used to endorse the

execution of corrective measures. This approach provides an effective means of

monitoring of the adherence to all clauses of a contract; however, the approach is

not fully automated. In an extension to their work on contract management (Kabilan

et al., 2003a,b) use a multi–tier contract ontology for business contracts monitoring.

They deduced a contract workflow model (CWM) from the multi–tier contract

ontology consisting of different types of obligations written into a contract and

different spaces from which each obligation passes. These obligations are monitored

for potential breaches of clauses stipulated in the contract with respect to the actual

execution of identified events. While proposed model provides an automated

monitoring and tracking of obligation fulfilment, some components of this model

are semi–automated and so do not support fully automated compliance

management at run–time. Moreover, this work focuses on control–flow compliance

monitoring only; the data, resources and temporal aspects of a business process are

not considered. Similar to Keller and Ludwig’s (Keller and Ludwig, 2002) work there

are other run–time approaches for monitoring the violations of SLAs (see Leitner

et al., 2010, 2009, for more details).

40 CHAPTER 2. STATE-OF-THE-ART

2.3.2 Logic-based Formal Run-time Approaches

Giblin et al. (2005) employ a formal approach to introducing the REALM model, a

model–driven compliance automation method for regulatory policy and event

monitoring. The meta-model of REALM supports the expression of temporal

ordering and time periods as temporal logic modalities in real–time. The domain

discourse of a regulation, on the other hand, is represented by the UML model. This

approach only considers the temporal aspect of a process lifecycle and neglects

control-flow, data and resources aspects.

Alberti et al. (2007) introduce a declarative programming language, SCIFF, an

abductive logic programming for business contracts specification and monitoring.

The run–time verification of contracts is performed by means of an abductive proof

procedure which supports the dynamic occurrence of events; that is, the insertion of

new facts during computation, and violation monitoring. For execution time

compliance checking, Governatori and Rotolo (2008a) use formal contract language

(FCL) to propose their algorithm. The FCL constraints are used to define the state

space and behaviour of contract policies that are used to compare the behaviour

execution path of a business process. The algorithm operates in a step–wise fashion,

where it first collects a set of all tasks involved in a business interaction. These tasks

are then used to determine the norms triggered at run–time in the second step.

Finally, compliant or non–compliant behaviour of a task is declared after comparing

all tasks with normative constraints. The compliance checking reported in

Governatori and Rotolo’s work is an automated monitoring of the business

processes to suggest remedies and/or mitigation of the control–flow deficiencies.

Thus, after–the–fact detection does not have a preventive focus. In addition, data,

resources and temporal aspects of a process lifecycle have not been considered in

this work.

2.3.3 Model Checking-based Approaches

Model checking is a state–of–the–art technique where the system specifications are

verified against certain properties. For a system to be compliant, all the properties

must be satisfied over all possible states of the system. To verify the compliant

behaviour, a model and the properties are fed into the model checker such as SPIN11,

11SPIN Model Checker Available at: http://spinroot.com/spin/whatispin.html

http://spinroot.com/spin/whatispin.html

2.3. RUN-TIME COMPLIANCE MANAGEMENT 41

NuSMV12, UPAAL13 etc., The model checker then thoroughly searches the model

against the properties, and generates counter examples if any of the properties do

not apply (Bérard et al., 2001; Mateescu and Sighireanu, 2003). Since model checking

is a well–researched area, it was widely used in a multitude of domains, including the

business process compliance domain. There is a wide body of proposals grounded

on model checking for the verification of process models.

Bai et al. (2009) adopt a model–based approach for policy enforcement and

monitoring of the dynamic behaviour of web services at run-time. Their approach

defines a policy model based on the WS-policy framework. It also includes the

definition of the policies and policy–sensor correlation matrix adopted from the

W3C standard14 for specifying services of policy requirements. Policy consistency

support is reported in this work; however, there is no indication of how policy

violations can be handled, and no remedial actions are suggested to address these

violations. Gilliot and Accorsi (2009) present a light-weight violation anticipation

monitor (VAM) architecture for a priori run–time anticipation obligation violations.

Based on run-time verification (verifier module), statistical reasoning, and (linear

temporal logic) LTL–based model–checking technique. VAM can answer as ‘true’,

‘false’, ‘presumably true’ or ‘presumably false’ to represent compliance at run–time.

Remedial decisions are taken on the basis of true or false predictions (that is, where

true means a process is compliant with all the regulations, and false means that the

process is not compliant). However, when VAM answers ‘presumably true’ or

‘presumably false’, it is up to the process owner to grant or revoke rights, or even to

stop the execution of the process.

de Moura Araujo et al. (2010) present a run-time compliance checking (RTCC)

technique to validate the business process with respect to the business rules. They

use UML to model processes, and OCL expressions to represent the business rules.

The model validation is based on the simulation of the execution of process

instances based on case studies. Their simulation algorithm steps through the

process model executing the actions associated with the activities with the help of

the USE tool, and checking the violations of any associated business rules. Their

technique can precisely detect the situations in which the compliance rules are

violated, and provide feedback to the analysts about the adequacy of a business

12NuSMV: Symbolic Model Verification available at: http://nusmv.fbk.eu/
13UPAAL: Uppsala—Aalborg Model Checker available at:http://www.uppaal.org/
14http://www.w3.org/standards/

http://nusmv.fbk.eu/
http://www.uppaal.org/

42 CHAPTER 2. STATE-OF-THE-ART

process with respect to the business policies. However, the evaluation criteria used

in this technique do not guarantee compliance; they simply provide some assurance

that the process will not fail in the most elementary situations. Another issue is that

the detected errors are not corrected automatically, in the case of violation, a

business analyst’s intervention would be necessary.

Kazmierczak et al. (2012) introduce a state–based norms compliance model

checker, the NoRMC. The proposed approach is based on the norm compliance

CTL (NCCT; see Ågotnes et al., 2010), and aims to verify which agents in the process

interaction have to comply with the norms of an object to hold. The normative

system is modelled as Kripke structure, and the constraints are defined to verify the

agent behaviour on every state during the interaction. The prohibitions, represented

as forbidden transitions, are modelled as a serial relation over Kripke structure, and

all the forbidden transitions are removed from the structure after its implementation.

The norms compliance checker takes a model, a normative system and the CTL

formulas, models the obligations, and returns the states where the formulas are

satisfied, so that counter-measures can be taken to repair the violation. Currently,

the norms checker’s usage is only limited to modelling obligations and prohibitions.

In the context of security compliance, Rieke et al. (2014) present Predictive

Security Analysis at Run–Time (PSA@R), a model-based approach for evaluating the

security status of business processes at run–time. This approach integrates the

formal process modelling with the simulation of process behaviour, to identify and

predict violations of the security policies at run–time. The proposed modular

approach operates with the control flow and security properties of the business

processes as formalised views. Each view in the PSA@R system is formalised for the

evaluation of security status of critical processes in the near future. For example,

critical processes are formalised by a process view using asynchronous product

automata (APA) (Ochsenschläger et al., 1998), and the security requirements are

formalised by a security view. The compliance of the security requirements is then

monitored, and potential violations (in the near future) are predicted by comparing

the predicted states with the security requirements using an on–the–fly prediction

method. The prediction method employs an algorithm that computes accepting

states referring to the security critical states. These critical states are then used to

check the violations of the security requirements for computed states. If any

deviations from the expected behaviour are detected, an alarm is raised for a

2.3. RUN-TIME COMPLIANCE MANAGEMENT 43

decision support or reaction. Rieke et al. (2014) have validated the effectiveness of

their approach by using the security policies from the hydro–power generation

domain, and this approach seems promising in terms of checking the compliance of

security requirements. However, it is not clear how the security module models

these security requirements or what types of security policies can be modelled.

Furthermore, the proposed approach does not elaborate how the compliance of

interconnected requirements can be verified. This is because the sensitive nature of

the security domain means that most of the requirements have a complex

interrelationship in order to ensure high degree of safety of the critical systems.

D’Aprile et al. (2010) report an annotation–based compliance verification

framework for checking the compliance of business processes with legal norms. The

authors extend the business processes with semantic annotations through the

specification of the effects of the atomic tasks and the obligations generated from

their execution. The framework borrows AI techniques for reasoning about the

actions and commitments, and for the verification purpose model, checking

techniques are employed using answer set programming (ASP) and Coloured Petri

Nets(CPNs). For the purpose of (semi)–automated verification, the norms are

translated into LTL specifications, and these specifications are then fused onto

business processes. The annotated business processes are then fed into a model

checker, which returns a positive answer as its output if there is no violation, or a

negative answer, if a process model violates any specification. The main issue with

their framework is that it provides structural compliance only; however, compliance

is not about only how the activities are performed to achieve the enterprise goals but

also about the tasks and the effects of the tasks on the execution of the business

process. In addition, it is not clear whether the framework is able to capture all the

obligation types of the norms.

Birukou et al. (2010) propose a run-time compliance governance approach in the

service–oriented architecture (SOA) domain. In the first step of the approach,

business process models and activities relevant to the monitoring and checking of

the compliance requirements are identified by Extended Process Engine (EPE), and

passed to Process Engine Output (PEO). These process models, with their unique

identities, are emitted by an Apache ODE engine as input for further compliance

checking. In the second step, the business level events (policies), augmented with

their unique IDs, are identified and sent to the Event Process Output engine in the

44 CHAPTER 2. STATE-OF-THE-ART

second step. Once the processes and the business level events have been identified,

an analysis of these events and processes is conducted by the business intelligence

component by creating a one–to–one mapping of events and processes for

violations detection. The results of off-line compliance monitoring and compliance

checking are made available to the compliance dashboard. The problem with this

approach is that the framework does not provide fully automated support for

compliance governance by attaching the events and generating rules for compliance

monitoring. Moreover, the compliance checking is done manually. In addition, there

is no indication of how the system will deal with a detected policy violation, and no

remedial steps are suggested. Furthermore, only the data aspect of service processes

is considered in Birku et al.’s work.

2.4 Compliance Auditing Approaches

Compliance auditing is a retrospective reporting method that enterprises use for

divulging their compliance. Usually, auditing is conducted by specially hired

compliance auditors, who manually audit the huge trails of system-generated log

files. Auditing the large amount of log files is a time-consuming task and prone to

errors. The increased pressure from the regulatory bodies and possible penalties (for

non–compliance) make this approach rather less attractive. However, with detailed

information about processes increasingly available in high–quality event logs,

auditors no longer have to rely on a small set of samples off-line. A number of

automated systems use process-mining techniques, and can scan system logs to

collect evidences to determine whether business processes are executed within the

given set of rules.

2.4.1 Process Mining Based Approaches

van der Aalst et al. (2005) propose a property formulation language and process

mining tool that enable the verification of business process properties based on

event logs. The language is based on Linear Temporal Logic (LTL), and is tailored to

event logs stored in the MXML format. The format used is tool–independent of

logged events and can be generated from audit trails, the transaction logs and other

data sets. Currently, the language provides the support for the control-flow aspects

of the business processes only, and other aspects such as are resources, data and

2.4. COMPLIANCE AUDITING APPROACHES 45

temporal aspects are not included. At a later date one of the same

authors (de Medeiros and van der Aalst, 2005) applied process-mining techniques in

the security domain, and introduced an α-algorithm. In the first step, the proposed

approach detects anomalous process executions in the mined WF-nets for concrete

cases. Then, the process conformance is checked by comparing process fragments

with the identified WF-net. The α-algorithm discovers a net that models all

acceptable behaviour of a process, using a given complete event log. A token game is

then played to verify the conformance of the identified WF-net. In the token game,

anomalous audit trails do not correspond to the possible firing sequences of

identified WF-nets. Moreover, the token game also detects the point at which the

audit trails diverges from the normal behaviour that allows a real-time verification of

the audit trails.

Doganata and Curbera (2009) discuss a semi-automatic auditing method for

unmanaged processes. The method is based on the business provenance that

sequentially records the collection of events for unmanaged processes.

Similarly, van der Aalst et al. (2010) introduced an automated auditing tool ’Auditing

2.0’ to provide support for compliance auditors using process mining techniques.

The auditing framework provides support for considering the running process

instances, and compares them with models based on historic data or business

rules. Arya et al. (2010) also use a similar approach to gain insights into the

conformance of an operational process of a given process model. The authors

implemented their approach in the PROM15 Framework. The approach uses current

event logs (collected in real time) that carrying information about the activities

being performed, and the order in which they are performed. Later, they compared

these simulated event logs against existing conformance technique based on

Petri-nets.

2.4.2 Database Technology–based Formal Approaches

Agrawal et al. (2006) use database technology to assist compliance with the internal

controls of SOX Act. The approach employs workflows and discovery–driven OLAP

to verify compliance with internal controls and irregularities in the financial data

respectively. Initially, the internal processes are first modelled as workflows

containing the required control activities, and the log of each workflow is stored in

15Process Mining Framework available at: http://www.processmining.org

http://www.processmining.org

46 CHAPTER 2. STATE-OF-THE-ART

database tables. Policies are later enforced at run-time. This ensures that only

routine transactions comply with the prescribed WFs, which serve as on-the-shelf

compliant WFs. During the compliance auditing, these on-the-shelf workflows are

reconstructed using correlation rules from the activity logs, and are compared with

the required workflows to determine whether transactions are compliant with

internal controls.

Johnson and Grandison (2007) use Hippocratic Database: HDB for compliance

auditing of data protection laws. The approach uses an HDB active enforcement

architecture that operates as a middle-ware layer on the top of the database to

enforce fine–grained policies concerning the disclosure of information. In the first

step, the policy creation (HDB control) center allows the creation of policies, and

then negotiates the preferences based on an in/out mechanism. Once policies and

preference negotiations are formally defined, all policies are stored in an HDB logging

system. Upon receiving an automatic audit query, the HDB logging system performs

a statistical analysis of the query logs and generates a list of suspicious transactions,

which are then combined into a single audit query. To confirm compliance, the

output audit query contains the user identity, time, purpose, recipient, and exact

information about the policy and pertinent disclosure information.

2.5 Hybrid Approaches

Apart from the above–mentioned classification of reported approaches in

compliance management, some hybrid approaches can also be found in the

literature. These claim to provide a full spectrum of compliance support. Moreover,

some methods, apart from the usual components of compliance checking and

monitoring, incorporate new artefacts from a business strategy point of view. The

rest of this section discusses some identified hybrid methods.

Ghanavati et al. (2007) introduce a framework for tracking legal compliance in

the health care domain. The framework demonstrates compliance tracking by

defining and maintaining the correlation between the health care information

custodian’s policy models and business process models using goal–oriented

language (GRL) and uses case map (UCM) notations. The custodian policy models

consists of a source links and responsibility links. Source links are relationship links

between the legislative policy definitions and hospital UCM model elements. The

2.5. HYBRID APPROACHES 47

responsibility links, on the other hand, establish relationships between the UCM

elements and GRL elements. These links are later checked for potential differences

to see whether compliance requirements have been met. Any difference between

what is implemented in the business process model and what is required by the

privacy legislation (policy custodian model) is reported as rules violations.

Sapkota et al. (2011) discusses semantic methodologies for automated regulatory

compliance support, using semantic web technologies. The proposed framework,

RegCMatic, addresses the problem to automatically extract and model regulatory

information; and to generate links between the internal compliance tasks and

applicable regulations. Using various document formats such as PDF and HTML,

the authors first extracted the regulations so that they could be converted into a

machine-readable format. The list of extracted regulatory obligations was then

processed using GATE (Cunningham et al., 2001), a text engineering platform, and

the executable semantic rules were generated from the regulatory ontology. The

authors implemented their proposed work using an industry case study that used

Eudralex EU regulations16. Despite the nature of the regulatory requirements used

in Sapkota et al. (2011), the work seems to offer a method for addressing the

compliance problem where the business rules are frequently changed. However, the

extraction of regulatory information is not fully automated due to the document

format used. In practice, regulatory bodies use different document formats, and

extracting information from a variety of document formats is a challenging task and

requires human intervention to adjust the document format as required.

Rifaut and Dubois (2008) use goal–oriented techniques to present their

compliance assessment framework for quality improvement based on ISO/IEC

15504 standard. However, the framework is in its evolutionary stage; the authors

report future work in methodology, and in tool support for the management of

compliance requirements and their traceability to the Process Assess Model (PAM)

for assurance purposes. Kähmer et al. (2008) introduce a formal technique to elicit

the regulatory requirements. The proposed technique represent the context of the

policy rules, with case frames to semantically verify the regulations against the

requirements. The technique uses words matched with a dictionary of policy

regulations to detect the regulation sentences relevant to the requirements, such as

structural similarity. Any dis–resemblance in the words format is detected, and

16Eudralex http://ec.europa.eu/health/documents/eudralex/index_en.htm retrieved
25th October 2012

http://ec.europa.eu/health/documents/eudralex/index_en.htm

48 CHAPTER 2. STATE-OF-THE-ART

notified to the analyst as a violation.

The consistency of the regulatory rules is one of the issues (as reported in Awad,

2010) that cause frustration for the analysts. Inconsistency in the rules can lead to

their misinterpretation, and the incorrect modelling of the regulations. Jiang et al.

(2014, 2013) proposes a consistency and compliance checking framework (CCCF),

using the Norms Nets (NN) and Coloured Petri Nets (CPNs). The NN are used to

formalise the regulatory rules and their relationship, whereas the CPN semantics

implement the compliance-checker toolbox. The CCCF framework provides

information on whether a set of regulations is consistent, and whether the business

processes comply with the imposed regulations. Although the Jiang et al.’s

framework is able to provide a reasonable degree of automated support for verifying

the compliance to regulation, the transformation of the legal rules into NNs is

primarily manually interpreted. In addition, from a business process perspective,

the transformation of the model event sequences that model the behaviour of the

agent (that is, trace generation) is also manual; this renders the proposed framework

less effective. In contrast, the compliance checker proposed in Governatori and Shek

(2013) performs these tasks automatically. Another downside of this framework is

that there is no mechanism for modelling the temporal constraints in CPNs; thus,

the compliance to regulation with temporal modality cannot be verified.

2.6 Existing Evaluation Approaches for CMFs

In the previous sections, we discussed different CMFs, methods, and approaches

that provide compliance management support for legal requirements using different

techniques. Given the extensibility of the business process compliance domain, and

the diversity of these CMFs, evaluating different capabilities of the CMFs is a difficult

task. In this section, we discuss some existing surveys and evaluations (reported

in the literature) that examine different features of existing CMFs; in particular the

evaluations from the legal requirements perspective.

Turki and Bjekovic-Obradovic (2010) evaluate the practices of legal rule analysis

for extracting the key information for information system engineering (ISE) and

goal–oriented–based approaches, with the aim of achieving, and maintaining the

regulatory compliance. The authors use a three-point criterion, namely: extraction

of rights and obligations, modelling regulations, and traceability support for

2.6. EXISTING EVALUATION APPROACHES FOR CMFS 49

compliance to conduct the evaluations. The scope of this evaluation is limited to the

modelling of the regulations to goal-oriented approaches only, and to their

traceability of the legal requirement support for compliance. Also, the authors

evaluated approaches specific to the design of compliance e–government services

only, and do not evaluate other approaches such as design–time, run–time and

auditing–based techniques. Another downside of their evaluations is that the

authors do not evaluate how the extracted legal requirements are modelled, and how

the traceability of the compliance support is achieved.

Otto and Anton (2007) survey the legal requirements for a large number of

approaches to modelling, and using the legal texts (regulations) for systems

development. They identify the strengths and weaknesses of each of the surveyed

approaches, based on the policy and regulations. They extract a large set of legal

requirements for the tool support for requirements engineers and compliance

auditors in order to address the challenges related to the legal compliance in

software systems. The survey is limited in scope as its authors study the ways in

which requirements engineers and compliance auditors from different engineering

disciplines use the legal texts to devise the regulatory compliance software systems. In

addition, the authors examine the ways in which the regulatory texts can be used to

specify the system requirements, and the ways in which analysts use the legal texts to

devise the policies for the software system requirements for compliance monitoring

systems. Essentially, the survey does not include the way in which the “legal

requirements” can be properly represented to check their compliance; or nor does it

show how to systematically evaluate whether a specific CMF can provide the

reasoning support for all types of the normative requirements.

Elgammal et al. (2011a) compare the expressive power of three formal languages

for the specification of compliance requirements, with a focus on the design-time

verification of business processes. The comparative analysis is based on the

comparison of the capabilities and limitations of the evaluated languages from

temporal and deontic families of logic with eleven selected features (such as

formality, expressive power, declarativeness, non-monotonocity and real–time

support) that compliance request language should support for the specification of

legal requirements. The main shortcoming of the Elgammal et al.’s comparison is its

limited scope of temporal logic and deontic logic as the verification of business

processes in this regard requires that the chosen modelling language is expressive

50 CHAPTER 2. STATE-OF-THE-ART

enough to capture the nuances of all types of legal requirements. We argue that this

is only possible when the legal requirements are properly modelled on business

processes. Another downside of their comparison is that they only compare two

families of logics and other formal logics (such as Event-Calculus and

First-order-logic) are excluded.

El Kharbili (2012) provides a detailed comparative analysis of the functional and

non-functional capabilities of Regulatory Compliance Management (RCM) solutions

in the Business Process Management (BPM) domain, based on a predefined

evaluation criteria. In the first category, the authors evaluate the RCM solutions

from the business users; methodological and RCM architecture perspective; in the

second category, nine functional areas of the RCM from a BPM perspective (such as

the strategy model and business process model), and compliance dimensions (such

as compliance enforce, audit, and verification) are evaluated. In the last category, on

the other hand, the authors use the functional and non-functional capabilities of a

CMF as the evaluation criteria. From the compliance dimensions, the authors

extracted three distinct types of rules—that is, structural, temporal and contractual

rules—that are supported by the modelling languages. However, they do not

systematically evaluate the “legal requirements” from a formal reasoning perspective,

to provide a proper representation of the legal norms for the compliance checking of

business processes.

More recently Ly et al. (2013) present an analysis framework to compare and

evaluate the compliance monitoring approaches, using a set of core functionalities

from a business process and legal requirement perspective. The proposed

framework is based on the ten core compliance functionalities for monitoring the

capabilities of a CMF. These core functionalities are relevant to various aspects of

business processes (such as time, resources, activity lifecycle and data) and legal

requirements (such as compliance rules violation detection, explanation, and degree

of compliance support). The authors collected these features from the compliance

management literature, and from the study of five state-of-the-art compliance

monitoring approaches.

From the business process perspective, Ly et al. (2013) include all four aspects of a

business process—control–flow, data, time and resources—as the core functionalities

in their evaluation framework. The compliance rules relevant to control–flow can

specify the order in which activities are to be performed. A compliance rule might

2.6. EXISTING EVALUATION APPROACHES FOR CMFS 51

be concerned that some activities of the process are executed in a predefined order.

For example, the anti-money laundering act that requires if a large amount of money

is transferred or deposited from/into an account, the bank are obliged to report

such a transaction. The compliance rules with control–based conditions can be

implemented and checked at design–time. Awad (2010) argues that given a correctly

designed process model, it is very unlikely that a control flow-based compliance rule

can be violated. Accordingly, the execution of business processes tasks might also

involve managing a large amount of data. For example, information stored in the

databases might change, new data might be produced and tasks might need specific

data to complete. This information can flow along process in the form of data objects,

for example, in the form of documents (such as a form/rule document). Compliance

rules might include the constraints on the data management so that data objects

must also be represented in the models, and can be subject to compliance checking.

On the same note, time is another important aspect of the process, some

compliance constraints might include constraints that a particular task in a process

is completed within the t unit of time (Ramezani et al., 2013). Weigand et al. (2011)

categorise the temporal rules into qualitative and temporal constraints. Where the

qualitative constraints aim to determine how temporal entities are related to each

other, quantitative time specifies the difference in time between the entities.

Generally, temporal constraints come from contracts such as a service level

agreement (SLA) which might impose the requirement to keep a record of

customers’ products for several years. The temporal constraints are usually

monitored for compliance at run–time. Similarly, tasks within an organisation are

performed either by machines or by human resources called agents. In some

situations, compliance rules (or internal policies) might be concerned with the agent

specifying “who will execute the task”. For example, a rule statement might impose

the condition that the task to be performed by two or more persons (for example, a

segregation of duty [SoD] condition) to ensure that no unauthorised person executes

sensitive transactions. Hence, it is particularly important that a CMF is able to

model the constraints on the human agent at the time of process modelling.

However, it is largely argued that correct modelling of the resources constraints is

not sufficient because of the human factor in situations where human monitoring is

required for compliance checking at run–time (Wolter et al., 2009).

From the legal requirements perspective, the downsides of the framework

52 CHAPTER 2. STATE-OF-THE-ART

presented in Ly et al. (2013) is that it includes only a limited set of functionalities,

and that the authors emphasise the proactive violations detection, explanation, and

level of compliance support features of a CMF only. Compliance is about the legal

rules, and one of the fundamental requirements for automated compliance

checking is that a CMF is able to formally represent the legal rules. This is because

rules are generally written in natural language, and generally incorporate legal

jargon. Also, different people understand and interpret compliance rules differently,

and this can lead to inconsistencies and redundancies. The inconsistencies of the

compliance rules can be in the form of redundant data, or conflict between the two

(or more) rules, or both. The redundancy is attributed to the appearance of the same

rules or data several times, and describing the same situation. Hence,

inconsistencies in the compliance rules might severely hamper the correct

modelling of legal rules, and ultimately results in incorrect compliance results.

On the same note, compliance rules are modelled using logic–based formal

languages, which, by the virtue of their formal semantics, are complex. This can limit

the readability of the rules to technical people only. Hence, the formal specification

and handling of the rule inconsistencies largely depends on the expressive power

of the chosen language. Researchers argue for a careful selection of the formal

language for the representation of legal rules (Governatori and Sadiq, 2009), and

list several characteristics of a formal language for the representation of legal rules;

for example, reasoning support, declarativeness, ability to handle inconsistencies,

and readability (Elgammal et al., 2011a). The features of formal representation, and

the handling of inconsistencies in the legal rules for which a CMF must be able to

provide support, are not considered.

Accordingly, another important functionality that Ly et al. (2013) have overlooked

is coupling the legal requirements with business processes. One of the desirable

features of a CMF is that it is able to provide an automated support to decide which

rules are applicable to various tasks of the process, and link them (Awad, 2010).

Moreover, the legal requirements are frequently changed, updated, or removed

because of the fast changing environments in which organisations operate. Coupling

the legal requirements with the processes, allows the process designers to implement

changes in the processes whenever the business rules are changed. Also, in coupling

the legal rules with the business process, the CMF must be extensible and must not

suffer as the results of the size and number of the rules it can accommodate. The

2.7. SUMMARY 53

feature of extensibility is not considered in Ly et al.’s analysis framework. In addition,

they considered compliance monitoring frameworks only, while design-time and

post-execution time frameworks are excluded.

2.7 Summary

In this chapter, we have presented a detailed review of the literature related to

business process compliance (BPC). In particular, we began by analysing the existing

CMFs from an organisational legal requirement compliance perspective. From this

perspective, we have investigated the ways in which organisations address the

compliance of the regulatory requirements and their internal controls, and have

analysed policy–based, internal control–based, organisational compliance

requirement frameworks. We then introduced different compliance management

strategies such as design–time, run–time, and post–execution time compliance

management. For each category, we analysed several of CMFs and approaches, with

the focus on what they can do and what they cannot do in terms of providing

reasoning and compliance management support for all types of legal requirements.

Since proper modelling of the legal requirements is paramount from a business

process compliance perspective, we also analysed different features for each of these

CMFs; for example, features such as which formal language they use for modelling

legal requirements, whether they can handle complex rules, and how they link the

compliance requirements with the business processes for compliance checking.

Finally, we studied various works from the business compliance domain,

surveying and evaluating different features of existing CMFs. We discovered that

most studies surveyed had evaluated a very limited set of features of existing CMFs.

Furthermore, none had systematically evaluated whether an existing CMF provides

the reasoning support for all types of legal requirements, or whether legal

requirements are properly modelled for business process compliance checking. We

aim to address this key shortcoming in this current study by proposing a formal

framework that systematically evaluates the features of existing CMFs, in particular,

from the perspective of a proper modelling of legal requirements. To this end, as a

first step (in the next chapter) we introduce a classification model of normative

requirements, and provide semantics definitions of each class of the classification as

the key contribution of the study. The classes of the proposed classification model,

54 CHAPTER 2. STATE-OF-THE-ART

and proposed semantics provide the basis for devising the evaluation framework,

and are used throughout the thesis.

Part II

Modelling Process Compliance

55

C
H

A
P

T
E

R

3
NORMATIVE REQUIREMENTS

3.1 Background

In the context of law, norms are generally legal binding rules of conduct issued by a

competent (often state) legal authority1 under certain circumstances and by using

certain procedures. Essentially, depending on the nature of the applicability

conditions or circumstances under which they are applicable, norms can have

several features. For example, Artificial Intelligence (AI) and Law and Legal

Reasoning largely admit that norms have the generic feature of conditional structure

of the form (Kelsen, 1991; Sartor, 2005):

IF {A1, A2, . . . , An} THEN {B} (1)

where (A1, A2, . . . , An) are the application conditions prescribed by the norm, and B

represents the desired effects of following the conditions of the norm2. The

conditional structure (1) shows an immediate connection between the norms and

1In a social context, as defined in a law dictionary, a legal authority is a government or
non–government organisation (NGO), or an individual invested with power to create legal norms, to
assume legal obligation, to sue and be sued in their own right and to be held accountable.
http://thelawdictionary.org/legal-entity/

2Note that it is possible that norms might not have any associated conditions; that is, their effects
do not rely on any preconditions for desired effects. For example, one universal norm is that everyone

has the right to live in freedom. This is a very generic norm and intends to achieve effects without
imposing any conditions; however, norms often come with conditions.

57

http://thelawdictionary.org/legal-entity/

58 CHAPTER 3. NORMATIVE REQUIREMENTS

rules3. A rule can be understood as a set of explicit regulations governing conduct or

procedures within a particular domain of activity (Abate and Jewell, 2001). For

example—in social context, speed limit rules, tenancy occupancy rules or more

general—in logic, rules of inference or implication. On the other hand, a norm4 is a

set of standard rules and laws laid down by the legal system (or an authority) against

which the appropriateness or inappropriateness of entity’s behaviour is judged.

Generally, rules specify how to behave and can be classified into: (a) determinative

(constitutive) rules, which specify the activities that cannot exist without such rules;

(b) technical rules, which state what should be done to achieve a particular outcome;

and (c) prescription rules, which control action by specifying what is obligatory,

permitted, or what must not be performed (Gordon et al., 2009; von Wright, 1963).

In the legal domain, prescription norms regulate the behaviour of their subject

by specifying what should be done, by whom, and under what circumstances. The

structure and properties of these norms has been subject to extensive research in

AI, Law and Legal Reasoning with respect to various property aspects; for example,

reification (Gordon, 1993), rules semantics, defeasibility (Gordon, 1993; Prakken

and Sartor, 1996; Sartor, 2005), contraposition (Prakken and Sartor, 1996), rules

validity (Governatori and Rotolo, 2008b), isomorphism (Bench-Capon and Gordon,

2009) and normative effects (Rubino et al., 2006) (see Gordon et al., 2009, for a

detailed list of properties of norms).

From a business process compliance perspective, norms aim to control the

behaviour of a business process by imposing constraints (that is, compliance rules)

on how activities should be carried out, and applying penalties for any divergent

behaviour. These constraints might be relevant to one or more aspects of a business

process such as control-flow, data, or resources etc.

Generally, compliance rules (or normative requirements) that constraint the

behaviour of business processes are written in natural language (c.f. those found in

legal or policy documents). For automated compliance checking of business

processes, normative requirements should be translated into a format that machines

can understand. To this end, Sadiq and Governatori (2010) argue that business

process compliance is the "alignment" of the formal specifications of a business

process and the formal specifications of the relevant normative requirements. As

3Notice that in this thesis we use the terms norms and rules interchangeably in the regulatory
sense unless stated otherwise

4As defined in Black’s Law Dictionary, available at: http://thelawdictionary.org/norm/

http://thelawdictionary.org/norm/

3.2. NORMS, TIME, AND COMPLIANCE 59

discussed above, normative requirements might have different structures and

properties depending upon the conditions of applicability, and the circumstances

under which they are applicable. Thus, from the perspective of the formal

specifications of normative requirements, the question is: which properties of

normative requirements are relevant for business process compliance checking, and

can they be further classified according to the relevant properties.

To address this question, this chapter presents, a classification model of

normative requirements based on the temporal, normative, and persistent effects of

norms for business process compliance checking. The rationale behind the use of

these properties to classify the normative requirements is that usually norms have a

particular lifespan. In other words, a norm is only applicable for a certain period,

and does not hold indefinitely. Accordingly, a norm ceases to hold once its objective

has been achieved, or other conditions begin to apply.

This chapter is structured as follows: Section 3.2 discusses norms in the context

of business process compliance from the temporal aspect of the validity of the

norms. Then, as a major contribution of this study, a classification model of

normative requirements, based on the temporal validity of obligations, and the

effects of violations on obligation, is presented in Section 3.3. This is followed (in

Section 3.4) by the formal semantics based on the concept when an obligation

enters into force, until when it remains into force, the effects of the violation on an

obligation. Section 3.5 positions and discusses this study’s proposed classification in

the context of the related work on exisitng classifications. Finally, concluding

remarks in Section 3.6 highlight the contributions of the chapter.

3.2 Norms, Time, and Compliance

Time plays an integral role in norms, in legal reasoning, and in areas governed by

norms. For example, many of the normative requirements in the area of business

process compliance concern the temporal aspects of norms. Suppose you have a

contract specifying that one party has thirty days to pay for an invoice, and that

goods cannot be delivered without payment. Thus, you have an obligation to pay

after receiving an invoice; this in turn, requires that the payment must be made before

the time of delivery.

Receiving the invoice triggers (enforces) the obligation to make a payment to

60 CHAPTER 3. NORMATIVE REQUIREMENTS

complete the transaction. Accordingly, we have conditions that must be fulfilled in a

determined time interval or by a given deadline, and other conditions that must be

met before or after specific events. Moreover, some obligations might include

conditions that must persist over an interval of time; for example, the continuous

monitoring of a patient’s blood pressure and ECG during a surgical operation.

Regardless of the type, validity and nature of the legal effect(s) of an obligation, the

temporal aspect of an obligation revolves around its following generic

aspects (Palmirani et al., 2011):

1. the time when an obligation is in force,

2. the time when an obligation is fulfilled, and

3. the time of application.

Accordingly, when a business process is subject to norms, it is particularly important

that the process complies with the obligations imposed by the norms for the whole

duration of its validity; that it meets the deadlines, and that it follows the constraints

for maintaining and delaying actions. Figure 3.1 illustrates the generic temporal

validity aspects of obligations.

Temporal

Aspects

When
applicable?

When
fulfilled?

When in
force?

Figure 3.1: Temporal Model

Capturing the real meanings of norms is paramount for the modelling of, and

reasoning about compliance checking of business processes, and, in general, for

3.3. CLASSIFICATION OF NORMATIVE REQUIREMENTS 61

legal reasoning. It is also important that the chosen language supports the highest

degree of abstraction in order to model the real meaning of the norms and the

obligations they define (Awad, 2010). In other words, the chosen language should be

able to model states of affairs, and actions, as well as the (temporal) relationships

among activities.

Many studies have been conducted to model obligations, and various

classifications of obligations where time is the key concept, have been identified in

these studies, in particular, in the context of business process compliance; for

example Hilty et al. (2005) and Governatori et al. (2007b, 2005), to name but a few

(see Section 3.5 for details). Most of the existing classifications study norms from

various perspectives of business processes, and can be used for specific purposes

only. Furthermore, the existing classifications do not encompass various types of

obligations based on the time, the effects of an obligation on other obligations and

obligations arising from the violations. In the next section, we discuss a

classification of obligations along temporal dimensions (Hashmi et al., 2013). The

key aspects of this classification are:

• temporal validity aspects of obligations and persistence effects of norms,

• what constitutes the violation in terms of the temporal validity of a norm, and

• whether violated norms can be compensated for.

In the classification, along the temporal dimensions, for each type of obligations we

specify when an obligation enters into force and the time until it remains in force, or

whether it is violated at a particular point in time. Unlike other classifications, our

proposed classification encompasses the (above) generic temporal model related to

the validity and persistence effects of obligations after violations.

3.3 Classification of Normative Requirements

As mentioned earlier the scope of norms is to regulate the behaviour of their

subjects, and to define what is legal and what is not. Typically, norms describe the

conditions under which they are applicable and the normative effects they produce

when applied. Gordon et al. (2009) provide a comprehensive list of normative

effects.

From a compliance perspective, the normative effects of importance are the

62 CHAPTER 3. NORMATIVE REQUIREMENTS

deontic effects. The basic deontic effects are: obligation, prohibition and permission.5

Let us start by considering the basic definitions of such concepts:6

Obligation: A situation, an act, or a course of action(s) to which a bearer is legally

bound, and if it is not achieved or performed results in a violation.

Prohibition: A situation, an act, or a course of action(s) which a bearer should avoid,

and if it is achieved results in a violation.

Permission: Something is permitted if the obligation or the prohibition to the

contrary does not hold.

violated
oblig/prohib
might/might
not perdure

OBLIGATION/
PROHIBITION

Non-persistent Punctual

Persistent

Maintenance

Achievement

Non-preemptive

Preemptive

PERDURANCE

Non-perdurant

Perdurant

COMPENSATION

Non-compensable

Compensable

Violation

is type of

Normative

Requirements

PERMISSION

is type of

is type of
can be
violated

might/might
not

compensated

no oblig/prohib
holds

cannot be
violated

can be
violated

Figure 3.2: Normative Requirements: Classes and Relationships

Figure 3.2 illustrates the classification of the three basic deontic effects and the

relationship between such effects and the notions of compensation and violation.

The classification provided here has been obtained through a systematic and

5There are other deontic effects, but these can be derived from the basic ones, see (Sartor, 2005).
6The definitions of above concepts considered here are given by the OASIS LegalRuleML working

group. The OASIS LegalRuleML glossary is available at http://www.oasis-open.org/apps/org/
workgroup/legalruleml/download.php/48435/Glossary.doc.

http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc
http://www.oasis-open.org/apps/org/workgroup/legalruleml/download.php/48435/Glossary.doc

3.3. CLASSIFICATION OF NORMATIVE REQUIREMENTS 63

exhaustive way where one considers the aspects of the validity of obligations (or

prohibitions), and the effects of violations on them; namely: whether a violation can

be compensated for, and whether an obligation persists after being violated.

Obligations and prohibitions are constraints that limit the behaviour of processes.

The difference between obligations and prohibitions and other types of constraints is

that they can be violated. On the other hand, permissions are constraints that cannot

be violated and thus, they do not play a direct role in compliance. Rather, they can

be used to determine that whether there are any obligations or prohibitions to the

contrary, or to derive other deontic effects (see Makinson and van der Torre, 2003,

for a detailed discussion on permissions).

Legal reasoning and legal theory typically assume a strong relationship between

obligations and prohibitions: the prohibition of A is the obligation of ¬A (the

opposite of A), then, if A is obligatory, then ¬A is forbidden (Sartor, 2005). In this

chapter, we will subscribe to this position, given that our focus here is not on how to

determine what is prescribed by a set of norms and how to derive it.; accordingly, we

can restrict our analysis to the notion of an obligation.

Compliance means to identify whether a process violates a set of obligations or

not. Thus, the first step is to determine whether and when an obligation is in force.

Hence, an important aspect of the study of obligations is to understand the lifespan

of an obligation and its implications for the activities undertaken in a process. As

we have alluded to above, norms provide the conditions for the applicability of

obligations. The next question is, then: How long does an obligation hold for? A

norm can specify that an obligation is in force at a particular point in time only or,

more often, a norm indicates when an obligation enters into force. An obligation is

considered to remain in force until it is terminated or removed. Accordingly, in the

first case, we will speak of non–persistent obligations, and persistent obligations in

the second.

If a persistent obligation needs to be obeyed for all time instances within the

interval in which it is in force, it is categorised as a maintenance obligation. If

achieving the contents of the obligation at least once is enough to fulfil for that

obligation, then it is considered an achievement obligation. Another aspect of an

achievement obligation to consider is whether the obligation could be fulfilled even

before the obligation is actually in force. If this is allowed, then we have a preemptive

obligation; if not the obligation is a non–preemptive obligation. In contrast, a

64 CHAPTER 3. NORMATIVE REQUIREMENTS

non–persistent obligation needs to be obeyed for the instance it is in force, and is

categorised as a punctual obligation. If the contents of punctual obligations are not

immediately achieved, a violation is triggered.

An obligation of any type can be violated. A violation does not always imply the

consequent termination of (or the inability to continue) a business process. Certain

violations can be compensated for, and processes with compensated violations are

still compliant (Governatori and Milosevic, 2005; Governatori and Sadiq, 2009). For

example, contracts typically contain compensatory clauses that specify penalties

and other sanctions triggered by breaches of contract clauses (Governatori, 2005).

However, not all violations are compensated for, and uncompensated violations

mean that a process is not compliant. The effects of a violation on the obligation

that has been violated also need to be considered. If the obligation persists after

being violated, it is considered a perdurant obligation; if not, it is a non–perdurant

obligation.

Accordingly, the violation of an obligation would not necessarily mean the

termination of interaction between the tasks of a process. A violated obligation

might be further compensable; that is, after the violation of an obligation, a new

obligation might take effects and amend the violation of the violated obligation. The

obligation taking effects after the violation creates an intermediate layer of

protection between the violation and the penalty (Wyner, 2008), thus aiming to

achieve a sub-ideal situation where a business process is still compliant even if some

of the obligations have been violated (Governatori et al., 2008b).

Note that the compensation of a violated obligation depends on the obligation’s

violation conditions; that is, conditions stating whether it can be compensated for.

If a violated obligation is compensated for—we speak of a compensable obligation

otherwise the violation obligation is a non–compensable obligation.

In this section, the basic intuition of the various classes of the above classification

model has been discussed. These notions give us a sense of the different kinds of

obligations that might appear in the norms and, depending on their implementation,

of what effects they might produce. In the next section, the formal semantics—that

provide the formal definitions that are required to model these concepts based on

the temporal validity of the norms over a timeline—are presented.

3.4. FORMAL SEMANTICS 65

3.4 Formal Semantics

In this section, the formal definitions of the above–discussed concepts and concrete

examples from the regulatory frameworks are discussed. These definitions are

independent of any formalism, and are based on the concept that when an

obligation enters into force and until when it remains in force and the effects of the

violation on the obligations. In presenting these formal definitions, all that needed is

the notion of time-line—that is, a possibly totally ordered discrete set of time points.

In addition to that, the time-line has a minimum. Notice that, an infinite time-line is

isomorphic to the set of natural numbers. We can restrict our analysis to a finite set

of natural numbers in the case of finite time-line. In what follows, the existence of a

suitable logical language L (which can be a set of atomic propositions) on which the

logic formulas are written to model the obligations and representation of the

environment.

Definition 1 (State). Given a time-line, we define a function State: N 7→ 2L

The meaning of the function State is to identify what formulas that are evaluated as

true at the n-th time instant of a time-line.

Definition 2 (Obligation in Force). Given a time-line, we define a function Force : N 7→

2L.

The meaning of the function Force is to identify the obligations in force at the n-th

instant of time in a given time-line.

Remark 1. In formally defining these obligations, we are not interested in the

mechanisms that establish which obligations are in force, and when. This is within

the scope of specific compliance applications and implementations as we will show in

the following chapters.

Definition 3 (Punctual Obligation). Given a timeline, an obligation o is a punctual

obligation if and only if:

∃n ∈N : o 6∈ For ce(n −1),o 6∈ For ce(n +1),o ∈ For ce(n)

A punctual obligation is violated if and only if o ∉ St ate(n).

Figure 3.3 illustrates the nature of a punctual obligation. The conditions of a

punctual obligation must be fulfilled immediately; if not, we have a violation. That

66 CHAPTER 3. NORMATIVE REQUIREMENTS

1
t

n −1

n

n +1 z

o ∈ Force(n)

o ∉ State(n)

violation of o

Figure 3.3: Punctual Obligation

is, o is violated at time n if o is not true at n (or at the n-th instant of time in the

time-line).

Definition 4 (Persistent Obligation). Given a timeline, an obligation o is a persistent

obligation in t if and only if

∃n,m ∈N : n < m,o ∉ For ce(n −1),o ∉ For ce(m +1),∀k : n ≤ k ≤ m,o ∈ For ce(k)

The obligation o is in force between n and m.

A persistent obligation is an obligation in force in an interval of time. The Figure 3.4

illustrates the definition when a persistent obligation o is in force between n and m.

Persistent obligations can be further classified as:

t
1

n −1

o ∉ Force(n −1)

n k m
m +1

o ∉ Force(m +1)

z

o ∈ Force(k)

Figure 3.4: Persistent Obligation

(a) achievement obligations, and

(b) maintenance obligations.

The violation conditions for a persistent obligation can be derived from the violation

conditions of these subclasses.

Definition 5 (Achievement Obligation). Given a timeline, an obligation o is an

achievement obligation if and only if ∃n,m ∈ N,n < m such that o is a persistent

obligation in force between n and m.

An achievement obligation o in force between n and m is violated if and only if:

3.4. FORMAL SEMANTICS 67

t
1 n −1

o ∉ Force(n −1)

n k m m +1

o ∉ Force(m +1)

z

o ∈ Force(k)

o ∉ State(k) violation of o

Figure 3.5: Preemptive Obligation

• o is preemptive and ∀k : k ≤ m,o ∉ State(k);

• o is non–preemptive and ∀k : n ≤ k ≤ m,o ∉ State(k).

An achievement obligation is in force in an interval in the time-line, and can be further

classified as: preemptive and non–preemptive. A preemptive achievement obligation

o is an obligation that can be fulfilled even before the obligation is actually comes

into force. In contrast, a non–preemptive achievement obligation can be discharged

only after it comes into force. The violation of an achievement obligation depends

on whether we have a preemptive or non–preemptive obligation.

For a preemptive obligation o, we have a violation if no state before the last state in

which o is in force, the obligation o is in force (see, Figure 3.5 for details).

For the violation of a non–preemptive obligation o, in the set of states one has

to consider for determining whether the obligation has been violated, only those

defined by the interval in which the obligation o is in force need to be considered

(see, the pictorial representation of the non–preemptive case in Figure 3.6).

t
1

n −1

o ∉ Force(n −1)

n k m
m +1

o ∉ Force(m +1)

z

o ∈ Force(k)

o ∉ State(k)
violation of o

Figure 3.6: Non–Preemptive Obligation

Example 1. Australian Telecommunications Consumers Protection Code 2012 (TCPC

2012); Article 8.2.1.

A Supplier must take the following actions to enable this outcome:

68 CHAPTER 3. NORMATIVE REQUIREMENTS

(a) Demonstrate fairness, courtesy, objectivity and efficiency: Suppliers must

demonstrate, fairness and courtesy, objectivity, and efficiency by:

(i) Acknowledging a Complaint:

A. immediately where the Complaint is made in person or by telephone;

B. within 2 Working Days of receipt where the Complaint is made by

email;

The obligation to acknowledge a complaint made in person or by phone

(8.2.1.a.i.A) is a punctual obligation, since it has to be done ‘immediately’ while

receiving it (thus, it can be one of the activities done in the task ‘receive complaint’).

On the other hand, 8.2.1.a.i.B is an achievement obligation since the clause provides

a deadline for fulfilling the obligation. It is also a non–preemptive obligation; that is,

it is not possible to acknowledge a complaint before receiving it.

Example 2. Anti-Money Laundering and Counter-Terrorism Financing Act 2006;

Clause 54 (Timing of reports about physical currency movements).

(1) A report under Section 53 must be given:

(a) if the movement of the physical currency is to be effected by a person

bringing the physical currency into Australia with the person—at the time

worked out under subsection (2); or

[. . .]

(d) in any other case—at any time before the movement of the physical

currency takes place.

Example 3. Australian National Consumer Credit Protection Act 2009; Schedule 1,

Part 2, Section 20: Copy of contract for debtor.

(1) If a contract document is to be signed by the debtor and returned to the credit

provider, the credit provider must give the debtor a copy to keep.

(2) A credit provider must, no later than 14 days after a credit contract is made, give

a copy of the contract, in the form in which it was made, to the debtor.

(3) Subsection (2) does not apply if the credit provider has previously given the

debtor a copy of the contract document to keep.

3.4. FORMAL SEMANTICS 69

Clauses (d) and (3) of Examples 2 and 3 respectively illustrate a preemptive

obligation. For clause (d), this obligation is in force when a financial transaction

occurs, and the clause explicitly requires the report to be submitted to the relevant

authority before the transaction actually occurs (it might be the case that the

transaction never occurred). Clause (3), on the other hand, prescribes preemptive

obligation in the sense that it requires a copy of the contract document be given to

the debtor; however, the obligation is not applicable if the creditor has earlier

provided a copy of the contract document (under clause [2] of the section).

Definition 6 (Maintenance Obligation). Given a time-line, an obligation o is a

maintenance obligation if and only if ∃n,m ∈ N,n < m such that o is a persistent

obligation in force between n and m.

A maintenance obligation o in force between n and m is violated if and only if

∃k : n ≤ k ≤ m,o ∉ State(k).

Unlike an achievement obligation, a maintenance obligation must be complied with

for all the instances of the interval; if it is not, we have a violation. Also, no deadline

is required for a maintenance obligation, insofar as we do not need it to detect a

violation. The deadline signals the instant that the obligation is no longer in force.

Furthermore, it is possible to define maintenance obligation without a deadline; in

other words, after it comes into force, an obligation remains in force indefinitely;

in this case, one has to drop the reference to instance m in the above definition.

The pictorial representation in Figure 3.7 illustrates the notion of a maintenance

obligation.

t
1

n −1

o ∉ Force(n −1)

n k m
m +1

o ∉ Force(m +1)

z

o ∈ Force(k)

o ∉ State(k)

violation of o

Figure 3.7: Maintenance Obligation

Example 4. TCPC 2012. Article 8.2.1.

A Supplier must take the following actions to enable this outcome:

70 CHAPTER 3. NORMATIVE REQUIREMENTS

(v) not taking Credit Management action in relation to a specified disputed amount

that is the subject of an unresolved Complaint in circumstances where the

Supplier is aware that the Complaint has not been Resolved to the satisfaction

of the Consumer and is being investigated by the Supplier, the TIO or a relevant

recognised third party.

In this example, as it is often the case, a maintenance obligation implements a

prohibition. Specifically, it describes the prohibition against initiating a particular

type of activity until either a particular event takes place, or a state is reached. As in

the above example, Telcos operators are prohibited from taking credit management

actions until a resolution of the complaint is to the satisfaction of the customer. The

state, where a credit management action does not occur, must be maintained for all

situations described by the norms until a resolution occurs.

The next three definitions are meant to capture the notion of compensation for

a violation (see Figure 3.8). The idea is that a compensation is a set of penalties or

sanctions imposed on the violator, and fulfilling them makes amend for the violation.

The first step is to define what a ‘compenstation’ is. A compensation is a set of

obligations in force after a violation of an obligation (Definitions 7 and 8).

Definition 7 (Compensation). A compensation is a function Comp : L 7→ 2L.

The intuition behind the function Comp is that it associates a set of formulas to

each formula; that is, if a formula corresponds to an obligation, and the obligation is

violated, then the violation is compensated (or excused) by the formulas associated

with the obligation. This is formalised by the following definition.

Definition 8 (Compensable). Given a time-line, an obligation o is compensable if

and only if Comp(o) 6= ; and ∀o′ ∈ Comp(o),∃n ∈N : o′ ∈ For ce(n).

Notice that we have following requirements for an obligation to be compensable:

(i) there are ways to make amends i.e., Comp 6= ;;

(ii) the actions that compensate are recognised as such (they are obligations in force),

or they are not forbidden; and

(iii) in most general form, there are no temporal requirements on when the

compensation happens7.

7In the vast majority of cases, it is expected that the compensatory obligations are in force after
the violation. However, the definition above does not exclude retroactive compensations.

3.4. FORMAL SEMANTICS 71

Figure 3.8 depicts the notions of compensation and recursive compensation for

the violation of a compensation obligation.

1 n−1 n d m m+1 z

o ∈ Force

o′ ∈ Force
o′ ∈Comp(o)

violation of o

Figure 3.8: Compensation Obligation

Since the compensations are themselves obligations, they can also be violated, and

compensable; thus, a recursive definition for the notion of compensated obligation

is required.

Definition 9 (Compensated Obligation). Given a time-line, an obligation o is

compensated if and only if it is violated and for every o′ ∈Comp(o) either:

1. o′ is not violated;

2. o′ is compensated.

In many cases, not all violations of the obligations are compensable, and the

violation of an obligation might result in the direct imposition of penalties associated

with that violation. Hence, for a stricter notion, if a compensated compensation does

not amend the violation, it was meant to compensate, the recursive call can simply

be removed. Thus, removing condition 2 from Definition 98 will capture the intuition

of stricter non–compensable obligations.

In their most generic usage, compensation obligations can be used for the

following two purposes:

• to specify alternatives (that it, less ideal outcomes) or

• to capture sanctions or penalties.

In any situation, an ideal outcome of the imposed obligations is highly desired;

however, if the obligations conditions are not met because of violations, then

8Notice in defining the semantics for compensated obligations, we haven taken the most
general definition without imposing any temporal requirements for the compensation; thus, the
compensation could even precede the violation. Consider, for example, the natural language
expression: “I apologise in advance for . . .”.

72 CHAPTER 3. NORMATIVE REQUIREMENTS

compensation allows for the achievement of a sub-ideal outcome that still renders

the process compliance. In alternative cases, a compensation obligation may

capture the penalties for violation.

Example 5. TCPC 2012; Article 8.1.1.

A Supplier must take the following actions to enable this outcome:

(a) Implement a process: implement, operate and comply with a Complaint

handling process that:

(vii) requires all complaints to be:

A. Resolved in an objective, efficient and fair manner; and

B. Escalated and managed under the Supplier’s internal escalation

process, if requested by the Consumer or a former Customer.

Example 6. YAWL Deed of Assignment (Warranties & Indemnity); Clause 5.2 9

(5.1) Each Contributor warrants that:

5.1.1 the Intellectual Property assigned to the Foundation by the Contributor

under clause 2 comprises original works only, which have not been, and

will not be, copied wholly or substantially from any other works,

. . .

5.1.3 it has the right to assign and grant the rights under clause 2.

(5.2) Each Contributor indemnifies and will defend the Foundation against any claim,

liability, loss, damages, cost and expense suffered or incurred by the Foundation

as a result of any breach of the warranties given by the Contributor under clause

5.1.

Definition 10 (Perdurant). Given a time-line, an obligation o is a perdurant

obligation with a deadline d if and only if o is in force between n and m, and

n < d < m.

A perdurant obligation o with a deadline d in force between n and m is violated if

and only if

∀ j , j ≤ d ,o ∉ State(j)

Figure 3.9 illustrates the notion of perdurant obligations. Notice that, all types of

9http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf,
retrieved on 28 March 2013.

http://www.yawlfoundation.org/files/YAWLDeedOfAssignmentTemplate.pdf

3.4. FORMAL SEMANTICS 73

1 n−1 n d m m+1 z

o ∈ Force

o′ ∈ Force
o′ ∈Comp(o)

violation of o

Figure 3.9: Perdurant Obligation

obligations have their own deadline (which is the end point of the interval where

they are in force). The deadline can be used to indicate whether the obligation has

been violated or not. Perdurant is a special case of obligation, which should have

an explicit deadline which does not coincide with the end of the period when the

obligation is in force.

Example 7. Australian Telecommunications Consumers Protection Code 2012 (TCPC

2012); Article 8.2.1.

A Supplier must take the following actions to enable this outcome:

(a) Demonstrate fairness, courtesy, objectivity and efficiency: Suppliers must

demonstrate, fairness and courtesy, objectivity, and efficiency by:

(i) Acknowledging a Complaint:

A. Immediately where the Complaint is made in person or by telephone;

B. Within 2 Working Days of receipt where the Complaint is made by

email;

Consider Example 7 (above). Clauses TCPC 8.2.1.a.i.A and 8.2.1.a.i.B state the

deadlines for acknowledging a complaint; however, 8.2.1.a.i prescribes that

complaints must be acknowledged. Thus, if a complaint is not acknowledged within

the prescribed time then either clause A or B is violated; however, the supplier still

has an obligation to acknowledge the complaint. Thus, the obligation in clause (i) is

a perdurant obligation.

Remark 2. Definition 10 only describes the perdurant obligation for pre-emptive

achievement obligations. Simple adjustments can be made to model a similar notion

for non–preemptive and maintenance obligations.

74 CHAPTER 3. NORMATIVE REQUIREMENTS

3.5 Related Work

In this section, we discuss the work reported in the literature that proposes various

classifications of norms, and compares this study’s classification of normative

requirements.

The structure and properties of norms have been extensively studied in the fields

of Legal Reasoning, Artificial Intelligence, and Deontic Logic see (see Sartor, 2005),

and have received comprehensive treatment from a formal and legal theoretical

perspective. Accordingly, temporal reasoning has long been a topic of interest in

Deontic Logic (Broersen, 2006; Frank et al., 2004; Governatori et al., 2007a), and other

areas of legal reasoning, in particular, the notion to deadlines. Consequently, many

classifications can be found in the literature.

Sartor (2005) classifies obligations from the legal viewpoint while, in Hilty et al.

(2005), obligations are classified along the temporal structure and temporal

distribution of the obligations. Unlike the classification presented in this chapter,

the focus of Sartor’s and Hilty et al.’s classification are the basic deontic concepts of

obligations, permissions, and normative conditionals only. The former discusses the

obligations and permissions, and further classifies obligations into behavioural,

productive and directed obligations. The latter classifies the normative notions

based on the temporal structure of obligations where the obligations can make

statements about the properties of events that are observable; for example,

achievement obligations. This is because as widely argued in the literature, it is

apparent that deadlines are central to defining the various deontic notions (Wyner,

2008). The authors in (Governatori et al., 2007b, 2005) go a step further and

incorporate the violations, while characterising the obligations based on the

deadlines; however, no persistent effects of obligations—such as preemptive,

non–preemptive, and perdurant types—have been considered in their

characterisation of obligations.

Accordingly, in the context of the DECLARE (2010) framework, the authors classify

obligation types as existence, choice, relation, and negative constraints. Accorsi

et al. (2011) classify compliance rules from various regulatory frameworks for cloud-

based compliant workflows. Spanning over nine categories, their classification

comprises three main rules classes relevant to either the control-flow or the data-flow

of workflow models. In contrast, a taxonomy of high-level patterns-based compliance

constraints for business processes has been proposed in (Elgammal et al., 2010). This

3.6. SUMMARY 75

taxonomy of compliance patterns is classified into three distinct classes of constraints

patterns namely: atomic, composite, and timed patterns. Weigand et al. (2011) on the

other hand, provides a formal characterisation of the behavioural rules for business

policy compliance for SOA (service-oriented architecture). Makinson and van der

Torre (2003) study norms from a permissions in input/output logic perspective; they

also provide a comprehensive classification of permissions classified as: negative

permissions and positive permissions. Similarly, de Maat and Winkels (2007, 2010)

classify the norms as primary and secondary rules from legal sources of law, based on

the sentence structure prescribed in the legal documents. The sentences in the legal

documents contain the semantics of legal terms, which stipulate various behavioural

rules to constrain the agent’s behaviour; for example, obligations, permissions and

prohibitions. These classifications are mostly context-dependent and they are useful

for a structural compliance checking of business processes only. The classification

presented in this chapter, on the other hand, is generic and can be used in any

context for business compliance checking.

3.6 Summary

This chapter addresses the question raised in the previous chapter: What are the

classes of normative requirements, and how can they be modelled. Its resulting

contribution is two-fold.

First, the chapter provides a classification of the normative requirements that are

mandatory in the modelling of the normative component of the business process

compliance. This classification comprises the deontic notions of obligations,

permission, violations, and compensations etc. Each of these notions is further

classified into sub-classes that cover a range of obligation types and the effects of

each type over temporal dimensions is illustrated in Figure 3.2. Furthermore, along

the temporal dimensions, the time an obligation enters into force, the time until

when it remains in force or its violation at a particular point in time as specified. The

presented classification has been developed in a systematic and exhaustive way

using the well–known ‘divide and conquer’ methodology and provides a rich

ontology of the various obligation modalities along temporal validity and effects of

obligations.

In addressing the second part of the question–how can the classes of normative

76 CHAPTER 3. NORMATIVE REQUIREMENTS

requirement be modelled? The chapter makes its second contribution; that is, it

provides the formal semantics for each class of normative requirements in terms of

the temporal validity of an obligation, what constitutes a violation, and effects of the

obligation violations. The formal semantics for each class are not restricted to any

particular formalism, as they are generic in the sense that any formalism can be

used to represent them, despite the fact that they are grounded with deontic logic in

mind. To validate this fact, the next chapters illustrate how these semantics can be

modelled with other formalisms, such as Event-Calculus (EC). In addition to the

formal semantics, for each type of normative requirements, concrete examples from

clauses of statutory/legislative acts that correspond to these requirements are

provided. The presented classification extends the works discussed in the previous

section in general, and the work of Governatori et al. (2005) in particular, where the

deontic notions have been classified along the deadlines. Essentially, the proposed

classification model, and the formal semantics that define the classes of the

classification model, lay the foundations for this thesis.

In the next chapter, we discuss ways how to formally represent and check the

compliance of the classes of the classifications model presented above against

business processes, and present a formal foundational framework for modelling the

legal component of business process compliance.

C
H

A
P

T
E

R

4
BUSINESS PROCESS COMPLIANCE

4.1 Background

Business processes provide a high-level view of how business operations can be

performed to achieve a desired outcome. Hence, it is particularly important that

they operate within the defined boundaries of the regulations (in the legal context)

called norms. Aiming to control the behaviour of business processes, norms impose

restrictions on how activities should be carried out, and impose penalties for any

divergent behaviour.

Consider, for example, the procurement process of a government agency that

handles the dynamic selection of contractors to place orders, which is implemented

as a web service. Using such a web service, the agency can quickly place an order,

and receive and evaluate the quotes from suppliers. This process is subject to certain

regulations; thus, the procurement web service must be verified as compliant with

the relevant regulations before it can be deployed. Hence, a process that reflects the

behaviour of a web service can be used to verify the effectiveness of the regulatory

and policy controls.

Governatori and Sadiq (2009) define business process compliance as the

relationship between the formal specifications of a business process and the formal

specifications of a set of normative constraints. A process is compliant if the

specifications of the process do not violate the constraints that formalise the norms.

77

78 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

Accordingly, one has to provide:

- a formal model for the representation of business processes

- a formal model for the representation of the norms and

- a bridging mechanism between the two representations (if they are expressed in

two different formalisms)

In the Introduction, we pointed out that a large number of CMFs exists address

the issue of (regulatory) compliance in the context of business process management,

service computing, and cloud computing domains (see Becker et al., 2012; Fellmann

and Zasada, 2014), and offer a variety of compliance checking approaches. The

general idea behind these approaches is to determine whether the constraints (that

is, the norms) imposed by a regulatory framework (ranging from statutory acts to

regulations, to industry standards, to best practices and internal policies) are met by

IT systems.

Regardless of how good and feasible these approaches might be, to the best of

our knowledge, the majority of the approaches fail to consider the aspect of whether

the method they propose offers a faithful representation of the norms, and whether

it is suitable to reason appropriately with the norms. A non–faithful representation

of, and inappropriate reasoning with the norms, can have a significant impact on the

effectiveness of an approach. By addressing the question (raised in the introduction)

of how to evaluate a compliance management framework, this chapter presents a

formal foundation framework to evaluate the abilities of a compliance framework to

represent the norms with which a system need to comply.

In presenting this framework, the intention is not to provide yet another

compliance checking framework, but a conceptually rich foundations for the norms

for the legal component of the compliance problem. Thus, we provide a formal

model for the representation of various notions of norms discussed in the previous

chapter, and a formal model giving the specifications of business processes, and a

mechanism integrating these two specifications. Essentially, these formal models

provide formal semantics for the legal component of compliance in terms of the

states that determine the temporal validity; what constitutes a violation; the effects

of violations on other norms to which a business process might be subject to;

possible ways in a which business can be executed; and how the behaviour of the

processes can be validated against the norms.

This chapter is structured as follows: Section 4.2 of this chapter provides the

4.2. FORMAL FOUNDATIONS OF BUSINESS PROCESSES 79

formal foundations of business processes, the rationale behind using the

workflow-nets (hereafter WF-nets) and enriching business processes with semantic

annotations. Section 4.2.1 then provides the formal definitions, modelling various

notions of norms. The formal definitions that underpin what is means to be

compliant are given in Section 4.2.2. Section 4.3 provides and illustration of how the

compliance checking of business processes can be carried out. A

complaint-handling process (as a case study) is then discussed in Section 4.4. We

formally demonstrate how our approach can be used to formally model and check

the compliance of business processes against the relevant norms in Section 4.4.1. An

evaluation of this approach is given in Section 4.5 is followed by a detailed

discussion of related work in Section 4.6. Finally, Section 4.7 concludes this chapter

with some remarks on contributions.

4.2 Formal Foundations of Business Processes

As previously discussed, business process compliance requires a formal model of the

relevant business process and a formal model of the relevant norms. In this section,

we provide formal definitions of processes annotated with compliance requirements,

and the formal representation of the various notions of the norm classes discussed

in the previous chapter. This provides both the model of the norms and the bridge

between the formalisation of processes, and that of the norms. The aim is to show

the evolution of the system or the environment in which a system operates, and

to check that the resulting states (and intermediate states) are compatible with the

norms.

In this section, we show how to start from the notion of business process model

to describe the sequences of states corresponding to the execution of the process.

Sequences of states are then used to provide the semantics of different classes of

norms, and to provide the definitions of what it means to comply with a norm and to

violate a norm. Compliance is related to the behaviour of a process; that is, whether

it is possible to correctly execute a business process. Compliance is not only about

the actions (that is, the tasks) undertaken during the execution of a process but also

about their artefacts, and how actions change the environment in which a process is

situated.

To capture this phenomenon, we adopt the idea proposed by Sadiq et al. (2007)

80 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

and enrich processes with control objectives by means of semantic annotations.

Enriching processes with semantic annotations increases the understanding of the

interaction between the business process specifications and the compliance controls

specifications and compliance controls specifications for the involved stakeholders

(that is, compliance officers and process owners).

On the one hand, embedding the compliance rules into business processes makes

the compliance checking more transparent to the stakeholders; on the other, however,

it also makes the handling of large compliance rules repositories a very difficult

task. This is explained by the fact that compliance rules are frequently changed,

removed, or updated. Some researchers (such as Ramezani et al., 2012b) propose to

separate the compliance concern from business processes by capturing each aspect

of a compliance requirement in a separate rule based on process vocabulary. For

this, the use of a common business vocabulary–based upon the ordering-based,

agent-based and values-based primitives to specify the compliance rules is proposed

in (van der Aalst et al., 2011). These primitives cover a full spectrum of business

processes aspects, and can be used to formulate the compliance rules. However,

separating the compliance concern from business processes and the use of common

process vocabulary raises the question: How can the compliance requirements be

enforced in the tasks of a business process even if a common process vocabulary is

used? Hence, it is difficult to trace the enforcement of the compliance requirements

on business operations. Another question is How feasible is it to use a common

vocabulary to formulate the compliance rules as business processes and compliance

are two different concerns having different objectives and goals?

Our motivation for enriching the business processes with semantic annotations

stems from the first issue as it allows for the explicit enforcement of the compliance

rules on the relevant tasks of a business process, thus, making the traceability of

compliance requirement enforcement rather easy. We are aware of the

maintainability issue of the larger repositories and the manual work required to

annotate the business processes; however, the maintainability issue is reserved for

future work. Also, the reader is referred to (Hashmi et al., 2012), where a

methodology to automatically annotate the business processes with the data

extracted from the database schemas is proposed. Since the second issue is out of

the scope of this thesis, we do not address it. Accordingly, we take an agnostic

approach to the representation of annotations. All we need is that there is a language

4.2. FORMAL FOUNDATIONS OF BUSINESS PROCESSES 81

suitable for the representation of the annotations. These annotations are meant to

capture the attributes, the resources and other information related to the tasks in a

process (where the tasks themselves or the instances of the tasks can be captured in

the language). In addition, we stipulate that the same language is used to represent

both the annotations and the contents of the normative requirements. We also

stipulate that the same is true for the representations of business processes.

As earlier mentioned, compliance is a relationship between the formal

specifications of business processes and the formal specifications of the (relevant)

normative requirements. Accordingly, we provide the formal background for the

representation of business processes. A business process is self-contained, temporal,

and logical order composed of events and activities that are executed to achieve a

business goal. Generally a process model describes the order in which the activities

should be performed (control-flow), by whom (agent/resources), and by using what

(data). Minimally, a process might consist of a set of tasks representing (complex)

business activities and connectors (for example, sequences and decisions points)

that define the relationship among the tasks. Tasks and connectors collectively

define the possible ways in which a process can be executed. Whereas a possible

execution (called ‘process trace’), on the other hand, is the way in which the tasks in

the process model adheres to the order given by the connectors (see Dumas et al.,

2013, for an extended representation of business processes).

In the BPM domain, a wide range of process modeling languages have been

created, and new languages continue to emerge. Historically, process modeling has

been mainly performed using general–purpose languages such as Activity Diagrams

(AD), Unified Modelling Language (UML), Event-Driven Chains (EPC), Business

Process Modelling Notations (BPMN), Yet Another Workflow Language (YAWL),

Petri-Nets, Markov Chains, and Process Algebra (PA). These modelling languages,

considering their expressivness in modeling business processes, can be classified as

informal, semi–informal or formal (Lin, 2008; van der Aalst, 2009). The semi-formal

languages (for example, AD, UML, EPC, and BPMN) have less rigid semantics and

thus represent process models in a very user-friendly way. In contrast, the formal

languages (for example Process Algebra, Markov Chains, and Petri Nets) describe

processes more rigidly (using formal methods) and more accurately.

In this chapter, we use BPMN as the main modelling language for representing

business processes; however, a fundamental problem with the BPMN is that it

82 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

provides relatively precise semantics for modeling process models. The focus of this

chapter is on business process compliance, which requires more information than

provided by a pure BPMN process model. An automated semantics process analysis

for business process compliance can be problematic. This is because of the BPMNs

semantics, where the domain knowledge and structural elements are missing (Oro

and Ruffolo, 2012). Thus, we opt for a formal process modelling language; in

particular, we use Petri-Nets for modelling business processes, and then

semantically annotate them with the effects of the norms. Another reason that we

opt for a formal language is that we propose new classes of normative requirements;

the way to represent these new classes of norms is a question that is addressed in

this chapter. Notice, alternative formal languages such Process Algebra; Markov

Chains can be used without any impact on the approach presented here.

In this chapter, we make use of workflow-nets (WF-nets) (van der Aalst, 2000), a

subclass of Petri nets (Murata, 1989) to represent a business process. Hence,

definitions 11–14 are necessary to formally define a WF-net and its behaviour. For

other representations of a business process, one can directly begin with

Definition 15 and the remaining definitions in this section can be easily modified for

other representations of a business process.

Definition 11 (Petri net). A Petri net is a tuple P N = (P,T,F, M0)1, where P is the set

of places, T is the set of transitions, P ∩T = ; and F ⊆ (P ×T)∪ (T ×P) is the flow

relation, and M0 : P →N is an initial marking.

A Petri net is a collection of two types of nodes: places and transitions. Arcs

connect one type of node to the other. For a node x ∈ (P ∪T), •x denotes the set

of inputs to x, and x• denotes the set of outputs of x. The state of a Petri net is

represented by a marking that describes the number of tokens in each place of a net.

A WF-net is defined as a subclass of Petri net with the following structural

restrictions (van der Aalst, 1998, see): (i) there is exactly one source place; (ii) exactly

one end place; (iii) every node in the graph is on a direct path from the source place to

the end place.

Definition 12 (WF-net). Given a Petri net N = (P,T,F, M), the net N is a WF-net if

and only if:

1The Definition 11 is a refinement of the definition of Petri Nets provided in van der Aalst (2000),
which includes the concept of initial marking in the tuple. This refinement is also reflected in all the
following definitions.

4.2. FORMAL FOUNDATIONS OF BUSINESS PROCESSES 83

1. there is one source place i ∈ P such that •i =;.

2. there is one sink place o ∈ P such that o• =;.

3. every node x ∈ P ∪T is on a path from i to o.

Definition 13 (Enabling & Firing Rules of WF-net). Given a WF-net N =(P,T,F, M), a

transition t ∈ T and a marking M of N ,t is enabled at M, denoted as M [t〉, if and only

if, there is at least one token each in all p ∈ •t . If M [t〉 holds and transition t is fired, a

new marking M ′ of N is reached, which removes a token each from each p ∈ •t and

puts a token in each p ∈ t•. This is denoted as M
t
→ M ′.

Definition 14 (Occurrence Sequence). Given a WF-net N = (P,T,F, M) and markings

M0, M1, . . . , Mn of N , if M0
t1
→ M1

t2
→ ···

tn
→ Mn holds, then σ = 〈t1, t2, . . . , tn〉 is an

occurrence sequence leading from M0 to Mn .

The initial marking of a WF-net is i , where there is one token in the source place

i , and the end marking of a WF-net is o. A trace in a WF-net represents an occurrence

sequence from the initial marking i to the end marking o.

Definition 15 (Labelled WF-net). A labelled WF-net N = (P,T,F, M , l) is a WF-net

(P,T,F,M) with some labelling function l ∈ T 9 UA, where UA is some universe of

activity labels. Let σv = 〈a1, a2, . . . , an〉 ∈ UA
∗ be a sequence of activities and M , M ′

be two markings of N . M [σv ⊲M ′ if and only if there is a sequence σ ∈ T ∗ such that

M [σ〉M ′ and l (σ) =σv .

With this definition, we only have the visible and labelled transitions in the

net. For a set of traces of a WF-net T+(N), T+ = {σΘ|i [σΘ〉o} is the set of all visible

traces in the net, where Θ= {σ1,σ2, . . . ,σn} is a set of all occurrence sequences. The

idea behind the notion of a labelled WF-net is that a trace of visible transitions

corresponds to a possible execution sequence of the process, where the visible

transitions correspond to the tasks executed by the process. One can argue, however,

that there might be some other (invisible) traces that could still affect the compliance

checking of a business process model. However, invisible traces might consist of tasks

representing invisible actions. These invisible actions are used for routing purposes

only and might not represent any task from a business point of view (Gambini

et al., 2011; Wen et al., 2010). In contrast, we use visible traces because tasks in a

trace represent some activity and might have significance from a business process

compliance perspective. Furthermore, some literals representing obligations might

84 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

be associated with the tasks of a trace. Hence, we limit our attention to visible traces

only for compliance checking.

Next, we look at how a WF-Net can be annotated with the compliance

requirements. First, the definition of the language is provided.

Definition 16 (Literal). Let A be the set of all atomic propositions. The set of literals is

L = {a,¬a|a ∈ A}.

In the rest of this section, we concentrate on a consistent set of literals, which can be

understood as either a (partial) interpretation (that is, an assignment of truth value),

or equivalently, a (partial) description of a state.

Definition 17 (Consistent Set). A set of literals L is consistent if and only if L does

not contain any pair of literals l ,¬l .

The next step is to enable a process to have states attached to the tasks, depending

on which trace they appear in.

Definition 18 (Annotation). Let N be a WF-net and T+ be the set of visible traces of

N . An annotation Ann is a function Ann : T+×N 7→ 2L such that for every t ∈T+ and

every n ∈N, Ann(t ,n) is a consistent set of literals.

The idea of the above definition is that Ann(t ,n) returns the state obtained after the

execution of the n-th task (visible transition) in the (visible) trace t .

Definition 19 (Annotated WF-net). An annotated WF-net is a pair 〈N ,Ann〉, where

N = (P,T,F, M , l) is a labelled WF-net, and Ann is an annotation function.

Next, the concepts behind the above-mentioned definitions are explained with

a small (abstract) example. As stated earlier, a process can be represented using

any process modelling language (for example, Business Process Modelling Notation

[BPMN], Event Process Chains [EPC]). Such a process model can be transformed

into a Petri net/WF-net by making use of translation rules, as shown in (Dijkman

et al., 2008; Ouyang et al., 2006, 2009). Figure 4.1 shows a simple BPMN process (with

AND/XOR splits and joins) and its corresponding WF-net.

Now, consider the abstract BPMN model in Figure 4.1a as an emergency

evacuation process with compliance requirements. Let us assume that Task A is

‘sound alarm’, task B is ‘alert people’, task C is ‘inform fire services’, task D is ‘contain

4.2. FORMAL FOUNDATIONS OF BUSINESS PROCESSES 85

Sound
Alarm

Alert
People

Inform Fire
Serivces

Contain
Fire

Evacuate
Place

Start

A

B

C

D

E

End

(a) BPMN Model

Source

A

B

C

D

E

Sink

(b) WF-Net

Figure 4.1: Transformation of the BPMN Model into an equivalent WF-Net

fire’, and task E is ‘evacuate place’. Assuming that semantic annotations are written

in some language, we consider the annotations consisting of two propositions: p

meaning ‘the alarm has sounded’ and q meaning ‘a small fire to contain’. Four

possible traces of this process are as follows:

t1 : 〈A,B ,C ,D,E〉

t2 : 〈A,C ,B ,D,E〉

t3 : 〈A,C ,B ,E〉

t4 : 〈A,B ,C ,E〉

After the execution of task A, we have the state ‘alarm has sounded’, which can be

represented as

State(t1,1) = State(t2,1) = State(t3,1) = State(t4,1) = {p}

for all traces. After executing the next two tasks (B and C) also common to all traces,

it is possible to have different annotations for these traces. For example, in traces t1

and t2, we reach:

State(t1,3) = State(t2,3) = {p, q}.

In contrast, we reach the following state for t3 and t4:

State(t3,2) = State(t4,3) = {p,¬q}.

86 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

In t1 and t2, we check whether the fire is small enough that it can be contained

(task D) before evacuating (task E); otherwise, we directly evacuate (task E) in t3 and

t4. It can be seen that the information we have after the execution of tasks B and

C varies depending on the trace being examined. For example, from trace t1, we

know that the fire is small enough and it is possible to contain the fire, represented as

State(t1,4) = {p, q}. In contrast, trace t3 informs us that it is not possible to contain

the fire and, thus, we have to evacuate; that is, State(t3,4) = {p,¬q}.

Note that different states can be obtained from different traces, even though

the same tasks are being executed and the same end state can be reached from

different traces. However, each visible trace uniquely determines the sequence of

states obtained by executing the trace. Thus, in what follows, whenever clear from the

context, we use the term trace to refer to a sequence of tasks and the corresponding

sequence of states.

Remark 3. Here we are not concerned with how the sequences of states corresponding

to the execution of a process are obtained. The task of specifying how the annotation

function Ann is implemented is left to specific compliance applications. However, one

can use the update semantics approach (as described in Ghose and Koliadis, 2007) or

by using EC to model the inertia of effects from one task to the next (as demonstrated in

Goedertier and Vanthienen, 2006c), or by using the I-propagation approach for logical

state representation (as described in Governatori et al., 2008a; Hoffmann et al., 2009).

4.2.1 Modelling Obligations

In this section, we provide refined definitions of the obligation classes presented in

Chapter 3. These refined definitions provide the same semantics of the norm classes

in Section 3.4; they demonstrate that these semantics can be easily modelled with

any formal language, and show how these concepts can be used to model the various

notions of norms classes for business process compliance checking.

The revised definitions include the annotation function Ann and visible process

traces (see Definition 14 and Definitions 18–19 respectively). Accordingly, these

definitions reflect when a particular type of obligation is in force in the WF-net, and

when we have a violation of the obligation if it is not in the annotation function Ann.

We extend the Force function with T+, a set of visible traces to redefine the obligation

in force function.

4.2. FORMAL FOUNDATIONS OF BUSINESS PROCESSES 87

Definition 20 (Obligation in force). Given a WF-net N , let T+ be the set of visible

traces of N . We define a function Force : T+×N 7→ 2L .

The function Force associates with each task in a trace a set of literals, where these

literals represent the obligations in force for the combination of task and trace. These

are among the obligations that the process need to fulfil to comply with a given

normative framework. Given that a visible trace is a sequence of tasks, the second

argument of Force indicates the index of a task in the visible trace given in the first

argument. For example, Force(t ,3) = {p, q} specifies that p and q are obligatory in

the third task of trace t . In the rest of this section, we supply definitions that specify

when a process has to fulfil the various obligations (depending on their type) to be

deemed compliant.

Definition 21 (Punctual Obligation). Given a WF-net N and a visible trace t ∈T+, an

obligation o is a punctual obligation in t if and only if

∃n ∈N : o ∉ Force(t ,n −1), o ∉ Force(t ,n +1),o ∈ Force(t ,n).

the obligation o is in Force at n in t .

A punctual obligation o in force at n in t is violated if and only if o ∉ Ann(t ,n).

A punctual obligation o (represented as a literal) is in force on one task n in a trace t ;

that is, o ∈ Force(t ,n). Note that it might be the case that there are multiple instances

in which the obligation is in force. The obligation is violated if what the obligation

prescribed is not achieved in, or by, the task when the obligation enters into force.

This is represented by the literal not being in the set of literals associated with the

task in the trace; that is, o ∉ Ann(t ,n).

Definition 22 (Persistent Obligation). Given a WF-net N and a visible trace t ∈T+,

an obligation o is a persistent obligation in t if and only if

∃n,m ∈N : n < m,o ∉ Force(t ,n −1),o ∉ Force(t ,n +1),∀k : n ≤ k ≤ m,o ∈ For ce(t ,k)

the obligation o is in Force between n and m in t.

A persistent obligation is an obligation in force in an interval (a contiguous set) of

tasks in a process; that is, o is in force at k − th task between n and m in the visible

trace t .

88 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

Definition 23 (Achievement Obligation). Given a WF-net N and a visible trace t ∈T+,

an obligation o is an achievement obligation in t if and only if ∃n,m ∈N,n < m such

that o is a persistent obligation in force between n and m in t.

An achievement obligation o in Force between n and m in t is violated if and only

if

(a) o is preemptive and ∀k : k ≤ m, o ∉ Ann(t ,k) or

(b) o is non–preemptive and ∀k : n ≤ k ≤ m, o ∉ Ann(t ,k)

As mentioned in the previous chapter (Definition 5), an achievement obligation is in

force in a contiguous set of tasks in a trace. The violation depends on whether we

have a preemptive or a non–preemptive obligation. For a preemptive obligation o,

we have a violation if no state before the last task in which o is in force has o in its

annotations.

A preemptive obligation is in force at task k in a set of contiguous tasks between n

and m, where m is the task when the obligation enters in force, and m is the deadline

by when the obligation has to be discharged. The obligation o is violated if o does

not appear in the annotations associated with all tasks preceding m. Note that a

preemptive obligation can be complied with even before the obligation is in force.

Thus, one might ask why we bother with the task when the obligation enters into

force. The reason is that having (or not having) an obligation at a particular time

could be the trigger for other deontic effects.

For a non–preemptive obligation, the set of states one has to consider for

determining whether the obligation has been violated is limited to those defined by

the interval in which the obligation is in force.

Definition 24 (Maintenance Obligation). Given a WF-net N and a visible trace t ∈

T+(N), an obligation o is a maintenance obligation in t if and only if ∃n,m ∈N,n <

m such that o is a persistent obligation in force between n and m in t.

A maintenance obligation o in Force between n and m in t is violated if and only if

∃k : n ≤ k ≤ m,o ∈ Ann(t ,k).

Similar to an achievement obligation, a maintenance obligation is in force in an

interval. The difference is that the obligation has to be complied with for all tasks in

the interval; otherwise, we have a violation. Another difference is that deadlines are

not required to detect the violation of maintenance obligations; for an achievement

obligation, however, violations are detected at deadlines (Hashmi et al., 2014).

4.2. FORMAL FOUNDATIONS OF BUSINESS PROCESSES 89

Definition 25 (Compensation). A compensation is a function Comp : L 7→ 2L .

Remark 4. We remind the reader that Defintion 25, with minor adjustments,

corresponds to the compensation function defined in Definition 7.

Definition 26 (Compensable Obligation). Given a WF-net N and a visible trace t ∈

T+(N), an obligation o is compensable in t if and only if Comp(o) 6= ; and ∀o′ ∈

Comp(o),∃n ∈N : o′ ∈ Force(t)n.

Definition 27 (Compensated Obligation). Given a WF-net N and a visible trace

t ∈T+(N), an obligation o is compensated in t if and only if it is violated and for every

o′ ∈ Comp(o) either:

1. o′ is not violated in t , or

2. o′ is compensated in t .

Definition 28 (Perdurant Obligation). Given a WF-net N and a visible trace t ∈T+(N),

an achievement obligation o is a perdurant obligation in t with a deadline d if and

only if o is in force between n and m and n < d < m.

A perdurant obligation o with deadline d in force between n and m is violated in t

if and only if

∀ j , j ≤ d ,o ∉ Ann(t , j)

4.2.2 Business Process Compliance

The set of (visible) traces of a given business process describes the behaviour of the

process insofar as it provides a description of all possible ways in which the process

can be correctly executed. Accordingly, for the purpose of defining what it means for

a process to be compliant, we will consider a process as the set of its (visible) traces.

Intuitively, a process is compliant with a given set of norms if it does not violate

those norms. Given that, in general, it is possible to perform a business process in

many ways, we can have two notions of compliance: (a) a fully compliant process;

and (b) a partially compliant process.

A process is (fully) compliant with a normative system if it is impossible to

violate the norms while executing the process.

The intuition about the above notion is that no matter what way the process is

executed, its execution does not violate the normative system. The second notion

90 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

considers the case where there is an execution of the process that does not violate

the norms.

A process is (partially) compliant with a normative system if it is possible

to execute the process without violating the norms.

Based on the above intuition, we can give the following definitions. We first define

when a trace is compliant, and then extend that notion to cover a process.

Definition 29 (Compliant Trace). Given a WF-net N and a trace t in T+. Let O(t) be

the set of obligations in force in t , i.e., O(t) =
⋃

n∈NForce(t)n.

1. A trace t is strongly compliant if and only if no obligation o ∈O(t) is violated in

t .

2. A trace t is weakly compliant if and only if every violated obligation o ∈O(t) is

compensated in t .

Definition 30 (Compliant Process). Let N be a WF-net.

1. N is fully compliant if and only if every trace t ∈T+ is compliant.

2. N is partially compliant if and only if there exists a compliant trace t ∈T+.

Note that a refinement of Definition 30 is possible. Thus, we can distinguish

between strongly and weakly compliant processes. This is simply achieved by

passing the strong/weak parameters to the traces. For example, a process is strongly

compliant if all its visible traces are strongly compliant.

Except for Definition 30, the definitions given in this section can be used across

the entire lifecycle of a process: design-time, run-time and log analysis. As was

pointed out in Remarks 1 and 2, the states and obligations in force have to be

determined by compliance applications and implementations. For example, the

annotations associated with a task at run-time or log-analysis will be obtained from

the running instance, or extracted from the log and the data sources related to the

process; while at design-time, such information can be provided by business

analysts or extracted from the schemas of the databases and data sources linked to

the process, by using the data schema extraction methodology proposed by (Hashmi

et al., 2012).

Definition 30 can be used at design time in what is called compliance-by-design,

as proposed by (Governatori and Sadiq, 2009; Sadiq et al., 2007); that is, verifying

that a process complies with regulations before deploying that process. Notice

4.3. COMPLIANCE CHECKING APPROACH 91

that, the definition is not suitable for checking compliance at run-time (also called

‘conformance’) or auditing (log analysis), since it is possible that some visible traces

are never executed (run-time) or were not executed (auditing). For these two cases,

one has to apply Definition 29 to the executed traces, and to the traces of instances

of a process recorded in a log.

4.3 Compliance Checking Approach

Generally compliance rules are written in natural language (c.f. those found in

legal documents or policy documents). To enable automatic compliance checks,

these rules need to be formalised in a machine-readable format. Essentially, the

formalisation of compliance rules is language dependent, and the choice of a formal

language depends on the business analysts. With formalised rules, we can have the

types deontic modalities; for example, obligations and permissions etc.

R1 : [O AP N P]
R2 : [O AP]
.

.

.

R11 : [PROH]

Formalisation

R1 : (T R1,T1), (T R3,T6),. . .
R2 : (T R2,T2), (T R3,T7),. . .
.

.

.

R11 : (T R11,T3),. . .

Obligations

Compliance

Checker

T R1 : T1, {a1, . . . , an },T2, {a1, . . . , an },. . .
T R2 : T2, {a1, . . . , an },T7, {a1, . . . , an },. . .
.

.

.

T R11 : T3, {a1, . . . , an },. . .

Annotations

Legal Frameworks Business Process

Figure 4.2: Business Process Compliance: Abstract Framework

Figure 4.2 illustrates the key concepts behind our approach for business process

compliance. Rules impose conditions on the tasks to control the behaviour of

processes. Business processes are annotated with rules for compliance checking

purposes. These annotations are usually formalised rules and the data is parsed in

92 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

the tasks at design-time. However, at design-time, very limited information is

available about the real data on which a process operates on. Thus, for design-time

compliance checking, business analysts provide abstract values and attributes to

annotate processes. These abstract annotations can be used to verify the compliant

behaviour of a business process at design-time.

By contrast, at run-time, processes are annotated with real values and attributes

that are, again, provided by the business analysts. Regardless of whether compliance

is checked at design-time or run-time, all that needed is visible traces consisting of

annotated tasks of a process.

To sum up, given a business process and a set of norms, checking whether a

business process is compliant with the set of norms amounts to the following

operations:

1. determining the deontic effects (and their type) of the set of norms

2. for each task in each trace of the process:

a) determining what is the state corresponding to the task,

b) determining what are the obligations in force for the task, and

c) checking whether the obligations in force have been fulfilled, violated (and

for compensable obligation, whether they have been compensated for), or

whether the judgment is postponed to the next task in the trace (according

to the semantics presented in Section 4.2.1).

These steps are then illustrated in details, and we show how the proposed compliance

checking approach can be used to check the compliance of business processes. For

this purpose, the next section discusses a complaint-handling process as a motivating

example to elaborate each step of the presented compliance checking approach.

4.4 Motivating Example: Complaint Handling Process

This section includes, a short description of a complaint-handling process as a

motivating example. This example is then analysed in details in Section 4.3 to

illustrate how the definitions given in Section 4.2.1 can be used to check whether

a business process complies with a particular normative framework. In particular,

the way in which the designed complaint handling process has to satisfy a number

of different types of compliance requirements obtained from the internal policy

document is described (see Table 4.1). The first column of Table 4.1 shows the rule

4.4. MOTIVATING EXAMPLE: COMPLAINT HANDLING PROCESS 93

ID. The natural language description, the specific obligation type, and the deontic

effects it might produce are given in the second column. The rule R1, for example,

is a non–preemptive, non–perdurant achievement obligation [OANPP], and the R1

describes that any received complaint must be resolved at the earliest opportunity.

Accordingly, the deontic effects for any received complaint for R1 is resolve_complaint.

Meanwhile, R4 specifies that all the received complaints must be acknowledged, and

two options are provided: (1) immediately acknowledge complaint received in person

or by phone, and (2) acknowledge a written complaint within two working days.

The R4 stipulates two different obligations: a punctual non–preemptive, perdurant

obligation [OPNPP] for (1); and a non–preemptive, perdurant achievement obligation

[OANPP] for (2) respectively. The deontic effects that R4 produces are to acknowledge

a received complaint (see Table 4.1 for the description, types, and deontic effects of

the rules related to the complaint-handling process).

Figure 4.3 depicts the overview of the procedure followed to resolve a complaint

as a BPMN process model. According to the policy guidelines, the first step in the

process is to determine whether the received complaint is an oral complaint or a

written complaint. If it is an oral complaint, a staff member will identify him or

herself, and details are gathered from the complainant before proceeding with the

complaints-handling process. The staff member then verifies whether the received

complaint meets the requirements of a legitimate complaint as defined in Section 9

of the policy. If the received complaint does not meet the definition of a complaint,

alternative dispute procedures are adopted (These alternatives are is beyond the

scope of this process).

After a complaint has been determined as a legitimate complaint, the staff

member must decide whether (s)he has the appropriate authority to handle the

complaint. If so, then the complaint will go through the complaints-handling

process with the staff member as its handler. Otherwise, the complaint is referred to

an authorised staff member and the complainant is informed. The authorised staff

member explains the process and the available options, and attempts to resolve the

complaint immediately if it is an oral complaint. If the complaint is resolved, then it

is logged as such and the complainant is informed of the decision.

For a written complaint, an authorised staff member will confirm the process

within two working days. A complaint is escalated to a senior staff member if it cannot

be resolved, if the complainant is not satisfied, or if the staff member decides that it

94 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

Table 4.1: The Compliance Requirements of Complaints-handling Process

Rule ID Policy Description (Compliance Controls/Specifications)

R1 Staff receiving a complaint will aim to resolve it at the earliest opportunity or

at least confirm that the complaint will receive attention.

Type: Obligation, Achievement, Non–preemptive, Non–perdurant
Deontic Effect: resolve_complaint

R2 Where the client is not satisfied with the initial response to the complaint, they

will be given the option to progress the issues through the formal complaints-

handling process outlined in the complaints-handling procedure.

Type: Obligation, Achievement, Preemptive, Perdurant)
Deontic Effect: provide_escalation_options

R3 Staff will treat all complaints fairly and impartially, as is their obligation

under the code of conduct.

Type: Obligation, Maintenance, Perdurant
Deontic Effect: treat_fairly

R4 All complaints will be acknowledged:

(1) immediately where complaints are made orally or by phone,

(2) within 2 working days for written complaints.

Type-1: Obligation, Punctual, Non–preemptive, Perdurant
Type-2: Obligation, Achievement, Non–preemptive, Perdurant
Deontic Effect: acknowledge_complaint

R5 All complainants kept informed about the progress of the matter, particularly if

delays occur.

Type: Obligation, Achievement, Non–preemptive, Non–perdurant
Deontic Effect: inform_progress

R6 Complainants will not be subject to any form of prejudice, loss of services, or be

disadvantaged in any way as a result of having complained.

Type: Obligation, Maintenance, Perdurant
Deontic Effect: ¬disadvantage

R7 Complaints will be treated with an appropriate level of confidentiality.

Information about complaints will only be shared on a need–to–know basis,

both within the agency and externally.

Type: Obligation, Maintenance, Perdurant)
Deontic Effect: ensure_confidentiality

R8 Reasons will be provided for decisions made in relation to complaints received.

Type: Obligation, Achievement, Non–preemptive, Perdurant
Deontic Effect: provide_reasons

R9 If complaints do not meet the conditions in section 9, the department may set

limits or conditions on the handling of their complaint.

Type: Permission
Deontic Effect: limit_complaint

R10 Unauthorized staff cannot handle complaints(either oral or written).

Type: Prohibition, Maintenance, Perdurant
Deontic Effect: authorized

4.4. MOTIVATING EXAMPLE: COMPLAINT HANDLING PROCESS 95

B

Id
en

ti
fy

yo
u

rs
el

f
G

et
d

et
ai

ls

V
er

if
y

co
m

p
la

in
t

U
se

o
th

er
p

ro
ce

d
u

re

L
o

g
in

to
re

gi
st

er
C

h
ec

k
au

th
o

ri
ty

C
o

n
fi

rm
co

m
p

la
in

t

E
xp

la
in

h
an

d
li

n
g

p
ro

ce
d

u
re

E
xp

la
in

p
o

ss
ib

le
o

p
ti

o
n

s

A
tt

em
p

t
to

re
so

lv
e

R
ef

er
to

au
th

o
ri

se
d

st
af

f

C
o

n
fi

rm
w

it
h

in
2

w
o

rk
in

g
d

ay
s

In
ve

st
ig

at
e

co
m

p
la

in
t

L
o

g
as

re
so

lv
ed

E
sc

al
at

e
to

se
n

io
r

st
af

f

In
fo

rm
co

m
p

la
in

an
t

K
ee

p
in

fo
rm

o
f

p
ro

gr
es

s

In
fo

rm
d

ec
is

io
n

s
&

re
as

o
n

s

A
rc

h
ie

ve

R
ec

ei
ve

C
o

m
p

la
in

t

T
1

T
2

T
3

T
4

E
n

d
T

5
T

6

T
7

T
8

T
9

T
10

T
13

T
14

T
15

T
11

T
16

T
12

T
17

T
18

T
19

E
n

d

W
ri

tt
en

O
ra

l

Is
it

a
C

o
m

p
la

in
t?

au
th

o
ri

se
d

to
re

so
lv

e?

au
th

o
ri

se
d

&
O

ra
l

au
th

o
ri

se
d

&
W

ri
tt

en

u
n

au
th

o
ri

se
d

Ye
s

N
o

R
es

o
lv

ed
?

Ye
s

N
o

N
ee

d
E

sc
al

at
io

n
?

Ye
s

N
o

C
o

m
p

la
in

t
Sa

ti
sfi

ed
?

No Ye
s

F
ig

u
re

4.
3:

A
C

o
m

p
la

in
t

H
an

d
li

n
g

P
ro

ce
ss

96 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

needs to be escalated. While the complaint is being investigated, the complainant

is being kept informed. When a decision has been reached, the complainant is

informed of the decision. When the complainant is satisfied with the decision, the

complaint process is closed off and the details archived.

4.4.1 Compliance Checking of Complaint Handling Process

Table 4.1 illustrates rules applicable to the complaint handling process. For each

rule, we have also identified the obligation triggered by the rule. These rules are of

different types and relevant to one or more tasks in the aforementioned process.

Compliance of every rule cannot be automatically checked for several reasons;

for example, the rule might be vaguely described, or only partial information is

available (see Awad, 2010). Rule R1 in the complaint-handling process is one such

type of rules that has been vaguely defined. For example, the ‘earliest opportunity’

does not clearly specify by what time the obligation has to be fulfilled. However, R1

is an achievement obligation applicable from T3 and the obligation triggered by it

remains in force until the obligation has been fulfilled. R4 is a punctual obligation

(for an oral complaint) and an achievement obligation (for a written complaint)

where the received complaint has to be acknowledged within 2 working days. Rules

R3, R6, and R7 are maintenance obligations applicable from the beginning of the

process. They must be complied with for all the instances of the complaint handling

process.

To determine whether the obligation has been complied with, regardless of when

an obligation it comes into force and at which task in the process, one has to consider

all the traces of the process including the task from where the obligation enters into

force. Thus, the first step is to consider all the traces of a process. Given that there

is a loop in the process model, the number of traces is infinite. While this is not a

problem for the theoretical compliance model, for practical purposes we have to

consider a finite number of them. In practice, loops typically have exit conditions;

accordingly, we can limit the analysis to the case where each loop is expanded once,

and in the case of a nested loop, the external loop passes from the origin of the loop

twice: where the internal loop is executed, and when the internal loop is skipped. In

this case the second time, the effect will be annotated with the exit condition. This

procedure is applied recursively for more deeply nested loops.

4.4. MOTIVATING EXAMPLE: COMPLAINT HANDLING PROCESS 97

The complaint-handling process generates the following (finite) set of traces.

T
+
p = {t1 = 〈T1,T2,T3,T4〉,

t2 = 〈T1,T2,T3,T5,T6,T13,T14,T15,T16,T17,T18,T19〉,

t3 = 〈T1,T2,T3,T5,T6,T13,T14,T15,T17,T18,T16,T17,T18,T19〉,

t4 = 〈T1,T2,T3,T5,T6,T13,T14,T15,T17,T18,T19〉,

t5 = 〈T1,T2,T3,T5,T6,T14,T15,T16,T17,T18,T19〉,

t6 = 〈T1,T2,T3,T5,T6,T14,T15,T17,T18,T16,T17,T18,T19〉,

t7 = 〈T1,T2,T3,T5,T6,T14,T15,T17,T18,T19〉,

t8 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T11,T12,T16,T17,T18,T19〉,

t9 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T11,T12,T19〉,

t10 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T16,T17,T18,T19〉,

t11 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T16,T17,T18,T16,T17,T18,T19〉,

t12 = 〈T3,T4〉,

t13 = 〈T3,T5,T6,T13,T14,T15,T16,T17,T18,T19〉,

t14 = 〈T3,T5,T6,T13,T14,T15,T17,T18,T16,T17,T18,T19〉,

t15 = 〈T3,T5,T6,T13,T14,T15,T17,T18,T19〉,

t16 = 〈T3,T5,T6,T14,T15,T16,T17,T18,T19〉,

t17 = 〈T3,T5,T6,T14,T15,T16,T17,T18,T16,T17,T18,T19〉,

t18 = 〈T3,T5,T6,T14,T15,T17,T18,T16,T17,T18,T19〉,

t19 = 〈T3,T5,T6,T14,T15,T17,T18,T19〉}

The next step is to determine what are the effects of the tasks in the trace, as each

task is annotated with one or more effects (or sets of effects); we refer to these effects

as annotations. Hence, we consider which literals are relevant to each task in the

trace. We use the Ann function defined (see Definition 18) in Section 4.2. To improve

readability, in the rest of this section we use the annotation function Ann as:

Ann(tr ace, t ask, i nteg er) = { set of (consistent) literals }

This means that we also include the name of the task in its signature.

We now take a significative trace, trace t11, to illustrate how the function populates

the states corresponding to the tasks in a trace. Trace t11 is as follows:

t11 = 〈T1,T2,T3,T5,T6,T7,T8,T9,T10,T16,T17,T18,T16,T17,T18,T19〉

98 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

Based on the availbe information we populate the function Ann for t11 as follows:2

t11 : 〈Ann(t11,T1,1) = {receive_complaint,oral, identify_yourself }

Ann(t11,T2,2) = Ann(t11,T1,1)∪ {get_details},

Ann(t11,T3,3) = Ann(t11,T2,2)∪ {verify_complaint},

Ann(t11,T5,4) = Ann(t11,T3,3)∪ {valid_complaint,register_complaint},

Ann(t11,T6,5) = Ann(t11,T5,4)∪ {check_authority},

Ann(t11,T7,6) = Ann(t11,T6,5)∪ {authorised,acknowledge_complaint},

Ann(t11,T8,7) = Ann(t11,T7,6)∪ {explain_handling_procedure},

Ann(t11,T9,8) = Ann(t11,T8,7)∪ {explain_options},

Ann(t11,T10,9) = Ann(t11,T9,8)∪ {attempt_resolution},

Ann(t11,T16,10) = Ann(t11,T10,9)∪ {¬resolve_complaint,escalate},

Ann(t11,T17,11) = (Ann(t11,T16,10)− {escalate})∪ {inform_progress},

Ann(t11,T18,12) = Ann(t11,T17,11)∪ {inform_decision,provide_reasons},

Ann(t11,T16,13) = (Ann(t11,T18,12) −{inform_decision,provide_reasons})

∪{¬satisfied,escalate},

Ann(t11,T17,14) = Ann(t11,T16,13)∪ {provide_escalation_options},

Ann(t11,T18,15) = Ann(t11,T17,14)∪ {inform_decision,provide_reasons},

Ann(t11,T19,16) = (Ann(t11,T18,15) −{¬resolve_complaint,¬satisfied})

∪{satisfied,archive,resolve_complaint}〉

The integer and task appearing in the State function indicate, respectively, the step

of the process and the task (to be) executed at that step. Apart from its own, each

task in the trace can inherit effects from its previous tasks to determine the state

corresponding to the task. These effects can be accumulated as the information

grows for every subsequent task in the trace. These effects are computed based on

the updated semantics where if the effects of previous tasks are in conflict with the

effects of the current task, the effects of previous tasks are replaced with current ones.

For example, the state reached after task T2, namely State(t11,T2,2), accumulates

the effects of its previous task T1, and also has its own effects {get_details}. Similarly,

task T3 accumulates the effects of tasks T1 and T2 producing State(t11,T3,3). In other

2The annotations for each task can be given by domain experts or can be extracted from databases
or forms related to the tasks (see Hashmi et al., 2012, for details).

4.4. MOTIVATING EXAMPLE: COMPLAINT HANDLING PROCESS 99

Table 4.2: Applicable Rules and Obligations in Force for Trace t11

Task, Step Rules Obligations in Force

T1,1 R1,R3,R6,R7 Force(t11,T1,1) = { resolve_complaint, treat_farly,
¬disadvantage,ensure_confidentiatly}

T2,2 Force(t11,T2,2) = Force(t11,T1,1)
T3,3 Force(t11,T3,3) = Force(t11,T2,2)
T5,4 R4,R5 Force(t11,T5,4) = Force(t11,T3,3)∪ { acknowledge_complaint,

inform_progress }
T6,5 R10 Force(t11,T6,5) = Force(t11,T5,4)∪ {authorized}
T7,6 Force(t11,T7,6) = Force(t11,T6,5)
T8,7 Force(t11,T8,7) = Force(t11,T7,6)
T9,8 Force(t11,T9,8) = Force(t11,T8,7)
T10,9 Force(t11,T10,9) = Force(t11,T9,8)

T16,10 R8 Force(t11,T16,10) = Force(t11,T10,9)∪ {provide_reasons}
T17,11 Force(t11,T17,11) = Force(t11,T16,10)
T18,12 Force(t11,T18,12) = Force(t11,T17,11)− {provide_reasons}
T16,13 R2,R5,R8 Force(t11,T16,13) = Force(t11,T18,12)∪ {provide_reasons,

provide_escalation_options }
T17,14 Force(t11,T17,14) = Force(t11,T16,13)
T18,15 Force(t11,T18,15) = Force(t11,T17,14)
T19,16 Force(t11,T19,16) = Force(t11,T18,15)

cases, some effects obtained in previous tasks can be removed or their truth value

can be changed. For example, the first time we pass through task t17 (step 11) we

remove the escalate flag that was raised in the previous task indicating the complaint

was escalated. The change of polarity of literals is exemplified at step (16) where

the negative ¬resolve_complaint and ¬satisfied are removed and replaced by their

positive counterparts, resolve_complaint and satisfied.

The next step is to identify which rules are applicable to trace t11 on which task

and when in order to determine which obligations are in force. Table 4.2 illustrates

when the various rules become active in trace t11 (when they begin to produce their

deontic effects), and when the various obligations are in force.

Four rules are effective at T1. Rule R1, whose deontic effect is an achievement

obligation, becomes active as soon as a complaint is received, and remains active

until the complaint is resolved. The other three rules, that is, R3, R5 and R6, are for

maintenance obligations and never terminate for all instances of the process. No

rules are associated with T2,T3, tasks T7–T10 or with the tasks in the last three steps

of the trace. R4 and R5 produces achievement obligations, and their effects enter

in force at step 4 (task T5) when the complaint has been deemed valid. Rule R10

100 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

kicks in at task T6, and its deontic effect is a maintenance obligation (where the staff

is authorised to handle the complaint, or alternatively, the prohibition to handle a

complaint, if not authorised).

Rule R8 is triggered twice. The first trigger is at step 10 and the corresponding

non–preemptive obligation is in force for that step and the next one, when the

obligation is fulfilled. Thus, the obligation provide_reasons is no longer in force for

step 12. The new decision in step 13, reinstates that non–preemptive obligation. The

non–preemptiveness of the obligation implies that the previous discharging instance

does not count for the instance of the obligation in force from step 13.

It is easy to verify that the trace is compliant for rules R1, R2, R4, R5, R6, R8, R9

and R10: the achievement obligations triggered by rules R1, R2, R4, R5, R8 are fulfilled,

respectively at steps: 16, 13, 5, 11, and 11 and at 15 for the two instances of R8. The

maintenance obligation of rule R8 is maintained from step 5, when it enters in force,

and remain active until the end of the process. R9 is casually complied with since

it is a permission, and it cannot result in a non–compliant situation. Finally, the

maintenance obligations of R3, R6 and R7 are not fulfilled. This is due to a lack of

information of about what their obligations mean in term of the given process.

4.5 Evaluation

In this section, we report on an evaluation of the framework against real processes

and norms. The aim of the section is to provide evidence that all types of obligations

are eventually present in real life compliance scenarios.

The evaluation was carried out using Regorous.3 Regorous is an implementation

of the compliance checking methodology proposed by (Governatori and Sadiq, 2009;

Sadiq et al., 2007), where the normative provisions relevant to a process are encoded

in PCL (Governatori and Rotolo, 2010a,b), and the tasks of a process are annotated

with sets of literals taken from the language used to model the norms.

The Regorous module for checking compliance generates the traces of the given

process and cumulates the annotations attached to tasks, using an update semantics

to determine the state corresponding to a task in a trace; in other words, in a case

where a literal from the current task is the complementary of from a previous task, the

old literal is removed and a new one is inserted. PCL offers comprehensive support

3Regorous Compliance Checker, available at https://www.regorous.com

https://www.regorous.com

4.5. EVALUATION 101

for modelling and compliance checking of various types of obligations and, for every

step in a trace, it retrieves the state corresponding to the task being examined. Based

on state, PCL determines the obligations in force for the current task. Finally, it checks

if the obligations have been fulfilled or violated based on the semantics discussed in

the previous section (For the full details of PCL mechanisms, (see Governatori and

Rotolo, 2010b).).

Regorous was tested against the novel Australian Telecommunication Consumers

Protection Code 2012 (TCPC). The code specifically mandates that every Australian

entity operating in the telecommunication sector must provide a certification that

their day-to-day operations comply with the code.

Table 4.3: Number and types of obligations and permissions in Section 8 of TCPC

Punctual Obligation 5 (5)
Achievement Obligation 90 (110)

Preemptive 41 (46)
Non–preemptive 49 (64)

Non–perdurant 5 (7)
Maintenance Obligation 11 (13)

Prohibition 7 (9)
Non–perdurant 1 (4)

Permission 9 (16)
Compensation 2 (2)

The test was limited to Section 8 of the TCPC code concerning the management and

handling of consumer complaints. The section was manually mapped to PCL. This

section of the code contains approximately 100 commas, in addition to

approximately 120 terms (given in the Definitions and Interpretation section of the

code). The mapping resulted in 176 PCL rules, containing 223 PCL (atomic)

propositions (literals). The formalisation of Section 8 of the TCPC required all types

of obligations described in Section 4.2.1. Table 4.3 reports the number of distinct

occurrences and, in parentheses, the total number of instances (some effects can

have different conditions under which they are effective).

The evaluation was carried out in cooperation with an industry partner operating

in the sector of the code. The PCL formalisation of TCPC Section 8 was reviewed and

informally approved for the purpose of the exercise by the regulator. The industry

102 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

partner did not have formalised business processes. Thus, we worked with their

domain experts from the industry partner (who had not been previously exposed

to BPM technology, but who were familiar with the industry code) to draw process

models to capture the existing complaint-handling and management procedures

and other related activities covered by Section 8 of TCPC code. As the result, we

generated and annotated 6 process models. Five of these 6 models were limited in

size and can be checked for compliance in seconds; we were thus able to identify

non–compliance issues in the processes and to rectify them. In the simplest and

most frequent cases, the modification required was simply to ensure that some type

of information was recorded in the databases associated with the processes. Other

cases needed an addition to simple activities (tasks) either after or before other

tasks; for example, the need to make a customer aware of documents detailing the

escalation procedure after the unsatisfactory outcome of a non–escalated complaint.

These two types of non–compliance were detected by unfulfilled achievement

obligations, and they were the results of new requirements in the 2012 version of

the code. Another case of non–compliance was related to ensuring that a particular

activity did not occur in a particular part of the process. Finally, there were some

cases where a combination of the above issue was needed (for example, a novel way

to handle in-person or by-phone complaints) where totally new sub-processes were

designed.

The largest process contains 41 tasks, 12 decision points, XOR splits, (11 binary, 1

ternary). The shortest path in the model has 6 tasks, while the longest consists of 33

tasks (with 2 loops); the longest path without loop is 22 tasks long. The time taken to

verify compliance for this process was approximately to 40 seconds on a MacBook

Pro 2.2Ghz Intel Core i7 processor with 8GB of RAM (limited to 4GB in Eclipse).

4.6 Related Work

We now consider related work in the business process compliance checking domain

and compare it with work presented in this chapter.

In the recent past, a number of approaches to checking compliance of business

process models have been reported in the literature (Bonazzi and Pigneur, 2009;

Elgammal et al., 2011a; Kharbili and Stein, 2008; Liu et al., 2007; Ly et al., 2012). As

discussed previously, the requirement of a preventive approach compliance by design

4.6. RELATED WORK 103

for business process compliance. This literature can be divided into two distinct

categories: compliance by design and post-design compliance checking. In the

first approach, new business process models are fed with business rules as input;

a process model, on the other hand, is checked against compliance requirements

when a process has completed the design phase.

Lu et al. (2007) objectively show how to enforce compliance requirements to avoid

the chance of potential rules violations. While, similar works reported by Goedertier

and Vanthienen (2006c); Milosevic et al. (2006b) provide an effective solution to

achieving design-time compliance, compliance checking will still be required if

changes are made to the process model and new business rules are introduced.

In addition to that, the emphasis of these approaches remains on the structural

compliance of a process model, and the data aspect has been largely ignored.

Goedertier and Vanthienen (2006c) achieve design-time business process

compliance using rule sets with permissions and obligations, and proposed

PENELOPE, a declarative language to specify compliance rules. From these rules,

ENELOPE generates a state space and a BPMN model from these rules that is

compliant by design. However, this approach concentrates on acyclic processes only,

and the data and data constraints aspect in the business rules is not included. An

artefact-centric business process modelling approach has been recently proposed

in Lohmann (2012), which exhibits how artefact-centric business processes can be

canonically extended to take compliance rules into account. As these business rules

can express constraints on the execution of actions, it is claimed that the data

information can also be taken into account; however, it is not clear whether the

model will be semantically annotated with the data, and how data constraints will be

modelled. If the business process model is semantically annotated then where this

data will come from (that is, the source of data for annotations).

With respect to post-design process compliance, Awad et al. (2009) discuss a

temporal logic query-based approach for specification, verification, and explanation

of violations of data-aware compliance rules. The approach employs extended

BPMN-Q to realise the business rules, including the data aspects, to increase the

expressiveness of their previously proposed language (given in Awad et al., 2008a).

The authors used past linear temporal logic (PLTL) to formalize the rules; however,

temporal logic poses a problem in that it provides structural compliance only, and

does not distinguish different normative positions; that is, it does not indicate how

104 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

these normative positions can be represented, or how the data is associated with the

rules. Moreover, this proposed approach comes under the post design compliance

checking approach. To measure the compliance distance between the process model,

and a rule, an automated approach was introduced in Lu et al. (2008). The degree

of compliance is checked on a scale from 0 to 1, but the data aspect has not been

covered.

Ramezani et al. (2013) report a conformance checking approach based on Petri-

Net patterns and alignments. They created a repository of 55 control-flow based

compliance rules spanning over 15 distinct categories, including compliance rules for

data, resources and organisational rules. The collected rules were formalised in terms

of Petri-nets rather than logics. For conformance checking, they employed alignment

techniques from van der Aalst et al. (2012) to analyse process compliance with the

formalised Petri-Net patterns. If the patterns are consistent with the compliance

rules, the execution behaviour is consistent. However, if any deviant behaviour is

observed, a violation of the rule is reported and the alignment shows the reason(s) for

the deviations. The approach is useful for checking the compliance of control-flow

related rules; however, this only provides the structural compliance of the rules. In

addition, conformance checking of business processes against the business rules

has different specifications and properties than those in the legal domain. Thus,

the proposed approach is not suitable for compliance checking of the normative

requirements.

In addition to, design time compliance approaches, there are other compliance

checking approaches that focus on run time (Hee et al., 2010; Maggi et al., 2011a;

Ramezani et al., 2013). However, since, the focus of this thesis is on design-time

compliance checking, we do not discuss such approaches here see, Chapter 2 for

further details.

4.7 Summary

The main contribution of this chapter is the formal foundational framework that

provides the baseline for properly modelling the legal component of business process

compliance, to evaluate the ability of a CMF to represent the norms with which a

system needs to comply. The presented framework comprises several formal models

that provide formal specifications (definitions) of business processes and the formal

4.7. SUMMARY 105

specifications (definitions) of the various notions of norms, and an approach to

integrate these formal models. The provision and integration of these formal models

is imperative for business process compliance modelling and checking. We began

with the notion of a business process model to describe the sequence of states

corresponding to the execution of the process, and the use of WF-nets to model

the specifications of process models. To provide the formal model of the norms,

we the used these sequences of states to provide the formal semantics of different

classes of the norms (discussed in Chapter 3). Finally, we provided the definitions

of what it means to comply with a norm, and to violate a norm. These formal

models provided the basis for the compliance checking approach, with the idea of

semantically annotating business processes to validate their compliant behaviour.

To validate the effectiveness of these formal models and compliance checking

approach, we used a real life complaint-handling process and showed how we can

correctly model the legal component of compliance to check the compliance of

business processes annotated with the compliance rules. For this purpose, we first

determined which rules (with their types) are relevant to the complaint-handling

process, and then determined the state corresponding to the tasks and the

obligations that are in force for that task. We then manually attached the relevant

obligations to the generated traces (states) of the processes, to determine whether

the complaint-handling process is compliant with the set of the applicable norms,

using the formal semantics proposed in this chapter. The main feature of the

presented formal semantics that give the formal specifications of norms and

business processes is their flexibility and they are independent of any specific formal

language. They can be simply transformed into any other formal language without

having any complexity. In addition, the presented framework is not limited to

design-time compliance of norms: it can equally be used for conformance checking

or auditing (that is, log analysis of business processes). The possible uses of the

presented framework include, but not limited to, establish the mappings between

the language and the semantics of a CMF and the semantics and definition of

compliance as provided in this chapter.

The next chapter presents, the conceptual evaluations of seven frameworks

selected according to pre-defined criteria, to examine what these frameworks can

do in terms providing the compliance management support for modelling and

reasoning with the norms, using the approaches proposed in these frameworks. In

106 CHAPTER 4. BUSINESS PROCESS COMPLIANCE

particular, these evaluations are based on the constructs existing CMFs provide to

model various classes of normative requirements; in particular, the new classes and

formal semantics of norms proposed in this and the previous chapter.

Part III

Evaluating BPC Frameworks

107

C
H

A
P

T
E

R

5
CONCEPTUAL EVALUATION OF CMFS

5.1 Background

In the introduction, we discussed various compliance management strategies (for

example, design–time, run–time and post–execution time), and pointed that a wealth

of CMFs exist. These CMFs bear specific functional and operational capabilities,

support specific compliance requirements for specific domains. Each of the CMFs is

grounded on different concepts and incorporates different conceptual and formal

models. The strength of a CMF largely depends on its conceptual and formal models.

If a CMF is not conceptually sound, it might be not suitable to provide the

certification of compliance that is acceptable to accredited certifying organisations.

Previously, we provided a classification model of normative requirements giving

a detailed ontology of different types of normative requirements, and formal

semantics defining each class of the classification model. Hence, to support the

overall objectives of the study, and given the new classification model the natural

question is whether existing CMFs are conceptually sound to provide reasoning and

modelling support for each type of normative requirements? In this chapter, we

evaluate the conceptual foundations of seven CMFs selected according to

four–point criteria. The classification model of normative requirements (presented

in Chapter 3) and the compliance checking approach (discussed in Chapter 4)

provide the basis for these evaluations. Specifically, we address the following

109

110 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

questions: (a) how do existing CMFs address the compliance problem? (b) what are

the underlying conceptual models of these CMF? (c) what constructs do they provide

to represent different types of normative requirements? (d) how do they link these

requirements to business processes? Addressing these question will provide a better

understanding on various functionalities of CMFs especially the norms modelling

constructs provided in these CMFs. Also, it will identify issues related to modelling

normative requirements as it is generally acknowledged observation that no

modelling language can ever be perfect to represent the legal knowledge. Hence, a

CMF will be vulnerable to criticisms with regard to the classes of the norms that it

might be unable to represent.

The remainder of this chapter is structured as follows: Section 5.2 discusses

the evaluation approach. Section 5.3 provides detailed evaluations of the selected

CMFs, where we examine the use of their conceptual foundations to deal with the

normative requirements related to regulatory compliance. Section 5.4 is a short

discussion of the evaluation results, and the shortcomings of evaluated CMFs is

then presented; Section 5.5 discusses related work, and Section 5.6 summarises the

chapter’s contributions.

5.2 Approach

This section presents the research approach used to conduct the evaluations. A

systematic case study based evaluation strategy Clark and Dawson (1999) was

adopted; this allowed us to start the evaluations with minimal information available

on the CMFs. Following this systematic strategy, a three–step approach was

employed; in the first step, the objectives for this evaluation were defined; a set of

evaluation criteria meeting the evaluation objectives was then determined; and in

the last step, a range of CMFs were selected for evaluation. Figure 5.1 illustrates the

overall evaluation approach.

Evaluation Objectives: The main objective of the conceptual evaluation was to

examine the conceptual foundations of existing CMFs. We specifically looked

at the conceptual approach that a framework proposes for checking the

compliance of business processes, and reasoning support for various

obligations types discussed in Chapter 3. More specifically, the goals of the

conceptual evaluation were to determine:

5.2. APPROACH 111

Evaluation
Objectives

Evaluation
Criteria

Framework
Selection

Framework
Evaluation

C4:Level of
Compliance

Management

C3:Requirement
(Norms)
Linking

C1:Compliance
Checking
Approach

C2:Requirement
(Norms)

Modelling

Figure 5.1: Conceptual Evaluation Approach

1. what constructs are provided for modelling the norms, and the formal

language for doing so;

2. how the norms are linked to business processes for compliance checking;

3. the level of compliance management support—that is, the framework

contribution type, and whether all obligations types can be supported.

Evaluation Criteria: We determined a four–step selection criteria to identify

representative frameworks for this evaluation namely:

1. Compliance checking approach: This criterion is divided into two

dimensions, namely: process lifecycle aspects and the orientation of the

compliance checking approach. The lifecycle aspect aims to examine

whether the proposed approach in a CMF is design–time, run–time or

post–execution time compliance checking. The orientation dimension,

on the other hand, looks at whether the approach in a CMF is focused on

the verification (or validation), or is purely business oriented (see

Chapter 2 for details on various approaches). We use this criterion

because of the focus of this study is on design–time compliance

management frameworks.

2. Requirements modelling: This criterion enabled us examine how CMFs

model different types of compliance requirements and the formal logic

they use to do so. Specifically, we used this criterion to identify the

modelling constructs for a specific obligation type proposed in a CMF,

112 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

and the ways in which it is modelled. For this purpose, we followed the

approach used in (van der Aalst et al., 2002), where the authors evaluated

the workflow patterns by describing the conditions that should hold for a

pattern to be applicable under real life situations. For our purpose, we

also aimed to examine whether constructs proposed in a CMF can fully

capture the compliance rules from the real life regulations. Hence, our

recourse was to check the one–to–one mapping between the construct

provided in a CMF and the obligation types of our classification model,

to determine whether the construct can fully represent the intuition of

the obligation type. Notice that, the earlier discussed obligations types

only describe the temporal properties of obligations with respect to their

validity and effects of the violations. They do not cover the obligations

related to the data and resources aspect of a business process. Hence, we

do not consider the constructs that are concerned with the rules

prescribing the conditions on the data and resource aspects of the

business processes.

3. Requirements linking: Using this criterion, we identified how a CMF links

compliance rules with business process models. The reason for using

this criterion, as argued in previous chapter, was to verify the compliance

of norms requirements needed to provide both the model of normative

requirements and that of a business process. Furthermore, if both the

models are represented in different formal languages, then a bridging

mechanism serving as an interface between the formalisation of the

business processes and the formalisation of norms is mandatory. For

effective compliance checking of the compliance rules, it is imperative

that they are properly modelled and linked to the business processes; if

they are not properly modelled and linked, the results of the compliance

checking approaches are not reliable. Hence, with this criterion we

aimed to look at the way in which existing CMFs link the compliance

requirements to ensure that the compliance checking process remains

transparent to the stakeholders.

4. Level of compliance management: This criterion describes the level of

support a CMF provides; that is, modelling, linking, compliance

checking, and handling violations of the norms. Only CMFs that provide

5.2. APPROACH 113

full compliance management support were selected those merely

provide a compliance checking algorithm or a modelling language were

not considered.

Sample Frameworks Collection: Although we reviewed and analysed a large

number of CMFs - 19 in total (for example, MASTER framework (MASTER,

2008); REO–Toolkit (Arbab, 2004); COMPAS (Elgammal et al., 2011a); SeaFlows

(Ly et al., 2010b, 2012); REALM (Giblin et al., 2005); NORMC (Kazmierczak

et al., 2012); and PSA@R (Rieke et al., 2014) to name but a few), and 45

compliance checking approaches (such as static compliance checking,

logic-based, and pattern-based approaches), we refrained from undertaking a

systematic literature survey, as done in (Abdullah et al., 2010; Becker et al.,

2012; El Kharbili, 2012). Rather, we selected CMFs based on expert discussions,

and those mostly cited in the literature. As a first step, we conducted an

extensive literature search using the methodology from Bandara et al. (2011),

and along the regulatory compliance management frameworks dimensions

listed in (El Kharbili, 2012). To search the resources, we used the keywords

based on these dimensions such as compliance rules modelling, verification,

violation management, temporal rules; and also the keywords closely related

to the evaluation criteria. This resulted in the extraction of more than 100

articles covering a range of compliance dimensions. Not all articles were

relevant to the evaluation objectives, and unrelated articles were discarded.

Only articles that contained key terms such as design–time, run–time,

compliance framework, compliance checking approach were selected. Based

on these, we selected seven frameworks meeting the evaluation criteria. We

believe that the selected CMFs give a fair representation of most compliance

approaches; for example, design–time, run–and post–execution based

approaches. In addition, they are widely cited in the literature for example,

PCL (Sadiq et al., 2007), BPMN–Q (Awad et al., 2008a), PENELOPE (Goedertier

and Vanthienen, 2006c), and COMPAS (Elgammal et al., 2011b) as illustrated

in Table 5.1.

114 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

Table 5.1: Articles and # of Citations of Selected CMFs between December 2013–
August 2015

Framework Article (Author/Year) 2013 2015 Difference

PCL - (Sadiq et al., 2007) 269 342 73
- (Governatori et al., 2006b) 209 240 31
- (Lu et al., 2007) 74 100 26
- (Governatori and Sadiq, 2009) 62 86 24
- (Governatori and Rotolo, 2010a) 29 48 19

BPMN–Q - (Awad et al., 2008a) 159 210 51
- (Awad, 2007) 95 127 32
- (Awad et al., 2008b) 48 61 13
- (Awad et al., 2011) 38 70 32

SEAFLOWS - (Ly et al., 2012) 64 98 34
- (Ly et al., 2010a) 51 62 15
- (Ly et al., 2010b) 44 62 18
- (Ly et al., 2011) 43 66 23

Auditing - (Ghose and Koliadis, 2007) 166 201 35
Framework - (Hinge et al., 2009) 25 38 13

DECLARE - (van der Aalst et al., 2009) 214 297 83
- (Montali et al., 2010) 98 138 40
- (Maggi et al., 2011a) 66 101 35
- (Maggi et al., 2011b) 15 33 18
- (Ramezani et al., 2012a) 13 25 12
- (Ramezani et al., 2013) 2 12 10
- (Ramezani et al., 2012b) 17 49 32

COMPAS - (Elgammal et al., 2010) 30 45 15
- (Schumm et al., 2010) 22 35 13
- (Türetken et al., 2011) 11 28 17
- (Túretken et al., 2012) 8 22 14
- (Elgammal et al., 2011a) 9 18 9

PENELOPE - (Goedertier and Vanthienen, 2006c) 131 163 32
- (Goedertier and Vanthienen, 2006b) 32 38 6

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 115

5.3 Conceptual Evaluation of Compliance

Frameworks

Chapter 3 discussed various classes of normative requirements of the classification

model, based on the temporal validity of norms and the effects they produce.

Essentially, different types of obligations represent different types of compliance

requirements and different properties thus have different complexities. Hence, a

‘one–size–fits–all’ modelling approach is far from being satisfactory from a

conceptual point of view, and a CMF that does not represent the various nuances of

obligations is not conceptually sound. Hence, a conceptually weak CMF might not

be suitable to provide any certification of compliance acceptable to accredited

certifying organisations. In this section, we use the classification model as a

template to examine the conceptual foundations of the selected frameworks, by

specifically looking at what constructs they provide to represent the classificatory

classes of our classification model. The first CMF evaluated is PENELOPE.

5.3.1 PENELOPE

PENELOPE (Goedertier and Vanthienen, 2006c) is a formal language–based

declarative CMF that captures obligations and permissions constraints imposed on

an organisation’s processes by business policies. Aiming to provide a design–time

compliance verification, the language uses an algorithm that progressively generates

the state space and control–flow of a business process. The state space in the

PENELOPE–generated process is a set of obligations and permissions that are active

at a particular state. The interaction between the generated process models flows

from one state to another, and all the states are enumerated until no obligation or

permission holds at a state, or if there is a violation that cannot be repaired. Once all

the states are computed, the algorithm draws the BPMN model for a role involved in

the business interaction. The tasks of the process are drawn whenever an obligation

set contains all obligations fulfilled by a role in the activity.

PENELOPE allows the modelling of the interaction between all involved partners

and any violations from a third partner are represented as time–out events in the

generated BPMN model. In addition, errors and end events are drawn if there is a

violation of an obligation or permission by a role in a state. With the designed

compliant process models, various inconsistencies such as deontic conflicts can be

116 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

identified. The deontic assignments in the PENELOPE are modelled using

Event–Calculus (EC) that provides a rich semantics with which to reason about the

normative requirements. Table 5.2 illustrates the EC based deontic properties

proposed in PENELOPE.

Table 5.2: Deontic Properties of PENELOPE (Goedertier and Vanthienen, 2006c)

Term Meanings

Xor(α1,α2) compound activity α1 XOR α2

Or(α1,α2) compound activity α1 OR α2

And(α1,α2) compound activity α1 AND α2

Oblig(A,α,δ) agent A must do the activity α by due date δ

Perm(A,α,δ) agent A can do the activity α prior to due date δ

CC(A,α1,δ1,α2,δ2) agent A must do activity α2 by due date δ2

after activity α1 is performed prior to due date δ1

(A)Ter mi nates(α,Obl i g (A,α,δ),τ) ←− τ≤ δ

(B)Ter mi nates(α,Per m(A,α,δ),τ) ←− τ≤ δ

(C)H appens(vi ol ati on(Obl i g (A,α,δ)),δ) ←−

Hold s At (Obl i g (A,α,δ))∧∼ H appens(α,δ)
(D)Ini t i ates(α1,Obl i g (A,α2,δ2),τ) ←−

τ≤ δ1 ∧HoldsAt(CC (A,α1,δ1,α2,δ2)),τ)

Next, we examine in detail each of the deontic properties, and check whether

these properties have some correspondence to the earlier discussed obligation types.

Since the first three properties are related to the structure of the process—such as

Choice (OR) and XOR–Split, and Parallel (AND) gateways—we discard them from

our analysis and directly evaluate the deontic properties.

Deontic Property-1: (Obligation)

Term: Obl i g (A,α,δ)

Description: The term Oblig is used to capture the notion of obligations, A is the

subject of the obligation, α refers to the conditions (or actual contents) of the

obligation, and δ is the deadline until which the obligation must be fulfilled.

Evaluation: In combination with the Initiates predicate and Terminates predicate,

the term can be used to model achievement obligations. The predicates

Initiates and Terminates capture the effects when an obligation enters into force;

and when it is terminated, respectively, depending on whether the obligation is

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 117

fulfilled or removed. The term Obl i g (A,α,δ) defines the parameters of the agent

who has to obey the contents of the obligation and fulfilled it by a deadline.

Correspondence: The term has one–to–one correspondence with the semantics of

the achievement obligation (Definition 5).

Deontic Property-2: (Permission)

Term: Per m(A,α,δ)

Description: This deontic property is used to capture the notion of permission,

where in the term A refers to the agent, α refers to the conditions (or actual contents)

of obligation, and δ is the deadline until which the permission must be discharged.

Evaluation: Similar to property-1, the term Perm can be used to represent

per mi ssi ons in combination with the Initiates and Terminates predicates.

Correspondence: One-to-one correspondence with Permission

Deontic Property-3: Terminates (Obligation / Permission)

Term: The term of the Terminates property for obligation and permission is as

follows:

(1) terminates-obligation: Terminates(α,Obl i g (A,α,δ),τ) ←− τ≤ δ

(2) terminates-permission: Terminates(α,Per m(A,α,δ),τ) ←− τ≤ δ

Description: The meanings of the Terminates predicate is that the event α

terminates the obligation fluent α at time τ.

Evaluation: PENELOPE uses EC’s Terminates predicate to terminate the effects of

the normative notions of obligations and permissions. As mentioned earlier,

obligations remain for a certain time period and then they are removed (either upon

fulfillment of violation). The Terminates predicate indicates when an obligation or

permission ceases to hold.

Correspondence: Though the predicate has no one-to-one mapping with our

classes of obligations. However, in conjunction with Initiates, it can be used to

capture the cessation of the effects of all obligations.

Deontic Property-4: (Conditional Commitments)

Term: CC (A,α1,δ1,α2,δ2)

Description: PENELOPE uses the term CC to model conditional commitments

(mostly in the sense of contractual interactions). The key idea behind the

118 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

conditional commitments, as in most business scenarios and concrete applications,

is that an agent commits himself to another agent to produce some effects when the

antecedent of the conditional commitment holds. The meanings of the term is that

an agent A must perform a certain activity (α2) by the due date δ2, only after the

agent has performed activity α1 before the due date α1.

Evaluation: Since conditional commitments are not considered in our classification

model, we do not evaluate this property. However, this deontic property can be

useful from a structural compliance of a business process perspective, because a

conditional commitment might represent the absence of the occurrence of an

activity (that is, α2) until another activity (α1) does not occur in the interaction.

Correspondence: - NA -

Deontic Property-5: Initiates (Conditional Commitments)

Term: The term for the Initiates predicate for the conditional commitments is as

follows:

Initiates(α1,Obl i g (A,α2,δ2),τ) ← HoldsAt(CC (A,α1,δ1,α2,δ2),τ)∧τ≤ δ1

Description: The meanings of the term is that the occurrence of event α1 Initiates

the obligation for the agent A to do α2 by the deadline δ2.

Evaluation: There is only difference between this property and deontic property–4;

that is, it gives the initiation conditions when a conditional commitment that an

agent has to fulfill enters into force.

Correspondence: - NA -

Handling the violations of obligations is one of the major requirements for a

compliance framework, as argued in (Awad, 2010). Timely reporting of the violations

not only allows the analysts to respond immediately but also saves much time and

effort. PENELOPE uses EC’s Happens predicate to represent violations for which the

framework provides the following semantic properties:

Deontic Property-6: Happens (Violation Handling)

Term: The term for Happens predicate for the violations handling is as follows:

Happens(vi ol ati on(Obl i g (A,α,δ)),τ) ← HoldsAt(Obl i g (A,α,δ))∧∼ Happens(α,δ)

Description: The meaning of the term is that the obligation to do α by the deadline

δ is violated at time τ when the obligation fluent α holds and the event fulfilling the

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 119

obligation does not happen by the deadline.

Evaluation: As the violations in PENELOPE can only occur in the form of deadlocks

situations and temporal conflicts, we understand that the Happens predicate is

useful from the capturing of the occurrence of events perspective. This is because

EC Happens predicate can effectively reason about the events and the changes

resulting from the occurrences of events over time. However, the violation semantics

can only indicate when an obligation is violated. Hence, the semantics property can

be used to indicate the violation of obligations. However, the property cannot be

used to reason about the effects the violation of an obligation might produce; for

example, perdurance of the violated obligation or triggering of compensatory

actions. Note that, since preemptive achievement obligations are fulfilled even

before the obligation enters into force, they cannot be violated. Hence, no reasoning

support is required for such obligations.

Correspondence: - NA -

The deontic properties discussed above are used to model obligations,

permissions and conditional commitments; other obligation types cannot be

represented with these properties. This is because Event-Calculus is not suitable for

reasoning all types of obligations1 (Hashmi et al., 2014). Essentially, the deontic

properties for achievement and permission are only possible because these

properties allow the explicitly definition of the deadlines in the form of precedence

rules. This, in turn, is because the framework generates compliant processes from

the rule sets of obligations and permissions. The main problem with PENELOPE is

that it does not consider prohibitions under Close World Assumption (CWA) to avoid

the anomalies that might occur because of incomplete knowledge of all the parties

involved in the business interaction. While, PENELOPE, is able to represent the

deadlock situations and temporal conflicts to represents violations, it cannot

provide the reasoning support for the deontic conflicts. This is because the

framework does not admit prohibitions or waived obligations. Table 5.10 illustrates

the types of normative requirements that are supported by PENELOPE.

On the same note, it is not possible to handle the effects of the violations because

the violation semantics discussed above can only indicate violation of the obligation.

Because violation properties in PENELOPE are based on the notion of violations

1A detailed evaluation of the semantic properties, and the reasons EC is not capable of providing
a full reasoning and modelling support for all types of olbigaiton, are discussed in Chapter 6.

120 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

without reparation (VWR), a penalty is imposed, whenever there is a violation of an

obligation. No deontic properties are provided for capturing the effects of

violations—that is, perdurance and compensatory actions; this is left to the analysts.

5.3.2 COMPAS

COMPAS (Elgammal et al., 2011a) is a comprehensive compliance governance

framework that provides an all–around compliance support for

service–oriented–architecture (SOA)–based systems. The framework adopts a

model–driven development approach for designing compliant processes/services,

using a view–based modelling framework and domain–specific languages to model

the compliance concerns in process models (Daniel et al., 2009).

For compliance checking, business processes are annotated with compliance

constraints in the form of (re–usable) process fragments. These fragments underline

the required behaviour of the control-flow of a process model, and they are

formalised using Linear Temporal Logic (LTL). The annotated process fragments are

then assessed to validate the compliant behaviour of the process models at

run–time, using event logs. A protocol component evaluates the generated event

logs to check whether the process model complies with the behaviour described in

the attached compliance constraints process fragment. If the monitoring protocol

detects any non–compliant behaviour it reports a violation and publishes it as a

violation event.

As far as the modelling of compliance requirements is concerned, COMPAS uses

a compliance request language (CRL) (Elgammal, 2012; Elgammal et al., 2014) for

modelling normative requirements. The core of the CRL is LTL–based graphical

compliance patterns, which are high–level compliance templates to model the

compliance constraints—predominantly, compliance requirements from the control

flow (structural) perspective of business processes. In addition, most of these

patterns are used by other frameworks, and more, recently additional patterns

representing features specific to normative reasoning, such as exceptions to rules

and compensation of violations have been included (Elgammal et al., 2014).

The CRL graphical patterns representing different types of compliance rules are

categorised into three distinct categories of patterns: atomic patterns, resources

patterns, and timed patterns. The atomic patterns aim to describe the requirements

involving the ordering of occurrence of the process elements, as depicted in

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 121

Table 5.3: Atomic Patterns and CRL Expression (Elgammal et al., 2014)

Atomic Pattern Patter-Expssions Description

isAbsent φ isAbsent φ should not exist throughout the
process model

Exists φ Exists φ should occur at least once within the
process model

Bounded-Exists φ BoundedExists ≤ 2∗ shows that φ must occurs at most 2
times within the process

φ BoundedExists ≥ 2∗ shows that φ must occurs at least 2 times
within the process

isUniversal φ isUniversal P should always be true throughout the
process

Precedes φ Precedes ψ ψ is always preceded by φ

Chain-Precedes φ Precedes (σ,τ) meaning that a sequence of σ,τ must be
preceded by φ

(σ,τ) Precedes φ φ must be preceded by a sequence of
σ,τ

LeadsTo φ LeadsTo ψ φ must always be followed by ψ

Chain-LeadsTo φ LeadsTo (σ,τ) shows that φ must be followed by a
sequence of σ,τ

(σ,τ) LeadsToφ shows that a sequence of σ,τ must be
followed φ

Exists-Often φ Exists-Often φ must occur frequently within the
process model

DirectlyFollowedBy φ DirectlyFollowedBy ψ shows that required φ to be followed by
ψ

Table 5.3. Some atomic patterns are based on Dwyer’s property specification

patterns (Dwyer et al., 1999), and categorised into occurrence and ordering patterns.

Accordingly, timed patterns are concerned with the constraints that include

temporal requirements, and resources patterns are related to constraints that are

used to describe the recurring requirements pertaining to the resources such as

authorisation or task assignment constraints. For our purpose, we only consider the

patterns relevant to describe compliance rules based on the obligation types and

discard those that are used to describe compliance constraints concerning the

resources aspect of the business processes.

In addition to the atomic patterns, CRL defines composite patterns, as illustrated

in Table 5.4. Composite patterns aim to describe more complex compliance rules,

and are built conjunctively by combining multiple atomic patterns using boolean

122 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

Table 5.4: Composite Patterns and Equivalent CRL Expressions (Elgammal et al.,
2014)

Composite Pattern Description Atomic Pattern Equivalence.

φ CoExists ψ The presence of φ mandates
that ψ is also present

(φ Exists) → (ψ) Exists)

φ CoAbsent ψ The presence of φ mandates
that ψ is also absent

(φ isAbsent) → (ψ) isAbsent)

φ Exclusive ψ The presence of φ mandates the
absence of ψ, and presence of ψ
mandates the absence of φ

((φ Exists) → (ψ isAbsent)) ∧

((ψ Exists) → (φ isAbsent))

φ Substitute ψ ψ substitutes the absence of φ (ψ isAbsent) → (φ Exists)
φ Corequisite ψ φ and ψshould either exist

together or be absent together
(φ EXists) iff (ψ Exists)) =

((φ Exists) → (ψExists)) ∧

((ψ Exists) → (φ Exists))
φ MutexChoice ψ Either φ or ψ exists but not any

of them or both of them
(φ Exists)XOR(ψ Exists) =

((φ Exists) ∧ (φ isAbsent)) ∨

((ψ Exists)∧ (φ isAbsent))

logical operators such as NOT, AND, OR, XOR, Implies and Iff operators. These

patterns are mapped into LTL formulas (see the description above) enabling the

translation of CRL expressions into a set of LTL formulas. Essentially, these patterns

are used to represent different types of compliance requirements.

We now discuss CRL compliance patterns in detail, and examine whether they

have correspondence with various obligation types.

Pattern-1: (isAbsent)

Description: φ should not exist throughout the process model.

LTL Formula: G(¬φ)

Evaluation: As the name implies, isAbsent is used to indicate that some activity φ

must not hold in the whole trace or throughout the business process model. This is

because prohibitions specify the conditions that the bearer must avoid during

interaction. As a contrasting achievement, prohibitions do not prescribe deadlines;

that is,if a constraint prescribes the prohibition of some action, this must be

maintained throughout the execution of the process. Hence, the pattern isAbsent

can be used to express compliance constraints prohibiting some actions. The

isAbsent pattern has a duality relation with Existence or Eventually patterns.

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 123

Correspondence: The pattern has correspondence with prohibitions.

Pattern-2: (Exists)

Description: φ should occur at least once within the process model.

LTL Formula: F(φ)

Evaluation: The Exists (or eventually) pattern is used to specify that the execution

of the process model contains the instance of some proposition φ. The existence

pattern has a strong relationship with the Absence pattern because of the duality

relation; it can be used to specify the negation and explicit queries for the existence

of some propositions. As for the definition of persistent obligations, an achievement

obligation can specify the conditions that might eventually hold in the future; thus,

the pattern can be used to represent achievement obligation. Cases where the

obligation specifies some additional conditions—that is, the occurrence of the

proposition φ with some finite number of times—can be handled with the Bounded

Existence patterns. COMPAS offers two Bounded Existence patterns for this

purpose.

• The Bounded-Exists (φ BoundedExists ≤ 2∗) shows that φ must occur at most

2 times within the process.

LTL Formula: ¬φW(φW(¬φW(φW¬F(φ))))

• The Bounded-Exists (φ BoundedExists ≥ 2∗) specifies that the proposition φ

must occurs at least 2 times within the process.

LTL Formula: ¬φW(φW(¬φW(φ)))

Correspondence: The pattern can be used to represent achievement obligations.2

Pattern-3: (isUniversal)

Description: φ should always be true throughout the process.

LTL Formula: G(φ)

Evaluation: The pattern isUniversal (also called ‘Always’or ‘Global’) aims to

define the part of process execution that includes states in which the presence of

proposition φ is always desired. As for the maintenance obligations, a special case of

persistent obligations, the obligation conditions must hold for all the instances of

2The BoundedExists pattern can be useful for achievement, only if such conditions are
prescribed by the norm. However, in every instance, an obligation can have independent conditions
associated with it, with different objectives.

124 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

the interval in which the obligation is in force. The isUniversal pattern can be

used to handle maintenance obligations. Accordingly, the pattern has a close

relationship with the Absence and Existence patterns, and it can be equally

applied in situations where the isAbsent pattern can be applied. This is because

the universal presence of some proposition φ can be seen as the absence of its

negation; that is, G(¬φ). Hence, it can also be useful for representing cases of

prohibitions.

Correspondence: The pattern can be used to represent maintenance obligations

(Definition 6) and prohibitions

Pattern-4: (Precedes)

Description: indicates that activity ψ is always preceded by another activity φ

LTL Formula: ¬ψWφ

Evaluation: The Precedes pattern (also called precedence) describes the

relationship between two propositions; for example, φ and ψ where the execution of

φ is mandatory for the execution of ψ. In other words, the execution of the first

proposition enables the execution of the second proposition. A common norm

example for precedence is: a payment can be made only after an invoice is issued;

that is, the issuance of the invoice is a pre–condition for make payment event. The

Chain Precedes is the variant of the Precedes pattern COMPAS uses to capture the

ordering of the sequence of activities after the execution of the first activity.

Essentially, the aim of chain patterns is to define the requirements pertaining to

complex pairing of individual proposition relations. The LTL formula for the Chain

Precedes pattern is as follows:

• The Chain Precedes pattern specifies that a sequence of activities σ,τ must be

preceded by the occurrence of activity φ.

LTL Formula: (F(σ∧XF(τ))) → (¬σ)U(φ))

The pattern is only useful for structural compliance checking of the processes where

the norms can prescribe conditions on the ordering of the activity occurrence

However, the pattern is not suitable for representing the semantics of any obligation

modality in our classification model.

Correspondence: –NA– (Ordering pattern only)

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 125

Pattern-5: (LeadsTo)

Description: indicates that the execution of the activity φ must always be followed

by the execution of activity ψ.

LTL Formula: G(φ→ F(ψ))

The LeadsTo pattern (or Response pattern) is a cause–effect pattern describing the

relationship between two propositions φ and ψ. Essentially, the relationship is

established when the execution of φ (the cause) must be followed by the execution

of the ψ (the effect). Generally, the properties of the LeadsTo pattern frequently

occurs in the concurrent systems (Dwyer et al., 1999), and have a contrary

relationship with the Precedes pattern; in other words, they cannot be equivalent.

Accordingly, the variant Chain-LeadsTo indicates that activity φ must be followed

by a sequence of σ,τ; and for a reverse interaction, the sequence of σ,τ must be

followed by activity φ. The LTL formulas for the two cases of the Chain-LeadsTo

pattern are respectively, as follows:

• [Case-1: φ LeadsTo (σ,τ)]: G(φ→ F(σ∧XF(τ)))

• [Case-2: (σ,τ) LeadsTo φ]: G(σ∧XF(τ) →X(F(T ∧F(φ))))

Similar to its counterpart Precedes, the pattern is useful only for structural

compliance checking of the processes. However, given their property, they have

different semantic conditions, which do not correspond to any of the obligation

types.

Correspondence: –NA– (Ordering pattern only)

Pattern-6: (Exists-Often)

Description: indicates that proposition φ must occur frequently within the process

model

LTL Formula: GF(φ)

Evaluation: The Exist-Often pattern implies the frequent occurrence of

proposition φ during the whole execution of the process. Essentially, conversely to

the Exist-Bounded pattern, this pattern can have indefinite occurrences of the

propositions. From a legal norm perspective, the pattern is not suitable for providing

semantic representation of any obligation type; however, from a structural

compliance rule perspective, it can be used to model an activity that has to occur

multiple times during the execution of the process. The pattern is comparable to the

126 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

isUniversal pattern; the only difference is that the occurrence of the proposition φ

must hold for all the instances of the portion of the process where the obligation is in

force.

In contrast, the Exist-Often proposition φ might appear in many instances of

the part of the process (that is, φ can occur several times in part of the process).

Hence, the pattern cannot be used to represent maintenance obligation because,

with the isUniversal pattern, it might be possible that the obligation defining the

conditions for proposition φ is triggered only once for the duration of the validity of

the obligation. However, with this pattern, the obligation has to be triggered for

every instance where the proposition needs to occur. Thus, it cannot give a full

representation of the semantics of maintenance obligations. Accordingly, the

pattern is dual of Absence-Often, and can be used to specify the negation and

explicit queries for existing to define an instance of the absence pattern (Dwyer et al.,

1999).

Correspondence: –NA– (Ordering pattern only)

Pattern-7: (DirectlyFollowedBy)

Description: shows that the required proposition φ is to be followed by another

proposition φ.

LTL Formula: G(φ→X(ψ))

Evaluation: The DirectlyFollowedBy pattern defines the relationship between

two propostions φ and ψ, where if second proposition ψ occurs then the first

proposition φ must have occurred immediately before ψ. The pattern is useful only

for structural compliance rules, as it does not seem to have conceptual relevance to

the legal norm; thus, it cannot be used to represent any obligation type.

Correspondence: –NA– (Ordering pattern only)

As previously argued, what makes deontic effects distinctive from other

normative effects is that they can be violated. Generally, violations lead to the

imposition of penalties. In some violations cases, however, corrective measures can

still make the process compliant. Hence, a CMF should be able to handle the

compensatory actions to amend the violations. More recently, in addition to the

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 127

patterns discussed above new patterns have been introduced in CRL (Elgammal

et al., 2014), for the specification and verification of compensation actions namely:

Else and ElseNext. These patterns are conjunctively built with LeadTo and

DirectlyFollowedBy atomic patterns as:

φ(Lead sTo|Di r ect l yFol lowedB y)φ1(El se|El seNext)

φ2 . . . (El se|El seNext)φn

(5.1)

where φ is the rule condition, φ1 is the primary action, and φ2, . . . ,φn are

compensatory actions. Essentially, the compensation pattern implements the

if–then–else conditional structure of the compensatory rules. Accordingly,

DirectlyFollowedBy and LeadsTo define the ordering of the primary activity, whether

φ1 directly occurs immediately after φ or at some time in the future. The LTL

equivalence formula for compensatory patterns is as follows:

G(φ→ F|X(φ1 ∧1≤i<n−1 (F|X(φi NotSucceed)∧

(φi NotSucceed → F|X(φi+1)))))
(5.2)

φ gives the antecedent of the compensatory rule, that is, the rule’s conditions; φ1 is

the head of the rule representing the primary action that must be taken; φ2, . . . ,φn

represents the compensatory actions that must be taken if the conditions of the rule

are violated; and i is a natural number; that is, n ∈N; and φi NotSucceed represents

the decision point that checks whether φi holds.

In addition to the generic rules patterns, CRL offers patterns for modelling

non–monotonic requirements. This allows CRL to model exceptions. More

specifically, exceptions provide conditions under which the primary requirement

might not hold. Following (Baral and Zhao, 2007), CRL has two patterns for

exceptions: one for strong exceptions and one for weak exceptions: A strong

exception on the primary rule mandates that whenever the strong exception holds,

the primary rule must not hold. A weak exception, on the other hand, indicates that

when the weak exception holds, the primary rule might or might not hold. The

patterns for strong and weak exception are as follows:

1. strong exception: [[R]]Pattern and

2. weak exception: [R]Pattern

where [[R]] and [R] are the LTL formulas encoding the exception conditions and

Pattern is the LTL formula corresponding to the primary requirement the exception

applies to.

128 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

Given the potential recursive nature of exceptions (that is, having the ability to

capture exceptions to exceptions), CRL recursively resolves the dependencies of the

exception conditions, using the following translation to LTL

1. [[R]]Pattern is translated to φ→¬ψ,

2. [R]Pattern is translated to φ∨ψ;

where φ is the LTL formula corresponding to R and ψ is the LTL counterpart of

Pattern.

The above analysis of the COMPAS patterns shows that, currently, the framework

is able to represent a fraction of obligation types, and that the support for all types of

normative requirements is limited. This is because the use of LTL as its underlying

formal language has limited its ability to give a faithful representation of legal norms

in a conceptually rich and sound way.

5.3.3 DECLARE

Declare(Pesic and van der Aalst, 2006) is a prominent framework for run–time

verification of constraint–based declarative models. The declarative models describe

what a model does by specifying the business constraints as rules that should not be

violated. The business knowledge in Declare is defined in terms of constraints using

ConDec (Constraint Declarative, Pesic and van der Aalst (2006)3), a language which

provides graphical notations to model the flows of business interactions. The

Declare models (also templates) are enacted by a workflow engine that is used to

verify the compliant interaction between the tasks in the model. The framework

includes two types of constraints, that is, mandatory and optional constraints on the

process models. In the Declare model, a process instance can only be active when

there is no violation of the mandatory constraints and all the constraints are fully

satisfied at the end of the execution of an instance. The verification results of each

constraint of an active instance are expressed as satisfied, temporarily violated, and

violated. In the case where all the constraints are satisfied, the activities are not

executed any further; however, if there is a violation state, no further execution of

the process would be allowed to satisfy the constraints. Accordingly, in the

temporarily violated state, the constraints are not satisfied; however, there would be

the possibility of satisfying the constraints.

3In November 2012, the name of the ConDec language changed to Declare (see http://www.win.
tue.nl/declare/2011/11/declare-renaming/).

http://www.win.tue.nl/declare/2011/11/declare-renaming/
http://www.win.tue.nl/declare/2011/11/declare-renaming/

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 129

Table 5.5: Declare Constraint Patterns and Meanings (Pesic and van der Aalst, 2006)

Constraint Name Meanings

Existence Constraints

Absence(φ) activity φ cannot be executed
Absence(n+1,φ) activity φ can be executed at most n times

Existence(n,φ) activity φ must be executed at least n times
Existence(n,φ) activity φ must be executed exactly n times
Init(φ) activity φ must be the first executed activity
Relation Constraints

Resp_existence([φ],[ψ]) if φ is executed, then ψ must be executed before

or after

Coexistence([φ],[ψ]) neither φ nor ψ is executed, or they both are
executed

Response([φ],[ψ]) if φ is executed, then ψ must be executed
thereafter

Precedence([φ],[ψ]) ψ can be executed only if φ has been previously

executed.
Succession([φ],[ψ]) φ and ψ must be executed in succession; i.e.,ψ

must follow φ and φ must precede ψ

Chain_response([φ],[ψ]) if φ is executed, then ψ must be executed next

Chain_precedence([φ],[ψ]) if ψ is executed, then φ must have been executed
immediately before ψ

Chain_succession([φ],[ψ]) φ and ψ must be executed in sequence

Alt_response([φ],[ψ]) ψ is response of φ, and between every two
executions of ψ, φ must be executed at least once

Alt_precedence([φ],[ψ]) φ is precedence of ψ, and between every two
executions of ψ, φ must be executed at least once

Alt_succession([φ],[ψ]) ψ is alternate response of φ, and φ is alternate

precedence of ψ
Negation Constraints

resp_absence([φ],[ψ]) if φ is executed, then ψ can never be executed
Not_Coexistence([φ],[ψ]) φ and ψ exclude each other
Neg_response([φ],[ψ]) ψ cannot be executed after φ

Neg_precedence([φ],[ψ]) φ cannot be executed before ψ

Neg_succession([φ],[ψ]) φ and ψ cannot be executed in succession

Neg_alt_response([φ],[ψ]) ψcannot be executed between two occurrences
of φ

Neg_alt_precedence([φ],[ψ]) φ cannot be executed between any two ψs

Neg_alt_succession([φ],[ψ]) ψ cannot be executed between any two φs and
vise-versa

Neg_chain_response([φ],[ψ]) ψ cannot be executed next to φ

Neg_chain_precedence([φ],[ψ]) φ cannot be executed immediately before ψ

Neg_chain_succession([φ],[ψ]) φ and ψ cannot be executed in sequence

130 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

Business constraints (norms) in the Declare framework are modelled by means

of Declare expressions. These expressions are grouped into four categories, namely:

existence, relations, choice and negative constraints. Table 5.5 illustrates the Declare

constraints and their meanings. The majority of these constraint patterns are used to

express obligations, while negative constraints express prohibitions; and correspond

to LTL expressions that provide semantics for Declare’s graphical notations.

We now examine in detail the Declare’s constraints in each group to determine

whether they have correspondence with the obligation types.

Existence Constraints: Declare provides four generic patterns, and one special

unary constraint pattern that define the number of times an activity might or

might not occur in a trace or during the whole execution of the process as

illustrated in Table 5.5. Essentially, existence patterns have visual resemblance

to UML’s multiplicity constraints (Pesic et al., 2007). The existence patterns are

categorised into: Existence(n,φ),Existence(n,φ), and two absence patterns

Absence(n+1,φ), Absence(φ). The aim of the existence constraints is to specify

that the activity φ must be present in the execution of trace, whereas absence

constraints specify that activity φ must occur in the trace. The special init(φ)

cardinality pattern has different meanings, as it specifies that the φ must be the first

executed activity in the model.

Evaluation: The Declare existence constraints have similar meanings to the

COMPAS atomic patterns isAbsent,Exists and Bounded Exists. Hence, these

patterns will have the same expressiveness to represent obligations and prohibitions.

The only difference is that Declare’s patterns explicitly define the cardinality of the

constraints; that is, the number of occurrences.

Correspondence: The existence patterns can support Achievement obligations and

prohibitions.

Relation & Negative Constraints: Relation constraints are binary constraints that

define positive dependency between two activities in a trace. In other words; these

constraints impose conditions that—the presence of an activityφ is bounded with the

presence of another activity ψ; thus, the relation constraints are reactive. Essentially,

most of the relation constraints specify the execution order of activities; thus, possibly

impose qualitative temporal constraints between activities (Pesic and van der Aalst,

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 131

2006). If the temporal ordering is not followed, it results in non-compliance of the

constraint. However, Resp_existence and Coexists are relation constraints that

do not specify any temporal ordering, thus leaving the activity to execute freely. For

example, if activity φ occurs, then the activity ψ must also occur in the trace; however,

the temporal ordering does not matter if φ occurs first or after of ψ.

The response, precedence, succession, and extended variant of

resp_existence impose strict temporal ordering between activities. Alt

and chain constraints, on the other hand, impose even tighter conditions on the

ordering of the execution between activities, thus making response, precedence

and succession even stronger. The relation constraints allow defining different

positive relations between the activities, from very loose to very strict temporal

ordering relations. Table 5.5 depicts the relation constraints.

In addition to relation constraint, Declare also offers negated variants of relation

constraints. Negative constraints aim to prevent the occurrence of activity(ies)

between the time bounds defined by some other constraints (Pesic et al., 2007).

In other words, a negative constraint means that some activity must be absent

(must not occur) until the occurrence of some other activity defining a negative

relation between them; that is, activities are incompatible. However, it must be

noted that negative relation would not mean logical negation of the constraint;

rather, both negative and positive constraint can be interpreted as true during the

execution of the process. For example, if Resp_existence is true then its negated

Neg_Resp_existence can be evaluated as true in the trace. Declare framework offers

negated variants for all relation constraints as illustrated in Table 5.5. Essentially,

negative constraints can be used to specify the constraint prohibiting some actions.

Evaluation: Most of the Declare’s relation constraints have similar expressive power

to the COMPAS’s atomic and composite patterns, because these patterns are based

on LTL. In addition, these constraint patterns also have similarities with BPMN–Q

patterns, which are based on CTL. Since CTL is the superset of LTL, these patterns in

these frameworks share the same limitations when it comes to representing different

types of obligations. Thus, relation constraints are suitable only for modelling

structural compliance rules imposing temporal ordering constraints. However,

negative relation constraints can be used for representing prohibition.

Correspondence: The negative constraints can have correspondence with

prohibitions, but no correspondence with relation constraints as they are ordering

132 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

constraints only.

From the above evaluation it can be seen that Declare has very limited scope, as

it can currently model only achievement obligations and prohibitions. No other

norm types can be explicitly represented (see Table 5.10). The representation of

achievement obligations is only possible because such obligations define deadline,

and the obligation conditions must be true for at least once. Declare models with

such constraints defining deadlines can be supported because the constraint will be

performed at some future time. However, other obligations types for example,

persistence and preemptive obligations cannot be expressed. Accordingly,

expressing constraints stipulating maintenance obligations can be problematic in

Declare because the obligation conditions must hold in all instances throughout the

execution of the process. However, there might be some situations when the

applicable maintenance obligation constraints might not be present; in these cases,

there will be deadlock in the course of interaction between the tasks. In addition,

Declare is not able to identify conflicts among constraints in the model; it does not

provide any support to handle violations because of the lack of the declarative

nature of the LTL, and the non–deterministic behaviour of the process models.

Hence, in case of a violation, the interaction between the tasks in the Declare model

will be stopped and no further activity can be performed. Accordingly, it is not

possible to express permissions, compensation and perdurant obligations.

Remark 5. The Declare framework also provides choice (branching) constraints that

are concerned with a multiplicity of activities (see Pesic et al., 2007, for more details).

Choice constraints are interpreted as disjunctive, and aim to combine reactive

behaviour of relation and negative constraints. However, they still have the same

limitations as relation constraints; hence, we safely omit them from our evaluation.

5.3.4 Business Process Modelling Notations–Query Language

BPMN–Q (Business Process Modelling Notation-Query Awad et al., 2008a, 2011) is a

query–based automated compliance checking framework capable of answering

YES/NO type answers to query questions. The framework can model control–flow,

data–flow and conditional flow–related compliance rules using visual patterns.

These visual patterns are translated into CTL formulas for checking the structural

compliance of a process model. The framework adopts a systematic approach to

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 133

generating the patterns of compliance rules in the form of query templates. These

templates are used to identify the set of process models subject to compliance

checking in the process repository. Compliance checking is carried out in several

steps. First, BPMN–Q sub–graphs are extracted from the process repository using

temporal query templates. The query processor only extracts processes that

structurally match the query template. These sub–graphs are then reduced by

eliminating irrelevant activities and gateways, and are translated into a Petri net

model to generate the state space. Alongside the state space generation, BPMN–Q

queries are translated into CTL formulas, which are then fed into a model checker,

together with the generated state space. In turn, the model checker yields YES/NO to

indicate whether the extracted process models comply with the query templates.

The framework uses a visual language BPMN–Q to express various types of rules; for

example, control–flow, data–flow, and conditional control–flow patterns based on

different occurrence Scope property specification patterns, as proposed in (Dwyer

et al., 1999). Table 5.6 depicts the scope patterns, a special case of occurrence

patterns, aim to define the ranges (called regions) over which the pattern must be

evaluated as true. With the scope patterns, the requirements pertaining to the

existence or absence of certain propositions over the ranges of process executions

are defined. The range of the scope is determined by defining the start and end point

of the range. Five scope patterns can be derived, namely: global, before, after,

after–until, and between scope. The global pattern defines the range over the whole

execution of the processes, whereas before pattern specifies the ranges before which

the proposition must be true. Meanwhile, after scope defines the range from which

the proposition must hold true. In contrast, between scope specifies the ranges at any

portion of the process execution in which the proposition must hold true. Similar to

between, the after–until pattern specify the range until which the proposition must

continue to hold, even if the until part of the range is not executed.

BPMN–Q uses the scope patterns to express different types of obligations by

means of visual patterns, as illustrated in Figure 5.24. Each of these patterns, similar

to the standard BPMN notations, contains a Computations Tree Logic (CLT) formula

giving the specifications of a specific obligation type. For example, the pattern 5.2a

shows the global–scope pattern referring to a single activity that might be required

to be executed in all process instances. Maintenance obligations can be expressed

4This is not an exhaustive list of the BPMN–Q patterns see Awad et al. (2011) for more details.

134 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS
Tab

le
5.6:B

P
M

N
–Q

C
o

n
strain

ts
N

am
e,C

T
L

R
ep

resen
tatio

n
an

d
M

ean
in

gs
(A

w
ad

et
al.,2011)

C
o

n
strain

t
N

am
e

C
LT

R
ep

resen
tatio

n
M

ean
in

gs

G
l
o
b
a
l
-
s
c
o
p
e

p
r
e
s
e
n
c
e
(
φ
)

A
G

(start
→

A
F

(e
x

e
c

u
te

d
(φ

)))
aim

s
to

refl
ect

th
e

req
u

irem
en

ts
o

fexecu
tin

g
a

certain
activity

φ
in

allth
e

in
stan

ces
G
l
o
b
a
l
-
s
c
o
p
e

a
b
s
e
n
c
e
(
φ
)

A
G

(start
→

A
[¬

execu
ted

(φ
)U

en
d

)])
in

d
icates

th
e

req
u

irem
en

t
o

f
n

o
t

execu
tin

g
an

activity
φ

b
y

assu
rin

g
th

atth
ere

is
n

o
state

o
fth

e
p

ro
cess

execu
tio

n
,

fro
m

start
to

en
d

,
w

h
ere

φ

w
as

execu
ted

B
e
f
o
r
e
-
s
c
o
p
e

p
r
e
s
e
n
c
e
(
φ

,ψ
)

¬
E

[¬
read

y(φ
)U

read
y(ψ

)]
also

kn
o

w
n

as
p

reced
en

ce
in

d
icatin

g
th

at
th

e
execu

tio
n

o
f

activity
ψ

is
p

reced
ed

b
y

th
e

execu
tio

n
o

fan
o

th
er

activity
φ

B
e
f
o
r
e
-
s
c
o
p
e

a
b
s
e
n
c
e
(
φ

,ψ
)

¬
E
F

(start
∧
E
F

(execu
ted

(φ
)
∧
E
F

(read
y(ψ

))))
A

n
activity

φ
m

igh
t

b
e

req
u

ired
to

b
e

ab
sen

t
b

efo
re

th
e

execu
tio

n
o

fan
o

th
er

activity
ψ

A
f
t
e
r
-
s
c
o
p
e

p
r
e
s
e
n
c
e
(
φ

,ψ
)

A
G

(execu
ted

(φ
)
→

A
F

(execu
ted

(ψ
)))

also
kn

o
w

n
as

resp
o

n
se

p
attern

,in
d

icates
th

at
after

th
e

execu
tio

n
o

f
an

activity
φ

,
an

o
th

er
activity

ψ
h

as
to

b
e

even
tu

ally
execu

ted
A
f
t
e
r
-
s
c
o
p
e

a
b
s
e
n
c
e
(
φ

,ψ
)

A
G

(execu
ted

(φ
)
→

A
[¬

execu
ted

(ψ
)
U

en
d

])
Sim

ilar
to

b
efo

re-sco
p

e
ab

sen
ce,

th
e

p
attern

in
d

icates
th

at
certain

activities
φ

are
p

ro
h

ib
ited

to
b

e
execu

ted
after

th
e

execu
tio

n
o

f
an

o
th

er
activity

ψ

B
e
t
w
e
e
n
-
s
c
o
p
e

a
b
s
e
n
c
e
(
φ

,ψ
,ϕ
)

in
d

icates
th

at
b

etw
een

th
e

execu
tio

n
o

f
tw

o
activities

φ
an

d
ϕ

,
it

is
p

ro
h

ib
ited

to
execu

te
certain

o
th

er
activities

ψ
.

T
h

ere
are

tw
o

variatio
n

s
o

f
B

etw
een

-sco
p

e
a

b
sen

ce
n

am
ely

1.
A
G

(execu
ted

(φ
)
→

A
[¬

execu
ted

(ψ
)
U

execu
ted

(ϕ
)])

[R
e

sp
o

n
se

w
ith

A
b

se
n

c
e

:]
in

d
icates

activity
ϕ

is
req

u
ired

to
b

e
execu

ted
after

φ
w

h
ile

th
ere

is
n

o
ch

an
ce

in
b

etw
een

to
execu

te
ψ

2.
¬
E

[¬
execu

ted
(φ

)U
read

y(ϕ
)]
∧
¬
E
F

(execu
ted

(φ
)
∧
E
F

(execu
ted

(ψ
)
∧

read
y(ϕ

))))
[R

e
sp

o
n

se
w

ith
A

b
se

n
c

e
:]

in
d

icates
w

h
en

ever
ϕ

is
execu

ted
;φ

m
u

st
h

ave
b

een
execu

ted
b

efo
re

w
ith

o
u

t
execu

tin
g
ψ

in
b

etw
een

.

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 135

using global space presence patterns (shown above), which enable the execution of

specific activity throughout the process. Conversely, the pattern 5.2c illustrates the

case where a certain activity must not execute at all. Since prohibitions must be

observed in any case during the execution of a process, they are represented by global

space absence patterns. Accordingly, BPMN–Q also provides constructs to model

A

≪ Lead s to ≫

′′

(a) global-scope presence

A B

≪ Pr ecedes ≫

′′

(b) before-scope presence

≪ Lead s to ≫

′′ Excludes(A)

(c) global-scope absence

A C

≪ Lead s to ≫

′′ Excludes(B)

(d) between-scope absence (response with
absence)

A/@A B

Data

Conditions

≪ Lead s to ≫

′′

(e) conditional response

A/@A B

Data

Conditions

≪ Pr ecedes ≫

′′

(f) conditional precedence

A/@A

Data

Conditions

≪ Lead s to ≫

′′ Excludes(B)

(g) conditional before-scope absence

B

Data

Conditions

≪ Pr ecedes ≫

′′ Excludes(B)

(h) conditional after-scope absence

Figure 5.2: List of BPMN–Q visual patterns to model norms Awad et al. (2011)

obligation types where the obligations might prescribe the conditions applicable to

the data and resources aspects of a business process. BPMN–Q incorporates most of

the patterns used in COMPAS; thus, the framework is able to handle almost the same

136 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

obligations types as COMPAS (cf. Table 5.10). On the same note, BPMN–Q does not

provide any conceptual or formal constructs that can be used to model permissions.

Similar to COMPAS, BPMN–Q is also able to handle the violation of obligations. A

graphical violation–handling approach using anti–patterns is discussed in (Awad and

Weske, 2009). The anti–patterns are derived from the BPMN–Q visual patterns, and

are comparable to LeadsTo and isAbsent patterns (see Awad and Weske, 2009, for

details on anti–patterns). Finally, BPMN–Q visual patterns are not suitable patterns

to model the specifications of the cases of compensations and perdurant obligations.

5.3.5 SEAFLOWS

SeaFlows (Ly et al., 2010b, 2012) is compliance verification is a

compliance–by–design framework for behaviour and structural compliance

verification of blocked–structured process models. It incorporates a graphical

language that provides primitives to capture process related complex business rules.

These compliance rules are modelled in the form of first–order–logic (FOL)

predicates equivalents and can be instantiated to the compliance rule graphs (CRG).

SeaFlows employs a structural compliance checking strategy for the verification of

compliance rules, where node relations are verified against the imposed constraints.

The verification is done in three steps: in the first step, a set of structural templates

based on the queries on the relations of nodes in the process models is automatically

derived. The process model is then checked against the derived templates to detect

any non–compliant structural templates. The queried templates are then aggregated

and fed into the SeaFlows’ compliance module for a further compliance report in the

last step. The compliance results are generated on the execution of traces of the

process models, where a process model is fully compliant when all the activities in

the trace comply with the instantiated rule. A ‘No’, on the other hand, is returned to

indicate rule violations when no activity in the execution trace satisfies the rules.

To model the compliance rules, the SeaFlows framework adopts a compositional

graph-based modelling formalism, allowing the modelling of the typical

antecedent—consequence patterns for structure of rules as illustrated in Figure 5.3a.

These graphs serve as place–holder for the FOL representation of the relevant rules.

SeaFlows provides four CRGs, each indicating occurrence and absence of activities

of an associated type namely: ANTEOcc and ANTEAbs which are used to model the

antecedent pattern triggering a compliance rule. CONOcc and CONAbs, on the other

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 137

hand, map the consequence patterns of the rules. In addition, the ordering of the

(a) Primitives for Rule Graphs

(b) Compliance Rule Graphs

Figure 5.3: Primitive and Compliance Rule Graphs (Ly et al., 2010b)

nodes in a CRG is defined using a relation primitive, whereas a data conditions

primitive is used to represent the data conditions of a compliance rule, as shown in

Figure 5.3b. The CRG are not merely visual notations; they are also equipped with

the formal semantics for checking verification of process model. This is because

SeaFlows is able to check the compliance of behavioural as well as structural

compliance rules.

The framework defines five structural patterns as criteria for determining the

compliance status of the process. These criteria can be considered as queries on

the relations of the nodes of the business process model. The structural criteria

patterns are: containment, occurrence, precedence, and precedence relation as shown

in Table 5.7.

Next, we examine these patterns in details to check their correspondence with

the obligation types.

Pattern-1: Contains (φ)

Syntax: ⊕ φ

Description: The unary structural contains relation whether φ is in the process

model.

Evaluation: The Contains φ pattern (also known as eventually) is used to indicate

138 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

Table 5.7: SeaFlows’ Structural Criteria (Ly et al., 2010b)

Structural Criteria Usage

Contains (φ) a unary structural containment relation that indicates
if φ is contained in the process model

(φ) Excludes (ψ) a structural occurrence relation that indicating
whether φ and ψ are located on different branches
of an exclusive gateway

(φ) Implies (ψ) a non-directed structural occurrence relation that
indicates ψ must not be located on the same branch of
an exclusive gateway, on which ψ is located, such that
φ and ψ both exist

(φ) Implies (ψ1|ψ2| . . . |ψn) a non-directed structural occurrence relation
indicating that whether A is always executed together
with ψ1,ψ2, . . . or ψn

(φ) Precedes (ψ) a structural precedence relation that indicates if there
is a directed path in the process model leading from φ

and ψ

if the proposition φ is contained in the portion of the process model. The pattern is

similar to the COMPAS and Declare Existence pattern, and comparable to CRL’s

Bounded Existence where one may specify the number of occurrences at most (or

at least) some bounded number of times. The most common example of Contains

is specifying termination; for example, on all the executions of the process model

eventually, we reach a terminating state (Dwyer et al., 1999). As far as using the

Contains pattern is concerned Contains φ can be used to represent achievement

obligations because by the persistent obligations definition, the obligation will hold

in some future time.

Correspondence: The pattern can be used to represent achievement obligations.

Pattern-2: φ Excludes ψ

Syntax: φ ⊗ ψ

Description: In the process model, the structural relation patterns indicates that

whether φ and ψ are located on different branches of an exclusive gateway.

Evaluation: The Excludes defines the relation between two activities, indicating

that φ and ψ do not exist in the same trace of the process model. This contra relation

pattern is similar to COMPAS’s Exclusive, and Declare’s Not-CoExistence pattern

that specifies that two activities are incompatible (Montali, 2010). For example, a

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 139

rule might put constraint that if one activity (φ) occurs, then the other activity (ψ)

cannot occur at the same time; for example, if an order is accepted, it cannot be

rejected in an interaction with the customer. Although the pattern is useful for

representing structural compliance rules, similar to BPMN–Q’s

Global-Scope-Absence visual pattern, it might be useful for representing

prohibitions.

Correspondence: The pattern might be useful to model prohibitions.

Pattern-3: φ Implies ψ

Syntax: φ ✄ ψ

Description: The structural ordering pattern defines the relation between two

activities φ and ψ, prescribing the condition that both activities must not be in the

same execution trace; however, they must occur in the execution of the whole

process. Essentially, the pattern is suitable for modelling structural rules that

stipulate contra relation conditions for two activities. For example, if the order is less

than 50,000, then no solvency check is required if the customer has a premium

status. A composite expression (CoExists∧ ¬CoAbsent), built with COMPAS’s

atomic patterns, can give the similar meanings that a solvency check cannot co-exist

with the customer’s premium status on the same branch of the exclusive gateway. As

the pattern defines a negative relation between two activities, it can be used to

represent prohibition–based deontic norms because prohibitions do not specify

temporal properties.

Correspondence: The pattern can be used to model prohibitions.

Pattern-4: (φ) Implies (ψ1|ψ2| . . . |ψn)

Syntax: φ ✄ ψ1|ψ2| . . . |ψn

Description: The pattern shows a non-directed structural occurrence relation,

indicating whether φ is always executed together with ψ1,ψ2, . . . ,ψn .

Evaluation: The Implies pattern defines the occurrence relation between an

activity φ and a set of activities ψ1,ψ2, . . . ,ψn , where the activities are co-located in a

set of execution trace. A Declare expression giving similar meanings can be built by

combining resp_existence and Coexistence patterns, as the Implies pattern

properties do not specify any ordering of the activity execution. However, the

pattern can be used only for checking the compliance of structural rules, and cannot

140 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

be used for representing the temporal properties of any obligation modality of legal

norms.

Correspondence: -NA- (ordering pattern only)

Pattern-5: (φ) Precedes (ψ)

Syntax: φ ≫ ψ

Description: The precedes (precedence relations) indicates whether there is a

directed path in the process model leading from φ and ψ.

Evaluation: The pattern has the similar objectives to the Precedes pattern of

COMPAS and Declare, as both frameworks also provide extended variant

Chain-Precedes to capture the ordering sequence of activities after the execution

of the first activity. SeaFlows does not offer the extended Chain-Precedes variant;

however, the Chain-Precedes is also extendible to SealFows. As far as modelling

obligation types is concerned, the Precedes pattern has the same limitations as

COMPAS framework.

Correspondence: -NA- (ordering pattern only)

Essentially, SeaFlows is able to model achievement obligations that stipulate the

occurrence of some event in the future by means of the occurrence pattern (⊕ φ).

The SeaFlows patterns are useful from a structural compliance of business processes

perspective. These patterns have no temporal relevance to the semantics of our

obligation types because they are based on ANTEOcc and CONSOcc primitives of the

CRGs. The CRGs are based on FOL formulas, and provide the formal semantics of

structural compliance rules. However, with the formulas representing the CRGs,

it is not possible to give a one–to–one mapping of temporal semantics of other

obligation types such as permissions, prohibitions, compensation, and maintenance

(see Table 5.10). Such limitation is due to the fact, FOL has no conceptual relevance

to the legal domain as it only provides quantifiers; it does not provide temporal

operators, which are imperative for the modelling of obligation types (Herrestad,

1991). Hence, the formalism is not suitable for reasoning about the normative

requirements.

5.3.6 Process Compliance Language (PCL)

The Process Compliance Language (PCL, Governatori and Rotolo, 2010a) is a formal

framework based on defeasible and deontic logic. It provides a conceptually rich

5.3. CONCEPTUAL EVALUATION OF COMPLIANCE FRAMEWORKS 141

formal foundations for modelling norms, and is able to efficiently capture the

intuition of almost all types of norms. These norms are modelled in the form of PCL

rules for which the framework provides rich semantics.

The state variables and the tasks in the process are represented by a set of

propositional literals. PCL formulas, also known as PCL specifications, are written

based on a set of primitive propositions using ¬ negation, ⊗ (a non–boolean

connective modelling violations chains), and deontic operators representing

obligations and permissions. The tasks in business processes are annotated with

PCL specifications that are either provided by the domain experts or they are

automatically extracted from the schemas of the databases or data sources linked to

the processes, using the technique proposed in (Hashmi et al., 2012). These

annotations are used to analyse whether the behaviour of an execution path is

consistent with the annotated specifications. For this purpose, a three-step

algorithm is used in which the process graph is first traversed to find the set of

effects for all tasks. These effects are then used to determine the norms in force for

the tasks. The effects of the tasks and the pertinent obligations are then compared

(in the last step) to find any divergent behaviour. The compliance of the norms is

reported as fully compliant, partially compliant, or not compliant by the algorithm.

Table 5.8: Types of Obligations Operators in PCL (Governatori and Rotolo, 2010a)

Obligation Operators Meanings

Op punctual

Oa,X
pr achievement, persistent, preemptive

Oa,X
n−pr achievement, persistent, non-preemptive

Oa,τ
pr achievement,non-persistent,preemptive

Oa,τ
n−pr achievement,non-persistent,non-preemptive

Om maintenance

The rich combination of defeasible and deontic logic allows PCL to model all

types of obligations (as depicted in Table 5.10), and other aspects of normative

reasoning; for example, reasoning with the superiority relation of compliance rules,

and reasoning with the contrary–to–duty norms, to name but a few. This is the result

of the use of two logics, where the deontic logic provides the support for modelling

violations of obligations and chains of reparation, while defeasible logic (Governatori

and Rotolo, 2010b) handles the issue of partial information and inconsistent

142 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

prescription. To model basic obligations, PCL provides three major constructs:

punctual (Op), maintenance (Om), and achievement (Oa). Achievement obligations

are further refined in perdurant/non–perdurant and

preemptive/non–preemptive (Hashmi et al., 2013). PCL allows to explicitly define

the deadlines in the formalised PCL expressions, where it allows the algorithm to

distinguish between different types of obligations. Table 5.8 illustrates the various

obligations operators that PCL provides for representing different types of

obligations.

Violations, and obligations arising from the violations, are major concerns in

CMFs, and PCL provides effective management of these violations and their

compensations. For this purpose, PCL defines a special contrary–to–duty

non-boolean ⊗ connective that is used to create reparation chains for handling

multiple violations of obligations. As far as the persistence of obligation after the

violation is concerned, the notion of perdurant obligation has not been addressed in

the current version of PCL. However, the notion has been addressed in (Allaire and

Governatori, 2014), enabling PCL to offer a holistic and more conceptually rich and

sound reasoning support for all types of normative requirements.

5.3.7 Business Process Compliance Auditing Framework

The compliance auditing framework (Ghose and Koliadis, 2007) is a compliance

checking framework to verify business process compliance against regulatory

requirements.

For this purpose, the analyst first defines a local context description of the

accumulated effects. This is because the framework evaluates the compliance

locally, at the parts of the process where these effects are applicable. The

accumulation process involves the derivation of a set of scenario labels at a point in

the process (Hinge et al., 2009). Then, the effects of relevant activities are

accumulated over each task, and the annotation of the processes begins. Once the

processes are annotated with the context description effects, they are encoded as

directed graphs called Semantics Process Networks (SPNs). These networks are used

to verify the properties related to the execution ordering of activities, using an

algorithm that exhaustively traverses all the execution traces of the

effects-annotated processes to check the rule violations. In the last step, the

compliance results are reported (in boolean form) to indicate whether a process

5.4. DISCUSSION 143

model satisfies the applicable compliance requirements.

The compliance requirements in this framework attach to process models in the

form of parsimonious effect–annotations. There are two types of effect annotations

that can be derived from the literature formal and infomal. The said framework

incorporates formal annotation effects, which are represented and parsed using CTL,

a state–based logic. The parsimonious annotations are used to validate the

compliant behaviour of the business processes. Unlike PCL’s semantic annotations,

the formal annotations in this framework cannot make any distinction between

different types of obligations, as it is not clear that how such distinction can be made.

As the violation of obligation largely depends on the temporal conditions (that is,

deadlines), it is not possible to analyse when an obligation is violated; it is only

possible to determine whether an activity annotated with the formalised rule

description exists or is absent from the graph. In addition, as the framework used a

heuristic–based approach for asserting and resolving compliance issues, it uses the

structural compliance patterns and semantic patterns. The structural patterns used

in the framework are: (a) Activity/Event/Decision Inclusion;

(b) Activity/Event/Decision Coordination; (c) Activity/Event/Decision Assignment;

(d) Actor/Resource Inclusion; and (e) Actor/Resource Interaction.

The structural patterns formalised in CTL provide the basis for resolving the

non–compliance issues in the processes, albeit in a semi–automated way. Informally,

the structural patterns can contain the information on the compliance rule that is

violated, and on the actions to repair the problem. In contrast, the semantic patterns

might contain suggestions on the required changes to amend the violation in order

to restore the compliance issues. The audting framework proposes three semantic

patterns namely: (i) Effect Inclusion; (ii) Effect Coordination; and (iii) Activity

Modification. Currently, the framework is only able to model achievement obligations

while, maintenance, permissions, and perdurant obligations canno tbe represented

because the framework does not provide any conceptual or formal constructs to

represent such obligation types.

5.4 Discussion

For a CMF to be sound and effective, it needs to be based on sound conceptual

and formal models. If the CMF is not based on strong foundations, the compliance

144 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

checking approach proposed in the CMF cannot be relied upon. We evaluated the

conceptual models of seven CMFs based on pre–defined criteria, in particular based

on the different classes of normative requirements.

We examined salient features of CMFs, such as their compliance checking

approach, the nature of their norms modelling constructs, their underlying formal

language, and how they link normative requirements with process models. Table 5.9

summarises these conceptual evaluation results. We also investigated what is

lacking in terms of technical support in the compliance domain from the

perspective of the modelling of normative requirements. The evaluated CMFs

incorporate various strategies for checking the compliance of normative

requirements, using different graph–based compliance requirements patterns,

formalised using variants of temporal logic such as LTL and CTL. In contrast, some

CMFs use deontic constructs and norm properties specifications such as PCL and

PENELOPE, respectively.

To link the compliance requirements with business process models, the

evaluated CMFs use different techniques—for example, COMPAS links formalised

compliance rules by means of CRL property patterns, while they are specified in

terms of declarative expression in Declare. Accordingly, PCL and SeaFlows annotate

the specifications of compliance requirements on business processes. We also

examined the level of compliance management support for all types of normative

requirements. The results highlight that most of the existing CMFs provide only, a

partial support for all types of normative requirements; in other words, not all types

of normative requirements are supported in these CMFs. The exception is PCL,

which offers a full modelling support for all types of normative requirements.

In the evaluation, we examined the conceptual foundations of the CMFs to

examine which modelling constructs are provided to model different types of

obligations; in particular, the constructs that can provide the reasoning and

modellign support for obligation types discussed in Chapter 3. The evaluation

results are summarised in Table 5.10, which illustrates the available support for a

specific type of norms. The ‘+’ symbol indicates that the CMF is able to provide the

reasoning and modelling support for a specific obligation modality, and ‘–’ indicates

that the obligation modality is not supported (or it is not considered in that CMF).

From Table 5.10, it is evident that only a fraction of normative requirements

are supported by the vast majority of the CMFs. For example, PENELOPE is only

5.4. DISCUSSION 145

Ta
b

le
5.

9:
Su

m
m

ar
y

o
fC

o
n

ce
p

tu
al

E
va

lu
at

io
n

o
fE

xi
st

in
g

C
M

F
s

C
M

F
/a

p
p

ro
a

c
h

C
o

m
p

li
a

n
c

e
M

o
d

e
ll

in
g

U
n

d
e

rl
y

in
g

L
in

k
in

g
L

e
v

e
l

o
f

la
n

g
u

a
g

e
/s

y
st

e
m

c
h

e
c

k
in

g
a

p
p

ro
a

c
h

c
o

n
st

ru
c

ts
fo

rm
a

li
sm

n
o

rm
s

su
p

p
o

rt

P
E

N
E

L
O

P
E

D
es

ig
n

-T
im

e
N

o
rm

s
p

ro
p

er
ty

E
C

B
P

M
N

M
o

d
el

s
ar

e
P

ar
ti

al
sp

ec
ifi

ca
ti

o
n

s
ge

n
er

at
ed

fr
o

m
d

eo
n

ti
c

as
si

gn
m

en
ts

C
O

M
PA

S
R

u
n

-T
im

e
D

o
m

ai
n

–p
ec

ifi
c

LT
L

B
y

m
ea

n
s

o
fC

R
L

P
ro

p
er

ty
P

ar
ti

al
(S

tr
u

ct
u

ra
l

p
at

te
rn

s
p

at
te

rn
s

C
o

m
p

li
an

ce
C

h
ec

ki
n

g)

D
E

C
L

A
R

E
R

u
n

-T
im

e
C

o
n

tr
o

lfl
ow

–b
as

ed
Te

m
p

o
ra

lL
o

gi
c

C
o

n
st

ra
in

ts
sp

ec
ifi

ed
P

ar
ti

al
(S

tr
u

ct
u

ra
l

D
ec

la
re

ex
p

re
ss

io
n

s
b

y
m

ea
n

s
o

fD
ec

la
re

C
o

m
p

li
an

ce
C

h
ec

ki
n

g
ex

p
re

ss
io

n
s

B
P

M
N

–Q
M

o
d

el
B

P
M

N
q

u
er

y
P

LT
L

/
B

y
m

ea
n

s
o

f
P

ar
ti

al
C

h
ec

ki
n

g
te

m
p

la
te

s
C

T
L

vi
su

al
p

at
te

rn
s

P
C

L
/F

C
L

D
es

ig
n

-T
im

e
D

eo
n

ti
c

co
n

st
ru

ct
s

D
ef

ea
si

b
le

an
d

Sp
ec

ifi
ca

ti
o

n
o

f
F

u
ll

sp
ec

ifi
ca

ti
o

n
s

D
eo

n
ti

c
L

o
gi

c
d

eo
n

ti
c

as
p

ec
ts

as
an

n
o

ta
ti

o
n

s

SE
A

F
L

O
W

D
es

ig
n

-T
im

e
C

o
m

p
o

si
ti

o
n

s
gr

ap
h

–
F

ir
st

o
rd

er
A

n
n

o
ta

ti
o

n
s

P
ar

ti
al

(S
tr

u
ct

u
ra

lC
o

m
p

li
an

ce
b

as
ed

m
o

d
el

li
n

g
L

o
gi

c
C

h
ec

ki
n

g)

A
u

d
it

in
g

P
o

st
U

n
sp

ec
ifi

ed
C

T
L

B
y

m
ea

n
s

o
f

P
ar

ti
al

F
ra

m
ew

o
rk

E
xe

cu
ti

o
n

P
ar

si
m

o
n

io
u

s
E

ff
ec

ts
an

n
o

ta
ti

o
n

s

146 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

able to support obligations and permissions. It is unable to model other obligation

types, and violations because Event–Calculus (EC) is not suitable for reasoning

about legal constraints. In contrast, PCL supports all types of obligations because of

the non–monotonic characteristics of the formal logic it uses. The combination of

defeasible and deontic logic allows PCL to provide reasoning for deontic modalities

and violations, especially for temporally varying obligations such as achievement

obligations and their persistence over time however, its language is restricted to

literals.

DECLARE, BPMN–Q, and COMPAS are LTL based frameworks, and only address

‘structural compliance’ where the tasks are defined by the constraint models. These

frameworks cannot capture the intuition of all types of obligations, violations, and

their compensations. DECLARE can only support achievement obligations and

prohibitions. BPMN–Q can support achievement and prohibitions, and provide

reasoning support for violation handling. More recently, COMPAS framework has

been extended with new CRL patterns that enables it to represent maintenance and

contrary–to–duty (compensation) obligations (Elgammal et al., 2014). However,

COMPAS still has limited scope in representing other obligation types such as

permissions and perdurant obligations. In contrast, SeaFlows which is based on

FOL, is able to offer modelling support for achievement and prohibitions only.

Table 5.10: Summary of Norms Support in Existing CMFs

Obligations Types

Framework A
c

h
ie

v
e

m
e

n
t

P
re

e
m

p
ti

v
e

N
o

n
-P

re
e

m
p

ti
v

e

M
a

in
te

n
a

n
c

e

P
u

n
c

tu
a

l

P
e

rd
u

ra
n

t

C
o

m
p

e
n

sa
ti

o
n

P
e

rm
is

si
o

n
s

P
ro

h
ib

it
io

n
s

V
io

la
ti

o
n

s

PENELOPE + – – – – – – + – –
PCL + + + + + + + + + +
DECLARE + – – – – – – – + –
BPMN–Q + – – – – – – – + +
SEAFLOWS + – – – – – – – + +
COMPAS + – – + – – + – + +
AUDITING BPC + – – – – – – – – –

5.5. RELATED WORK 147

It is generally highly desirable that a formal language for compliance covers most

of the properties, and properties of the environment of the unit under verification (for

example, normative requirements). In addition, it should also support the complex

properties from simpler ones. Temporal logic has limited reasoning capabilities

for legal norms because, it has no conceptual relative correspondence to the legal

domain; thus, the CMFs grounded on LTL cannot expressively model the properties

of the norms. Accordingly, EC and FOL also have their limitations when it comes to

providing reasoning and modelling support for all types of obligations.

The conceptual evaluation results portray a somewhat bleak picture when it

comes to seeing how existing frameworks represent legal knowledge for compliance

checking, because none is able to support all types of normative requirements.

Primarily this is because of the formal language each framework uses to model the

norms. However, this would not necessarily mean that the framework does not have

expressive power to model the notion, but that the concept is not considered or

analysed in that framework, including the cases where the deontic concepts cannot

be faithfully represented. Accordingly, it is possible that each CMF might be designed

with different objectives in mind. Regardless of the objectives, each CMF must

properly model the legal component of compliance and provide reasoning support

for all types of norms. Governatori (2015) provides a fitting example where not paying

attention to legal reasoning principles leads to results contrary to those that legally

trained professionals would produce. This implies that adopting formalisms that are

not conceptually grounded in legal practice creates a framework that is unreliable,

and not suitable to be used in real–life applications.

5.5 Related Work

The evaluations presented in this chapter are comparable to several existing

evaluations reported in the literature. Becker et al. (2012) offer a literature survey

based on the generalisability and applicability of business process compliance

frameworks. Their evaluation is based on the reported implementation results for

the surveyed frameworks. In evaluating the compliance rules and generalisability of

the frameworks, they used a narrow and medium rules generalisability criteria, thus

restricting their survey to the checking of simple and complex compliance patterns

representing the compliance requirements.

148 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

El Kharbili (2012), on the other hand, make a detailed comparative analysis of

the functional and non–functional capabilities of Regulatory Compliance

Management (RCM) solutions in the domain of business process management

(BPM), based on a three categories evaluation criteria. In the first category, they

evaluate the RCM solutions from the business users, and the methodology and the

architecture of the RCM perspective. Whereas, in the second category, they evaluate

nine functional areas of the RCM from a BPM perspective (for example, the strategy

model, business process model), and compliance dimensions such as compliance

enforce, audit, and verification. In the last category, they use the functional and

non–functional capabilities as the evaluation criteria. From the compliance

dimensions, they extract three distinct types of rules—structural, temporal and

contractual rules—that are supported by the modelling languages. However, their

comparative evaluation does not systematically evaluate “legal requirements” from

the reasoning and proper modelling of the legal requirements perspective. Also, they

do not consider specific types of legal reguirements and how they can be

modelled. Cabannilas et al. (2010) study various frameworks using a four–point

criteria, including the study of modelling languages that are used to model business

processes and rules, with focus on which modelling languages will be used for the

purpose. Otto and Anton (2007) examine various approaches to regulation modelling

languages, and the extraction of key legal concepts from legal documents. Elgammal

et al. (2011a), on the other hand, make a detailed comparative analysis of three

languages for modelling the business process compliance requirements, with a

focus on the design–time modelling phase. Their analysis is based on the capabilities

and limitations of each selected language chosen from temporal and deontic

families of logics, and they list 11 features that a process modelling language should

have for the formal specification of compliance requirements. In contrast, Turki and

Bjekovic-Obradovic (2010) investigate the practice of regulation analysis and the

approaches that aim to achieve and maintain regulatory compliance with given

regulations, from an information system and services perspective. Ly et al. (2013)

report on an evaluation of five frameworks from various domains using a set of core

compliance management functionalities derived from the compliance literature and

various case studies. Their work lacks a comparison of the compliance modelling

languages and constructs for the specifications of norms. In contrast, Bonatti et al.

(2004) study the existing approaches to logic and rule–based systems behaviour

5.6. SUMMARY 149

specifications from business and security policy rules to identify the possible usage

for rule–based policies in a semantic web context.

The presented evaluation is both complementary to these studies, and differs

from them. It differs in that we primarily evaluated existing CMFs to examine what

they can do in terms of providing round–up compliance, and what constructs they

provide to model different types of normative requirements. The study by Elgammal

et al. (2011a) is somewhat close to the above–presented evaluation; however, it

is more generic in the sense that the authors examine how the specifications of

compliance requirements can be modelled by a specific modelling language, whereas

we examined at the specific constructs provided by the CMFs for modelling a specific

type of norms. In addition, by using the classification of normative requirements, we

also examined whether existing CMFs can provide reasoning support for all types of

normative requirements.

5.6 Summary

This chapter contributed a detailed methodological evaluation of seven existing

CMFs, using a sound methodology that examined their conceptual foundations

under pre–defined evaluation criteria. Specifically, we looked at the conceptual

approaches that existing CMFs use to deal with the normative requirements related

to regulatory compliance. The presented evaluation is complementary to—and

different from existing works as discussed in previous section. This is because we

evaluated existing CMFs to check what they can do in terms of providing round–up

compliance, and what constructs they offer to model different types of normative

requirements. In addition, we also examined whether existing CMFs can offer

reasoning support for all types of norms.

The evaluation results portray a somewhat bleak picture when it comes to seeing

how existing frameworks represent the legal knowledge for compliance checking, as

none is able to support all types of norms. Primarily, this is because of the formal

language that each framework uses to model the norms—in particular, where the

language used in the CMF lacks expressiveness to cover a specific concept. This

highlights an exigent need for new compliance rules–modelling languages, with

sound theoretical and formal foundations, to effectively model and faithfully

represent the legal knowledge thus, and thus increase the effectiveness of CMFs.

150 CHAPTER 5. CONCEPTUAL EVALUATION OF CMFS

In the next Chapter, we examine the formal foundations of some CMFs and report

on formal semantics evaluations where we examine the modelling behaviour and

constructs provided, and their correspondence to a specific modelling language. We

also examine the expressive power of the formal language used in the CMF to identify

the strengths and weaknesses of the language.

C
H

A
P

T
E

R

6
FORMAL EVALUATION OF CMFS

6.1 Background

From a business process compliance perspective, the main problem is to ensure that

the activities to be executed during the execution of the process are in alignment

with the specifications of the norms controlling the process behaviour. Formalising

the normative specifications of compliance rules using some formalism enables

automated verification of normative specifications over business process

specifications. Essentially, from a formal representational perspective, most of the

existing formalisms are able to represent the specifications of norms and business

processes. For example, temporal logic is able to formally represent the

specifications of a business process; that is, sequence of states corresponding to the

tasks of a business process (Governatori, 2015). The logic is equally able to represent

the specifications of the legal constraints. As norms have their lifespan, when

considering the temporal aspect, they can be classified according to their temporal

validity and the effects they produce when applied.

Earlier (in Chapter 3) we presented a classification of norms and their semantics

that provide the new classes of normative requirements. With the new classification

of norms the question is: Can existing formalisms faithfully represent different

types of norms—such as obligations, permissions, in an expressive and conceptually

sound way. The lack of expressiveness or complexity of the chosen formalism can

151

152 CHAPTER 6. FORMAL EVALUATION OF CMFS

significantly hinder the ability of the compliance checking technique proposed in a

CMF to validate the specifications of norms. Addressing this question is of utmost

importance before the adoption of a formalism to propose a compliance checking

technique in the CMF for real life cases. Unless we have a positive answer to this

question, the effectiveness of a CMF based on some formalism for representing and

checking the compliance of different types of norms is pointless.

In the previous chapter, we examined the conceptual foundations of the selected

CMFs and looked at the constructs these CMFs provide to represent various classes

of norms. Each of these CMFs adopts a specific formalism to represent the

specifications of norms, for example, Event–Calculus (EC). In this chapter, we

formally evaluate the underlying formal languages and the constructs provided by

different CMFs based on the formal semantics proposal in Chapter 3. We have

chosen to evaluate CMFs based on Linear Temporal Logic (LTL) and Event–Calculus

(EC). This is because LTL is a successful formal language and used in many of the

existing CMFs, whereas EC is able to capture the time–varying properties of the

semantics of our obligations classes. Specifically, we evaluate whether these formal

languages are able to provide a faithful representation of different types of norms in

a conceptually sound way, and identify potential issues resulting from the modelling

of different types of obligations, if any.

The chapter is structured as follows: next the COMPAS framework is briefly

discussed (Section 6.2) and followed by a terse introduction to LTL in (Section 6.2.1).

We then examine the scenario introduced in Governatori (2015), using it to point

out the shortcomings of the use of temporal logic to model norms (Section 6.2.2),

and we study how the example affects compliance request language (CRL) and LTL.

The PENELOPE framework is then discussed in details (Section 6.3), following which

a short introduction to EC (Section 6.3.1) is given. We then model different types

of obligations with PENELOPE semantics, using real-life examples, and discuss the

identified problems (Section 6.3.2). After that a deontic extension to EC addressing

the problems with PENELOPE semantics is discussed (Section 6.4). Then we show

how the deontic extension can be used to address the identified problems with

EC predicates (Section 6.5). The second last section is dedicated to related work

(Section 6.6), and the summary (Section 6.7) highlights the contributions of this

chapter.

6.2. COMPAS 153

6.2 COMPAS

The COMPAS (Elgammal et al., 2011a) is a compliance governance framework for

service oriented architecture (SOA)-based systems. The framework is grounded on

LTL–based graphical patterns for representing different types of obligations in the

form of CRL expressions. The CRL expressions are translated into LTL formulas to

give the specifications of legal norms for automated verification of compliant

behaviour of business processes. The reasons behind using a pattern–based

verification approach in COMPAS is to address the usability and comprehensibility

problem of understanding of formal languages such as temporal logic. The usability

problem is another concern for the non–technical users with less knowledge of the

formal languages (see Elgammal et al., 2014, for a detailed discussion of the issues of

comprehensibility and usability). This issue lead to the emergence of graphical

pattern–based approaches, as used in COMPAS and many other CMFs such as

BPMN–Q (Awad et al., 2011) and DECLARE (Pesic et al., 2007). Pattern–based

approaches embed the complex logic formulas, translating the compliance

requirements into an easy to understand visual patterns. This allows the

non–technical users to have better understanding on the state of the affairs in the

evolution of the system.

Governatori (2015) argues that temporal logic has been successfully used for the

verification of industrial applications, and that it is equally suitable for giving the

specifications of business processes. Thus, many researchers adopted LTL as the

underlying formal language for their compliance frameworks (see Awad et al., 2011;

Elgammal et al., 2014; Pesic et al., 2007); however, it seems that LTL is not

appropriate for the modeling of norms and norms compliance. Hence, the debate

about whether LTL is suitable for representing legal norms has been a long one. It

includes the work of (Thomason, 1981), and who supports it, and (Governatori,

2015) who raises the questions about whether frameworks based on LTL are able to

determine whether a business process complies with the set of legal norms. As

discussed earlier, COMPAS models compliance requirements by means of graphical

patterns, which are categorised into atomic patterns, resources patterns, and

composite patterns. These patterns are mapped into LTL formulas, enabling the

translation of CRL expressions into a set of LTL formulas. Hence,

taking Governatori’s argument into consideration, this boils down to question

whether the COMPAS patterns based on LTL fully capture the meanings of legal

154 CHAPTER 6. FORMAL EVALUATION OF CMFS

norms; that is: can the results obtained from the COMPAS framework be relied upon

to verify the compliant behaviour of business processes?

In the rest of this section, we focus on COMPAS and its underlying formal

language the CRL. This is because it includes most of the patterns used by the other

frameworks, and it also provides additional patterns meant to represent the features

of specific norms such as exceptions to rules, and compensations of violations.

However, the analysis can be equally extended to other LTL–based CMFs.

6.2.1 Logic Background: Linear Temporal Logic

Linear Temporal Logic (LTL) (Pnueli, 1977) is a formal logic for specifying the

temporal notion of time for the specification and verification of reactive systems.

The logic is called LTL because of the qualitative nature of time, which is path–based

and can be seen as linear. In other words, at a particular moment in time, a state can

only have one possible unique future, which can be linearly modelled. Temporal

logic is equipped with unary and binary temporal operators. The unary temporal

operators are:

• Xφ: Next φ (φ will hold in the next state)

• Fφ: Eventually φ (φ will hold sometime in future)

• Gφ: Globally φ (φ will always hold in future)

Whereas the binary temporal operators are:

• φ Uψ: φ until ψ(φ will hold until ψ holds)

• φW ψ: φ weak until ψ(φ will hold until ψ holds and ψ might not hold)

The equivalence of these operators that establish their inter–definability are as

follows:

• Fφ
de f
== ⊤ U φ

• Gφ
de f
== ¬F¬φ

• φW ψ
de f
== φ Uψ∨Gφ 1

Business process compliance aims to verify at which state a set of norms is evaluated

as true (or false) during the execution of a business process. The semantics of LTL that

gives the specifications of a business process can be provided in terms of transition

1The W is not a standard LTL temporal operator; however, it can be represented as U temporal
operator and has the same expressive power, see Baier and Katoen (2007) for details.

6.2. COMPAS 155

systems. A transition system T S can be modelled as the form:

T S = 〈S, si ,R, v〉 (6.1)

where S is a finite set of states; si is initial state; R ⊆ S ×S is a transition relation, for

which it holds ∀s ∈ S,∃t ∈ S : (s, t) ∈ R; and v is a labeling function associating a set

of propositions with each state v : S 7→ 2Pr op . Pr op is a set of atomic propositions;

that is {p1, p2, . . . } ∈ Pr op.

The formulas in LTL are evaluated against a trace. A trace is a sequence of states

in S connected by a relation R representing the transition, and denoted by σ where

σ= {s0, s1, s2, . . . , sn} is a trace such that (si , si+1) ∈ R, where i = 0,1,2, . . . is a natural

number. Given a trace σ,σi represents the subsequence of σ starting with i -th

element, and σ[i].

Given the above definitions, the satisfaction conditions for the labeling function

v for various temporal operators is as follows:

• T S,σ |= p(p ∈ Pr op) iff p ∈ v(σ[0]);

• T S,σ |= ¬φ iff T S,σ 6|=φ

• T S,σ |=φ∧ψ iff T S,σ |=φ iff T S,σ |=ψ

• T S,σ |=Xφ iff T S,σ1 |=φ

• T S,σ |= Fφ iff ∃k ≥ 0,T S,σk |=φ

• T S,σ |=Gφ iff ∀k ≥ 0,T S,σk |=φ

• T S,σ |=φ Uψ iff ∃k : k ≥ 0,T S,σk |=ψ and ∀ j : 0 ≤ j < k,T S,σ j |=ψ

The formula φ is true in the trace σ if and only if φ is true in the first element of the

trace. The definition giving the satisfaction of formula φ in a state si ∈ S(T S, si |=φ)

is:

T S, si |=φ iff ∀σ : σ[0] = si ,T S,σ |=φ (6.2)

As we have seen, the semantics of LTL is given by a discrete and totally ordered set of

time instants. This structure is isomorphic to a subset of the set of natural numbers,

and thus it is isomorphic to a trace of a process.

In Section 3.4, we discussed the function State (Definition 1) to populate states

resulting from the execution of the tasks in a process trace. Given a process trace t , the

correspondence between State and the valuation function v can be immediately seen,

it is easy to model the conditions for definitions of the various types of obligations in

LTL. If we ignore the triggering conditions and deadlines, an achievement obligation

(Definition 23) can be modelled using F temporal operator and a maintenance

156 CHAPTER 6. FORMAL EVALUATION OF CMFS

obligation (Definition 24)G operator. The full definition for a maintenance obligation

for φ can be given by:

G(τ→φ U δ) (6.3)

where τ is a formula corresponding to the condition of activation of the obligation

and δ is a formula encoding the deadline for the obligation. Similarly, for an

achievement obligation for φ, we have

G(τ→¬(¬φ U δ)). (6.4)

Given a model encoding the trace of a business process and a set of formulas

encoding the relevant norms, compliance then is reduced to the problem of

determining whether the formulas can be satisfied by the model.

6.2.2 Motivating Example: Privacy Act

In this section, we strengthen our argument by illustrating the limitations of LTL

for modelling legal norms by using a synthetic Privacy Act proposed in Governatori

(2015) as a real life case.

Suppose that a Privacy Act contains the following norms:2

Section 1. The collection of personal information is forbidden, unless acting on a

court order authorising it.

Section 2. The destruction of illegally collected personal information before

accessing it is a defence against the illegal collection of the personal

information.

Section 3. The collection of medical information is forbidden, unless the entity

collecting the medical information is permitted to collect personal

information.

Moreover, the Act defines and specifies personal information and medical

information as separate entities. In addition, the Act specifies what personal

information and medical information are, and they turn out to be disjoint.

Let us assume that an entity, subject to the Act, collects personal information

without being permitted to do so; at the same time, it collects medical information.

2The Privacy Act presented here, though realistic, is a fictional one. However, (i) it is based on the
novel Australian Privacy Principles (APP), Privacy (Enhancing Privacy Protection) Act 2012; and (ii)
sections with the same logical structure as the clauses of this fictional act are present in the APP Act.

6.2. COMPAS 157

The entity recognises that it has illegally collected personal information (that is,

without being authorised to do so by a court order), and decides to remediate the

illegal collection by destroying the information before accessing it. In this case, is the

entity compliant with the Privacy Act above? Given that the personal information

was destroyed, the entity was excused from the violation of the first section (illegal

collection of personal information). However, even if the entity was excused from

the illegal collection, it was never entitled (that is, permitted) to collect personal

information3, and consequently, was not permitted to collect medical information;

thus, the prohibition of collecting medical information was in force. Accordingly, the

collection of medical information violates the norm forbidding such an activity.

6.2.3 Modelling Privacy Act with LTL/CRL

First, in this section, we formally show how to represent the Privacy Act (discussed

above) in CRL, and then combine this representation with a simple business process

model that implements the activity of collecting data. Then, based on the CRL

representation, we analyse whether the process complies with the Privacy Act.

To this end, the first step is to extract the conditions of the Privacy Act. Following

the analysis in (Governatori, 2015), Section 1 establishes two conditions:

i. Typically, the collection of personal information is forbidden; and

ii. The collection of personal information is permitted, if there is a court order

authorizing the collection of that information.

Section 2 can be paraphrased as follows:

iii. The destruction of personal information collected illegally before accessing it

excuses the illegal collection.

Similarly, Section 3 prescribes two conditions:

iv. Typically, the collection of medical information is forbidden; and

v. The collection of medical information is permitted provided the collection of

personal information is permitted.

Based on the above analysis, if we abstract from the actual contents of the norms,

the structure of the act can be represented by the following set of norms (extended

form):

3If the entity was permitted to collect personal information, then the collection would not be
illegal, and it would not have to destroy it.

158 CHAPTER 6. FORMAL EVALUATION OF CMFS

E1. A is forbidden.

E2. A is permitted, given C (alternatively: if C , then A is permitted).

E3. The violation of A is compensated by B .

E4. D is forbidden.

E5. If A is permitted, so is D .

To compensate a violation, we have to have a violation that the compensation

compensates. Moreover, to have a violation, we have to have an obligation or

prohibition that the violation violates. Accordingly, it makes sense to combine E1

and E3 into a single norm, obtaining thus the following set of norms (condensed

form):

C1. A is forbidden; its violation is compensated by B .

C2. A is permitted, given C (alternatively: if C , then A is permitted).

C3. D is forbidden.

C4. If A is permitted, so is D .

Based on the above analysis, we can handle the issue of how to represent the

norms as CRL requirements. In C 1, if something is forbidden, it should not appear

in the process; thus, we can use the isAbsent pattern. As for the compensations, the

natural choice is to use the Else/ElseNext pattern (see, Section 5.3.2). C 2 and C 4 set

(weak) exceptions to the primary norms, C 2 to the prohibition of the norm in C 1,

and C 3 to the norm in C 3.

Accordingly, the first approximation in CRL is as follows:

CRL1. R1 : ([R2]A isAbsent) Else B ,

CRL2. R2 : C ,

CRL3. R3 : [R4]D isAbsent,

CRL4. R4 : A isPermitted.

First of all, it is appropriate to point out that a prohibition corresponds to a

maintenance obligation, and is represented by isAbsent. However, the first problem

we have here is that the translation of the Else/ElseNext pattern cannot be used for

maintenance obligations. The translation given in equation (5.2) results in the

following LTL formula:

G(F|X(G¬A∧F|X(A∧ (A → F|XB)))). (6.5)

This formula is always false, given the conjunction of G¬A and F|XA. The key reason

the pattern does not work for maintenance obligations and prohibitions, is that the

6.2. COMPAS 159

condition for a maintenance obligation for not succeeding is that the obligation has

been violated. In other words, we have the opposite of the obligation (see,

Section 4.2.1, Definition 24, and note that in a temporal logic setting, o ∉ Ann(t ,k) is

equivalent to ¬o ∈ Ann(t ,k) or, in LTL parlance, T S, tk |= ¬o). Consequently, as

remarked in (Governatori, 2015), a violation of a maintenance obligation is

represented in LTL by the formula Gφ∧¬φ. To obviate this problem, we can use the

solution advanced in Governatori (2015), where the compensation of maintenance

obligation is semantically defined as:

T S,σ |=φ⊗ψ iff ∀i ≥ 0, T S,σi |=φ; or

∃ j ,k : 0 ≤ j ≤ k, T S,σ j |= ¬φ and T S,σk |=ψ. (6.6)

Syntactically, this can be represented by the LTL formula as:

Gφ∨F(¬φ∧F|Xψ). (6.7)

The next problem we have to address is how to model permissions in CRL. Given that

it is not possible to violate a permission, permissions seem not to play any role in

compliance, and CRL does not provide specific patterns for their modelling. It is true

that permissions cannot be violated, and thus, they are not needed for the semantics

for compliance.

To determine when a process is compliant, one has to know what obligations

are in force for the various states traversed by the traces of the process. Accordingly,

a domain expert who understands the regulatory requirement can populate the

Force function (Definition 2), based on their understanding of the legal framework to

which the process is subject to. This means that, in that approach, one can dispense

with a logical representation of the regulatory requirements. However, this approach

rapidly becomes unattainable, given that, even for small to medium size business

processes, the number of traces and states in the traces is large, as is the number of

obligations and prohibitions (Hashmi et al., 2015a, reports on a real life case study

with a medium size process, containing approximately 40 tasks, that would require

populating over 25,000 states, with over 100 obligations).

The discussion so far suggests that we need methods to (automatically) determine

what obligations are in force, given a set of regulatory requirements. Furthermore,

the scenario given in Section 6.2.2 demonstrates that permissions can play a role in

compliance: they can be used as conditions that determine when other obligations

160 CHAPTER 6. FORMAL EVALUATION OF CMFS

or prohibitions are in force. For example, consider the compliant process where:

(1) the entity checks whether the collection of personal information is authorised

under a court order; if so (2) , it proceeds to collect personal information; and (3) it

collects medical information. This process would be deemed as not–compliant,

since R4 would resolve in D (collection of medical information), which is absent but

it occurs in the process.

As we have seen in Section 6.2.2, in legal theory, a permission is considered as the

absence of obligation to the contrary. Thus, in deontic logic, the deontic operator for

permission (P) is assumed to be dual of the operator for obligation (OBL); that is:

Pφ
de f
== ¬OBL¬φ. (6.8)

In the case at hand, the obligation is a maintenance obligation and, as we have

argued, it corresponds to the isAbsent pattern, which is translated as G¬A, and its

dual is FA. Thus, based on this analysis the translation from CRL to LTL gives the

following two formulas:

LTL1. G(C ∨ (G¬A∨F(A∧FB)));

LTL2. G(FA∨G¬D).

CRL2 and CRL4 are incorporated in the translations of CRL1 and CRL3; that is, LTL1

and LTL2 respectively.

Consider now the following process (Figure 6.1) for collecting information:

Collect
Personal

Information

Collect
Medical

Information

Destroy
Personal

Information

T1 T2 T3

Start End

Figure 6.1: Data Collection Process

This process has a single trace, 〈Start,T1,T2,T3,End〉. The transition system

corresponding to this trace has the following transitions:4

(start,T1), (T1,T2), (T2,T3), (T3,end), (end,end) (6.9)

Suppose that for a particular instance of the process, there is no court order

authorising the collection of medical data; that is, ¬C holds for all the states reached

4The (end,end) is mandated by the semantics of LTL that requires each state to have a successor;
for the state corresponding to the termination of the process, the successor is itself.

6.3. PENELOPE 161

by the execution of the process. Thus, the evaluation function associated with the

trace is as follows:

• v(start) = {¬A,¬B ,¬C ,¬D};

• v(T1) = {A,¬B ,¬C ,¬D};

• v(T2) = {A,¬B ,¬C ,D};

• v(T3) = {A,B ,¬C ,D};

• v(end) = {A,B ,¬C ,D}.

It is easy to verify that the transition system corresponding to the trace of the process

is a model of the formulas encoding the privacy act, LTL1 and LTL2. This means

that the formulas are satisfied in all their states in it. For LTL1, we notice that the

first disjunct, ¬C is always false, but the second disjunct is satisfied: every state in

the transition system has a state following it where A holds, and a state following

it where B holds. For LTL2, the first disjunct is true; for each state, there is a state

following it where A holds; thus, FA holds. Hence, the process is compliant with the

LTL formulas encoding the CRL patterns modelling the privacy act. However, there

is state T2, where both ¬C and D hold. In Section 6.2.2, we argued that a situation

where ¬C and D both hold is not compliant. Therefore, we have a paradox: the

formalisation indicates that the scenario is compliant, and the course of actions

described by the transition system does not result in a contradiction, so no illegal

action is performed (or better, the collection of personal information is illegal, but its

compensation [destruction of the personal information], makes full amends for it);

however, our legal intuition suggests that the collection of medical information in

the circumstances of the scenario is illegal.

We now evaluate the formal semantics of PENELOPE, a design–time CMF based

on EC to examine whether EC too suffers from limitations as LTL to reason about the

legal norms.

6.3 PENELOPE

PENELOPE (Goedertier and Vanthienen, 2006c) is a declarative framework that

declaratively captures obligations and permissions requirements on the tasks of

business processes in the form of deontic assignments. Aiming to provide

design-time compliance verification of business processes, PENELOPE proposes

deontic properties for modelling the deontic notions of obligations, permissions,

162 CHAPTER 6. FORMAL EVALUATION OF CMFS

and conditional commitments as illustrated in Table 6.1.

Table 6.1: Deontic Properties of PENELOPE (Goedertier and Vanthienen, 2006c)

Term Meanings

Xor(α1,α2) compound activity α1 XOR α2

Or(α1,α2) compound activity α1 OR α2

And(α1,α2) compound activity α1 AND α2

Oblig(π,α,δ) agent π must do the activity α by due date δ

Perm(π,α,δ) agent π can do the activity α prior to due date δ

CC(π,α1,δ1,α2,δ2) agent π must do activity α2 by due date δ2

after activity α1 is performed prior to due date δ1

(A)Ter mi nates(α,Obl i g (π,α,δ),τ) ←− τ≤ δ

(B)Ter mi nates(α,Per m(π,α,δ),τ) ←− τ≤ δ

(C)H appens(vi ol ati on(Obl i g (π,α,δ)),δ) ←−

Hold s At (Obl i g (π,α,δ))∧∼ H appens(α,δ)
(D)Ini t i ates(α1,Obl i g (π,α2,δ2),τ) ←−

τ≤ δ1 ∧HoldsAt(CC (π,α1,δ1,α2,δ2)),τ)

To generate control–flow and temporally compliant business processes from the

rule sets of obligations and permissions, PENELOPE uses a proprietary algorithm

(see, Algorithm 1), which progressively operates to generate the state space and

control–flow of a business process interaction. The state space in the generated

process corresponds to a set of obligations and permissions that are in force at

a particular state, and these obligations and permissions are modelled with EC

(Kowalski and Sergot, 1989).

The interaction between the activities linearly flows from one state to another,

and all states are enumerated until no obligation or permission holds at a state, or if

there is a violation that cannot be repaired. Once all state spaces are computed, the

algorithm draws the BPMN model for an agent of a business interaction. The tasks

of the process are drawn whenever an obligation set contains all the obligations to

be fulfilled by an agent in the activity. Since the modelling of business interactions of

all participating agents in the interaction is allowed in PENELOPE, any violations of

obligations by a third partner agent (represented in the generated BPMN model) are

drawn as intermediate time-out events. On the other hand, the errors and end events

are drawn if there is a violation of an obligation or a permission by an agent in a state.

With the designed compliant process models, various types of inconsistencies can be

identified; for example, deontic, temporal and trust conflicts. The generated process

models with PENELOPE are not meant to execute the process; rather, they are meant

6.3. PENELOPE 163

Algorithm 1 PENELOPE (Goedertier and Vanthienen, 2006c)

1: PO(π,δ) = {α : HoldsAt(Obl i g (π,α,δ),δ)}
2: PP(π,δ) = {α : HoldsAt(Per m(π,α,δ),δ)}
3: OTP(π,δ) = {α : HoldsAt(Obl i g (φ,α,δ),δ),r eci pi ent (α) =π}
4: PTP(π,δ) = {α : HoldsAt(Per m(φ,α,δ),δ),r eci pi ent (α) =π}
5: OO(π,δ) = {α : HoldsAt(Obl i g (φ,α,δ),δ),φ 6=π}
6: OP(π,δ) = {α : HoldsAt(Per m(φ,α,δ),δ),φ 6=π}
7: drawControlFlow(π,τ)

8: if ¬endSt ate(S(τ)) then

9: δ←− ear l i estDueDate(τ)
10: if {α : α ∈ PO(π,δ), atomi c(α)} 6= ; then Draw tasks in sequence
11: if {and(α1,α2) : and(α1,α2) ∈ PO(π,δ)} 6= ; then Draw tasks in parallel
12: ∃xor (α1,α2) ∈ PO(π,δ)orPP (π,δ) 6= ; then Draw XOR gateway
13: AC s ←− al lCombi nati ons(OO(π,δ)∪OP (π,δ)∪PP (π,δ))
14: forall AC ∈ AC s

15: As ←− AC ∪PO(π,δ)
16: if ∃α : α ∈ As,α ∈ xor (α1,α2), xor (α1,α2) ∈ PO(π,δ) then Draw task α

17: if ∃α : α ∈ As,α ∈ atomi c(α),α ∈ PP (π,δ) then Draw (start event and) task α

18: if ∃α : α ∈ As,α ∈ xor (α1,α2), xor (α1,α2) ∈ PP (π,δ)
19: then Draw (start event and) task α

20: if ∃α1,α2 : α1 ∈ AS,α2 ∈ AS, and(α1,α2) ∈ PP (π,δ) then Draw (start event
21: and) tasks α1,α2 in parallel
22: if OTP(π,δ)∪PT P (π,δ) 6= ; then Draw event gateway
23: if ∃α : α ∈OPT (π,δ),α ∈ As then Draw event start/intermediate event α
24: if ∃α : α ∈OT P (π,δ),α ∈ As then Draw event intermediate time-out event α
25: if ∃α : α ∈ PT P (π,δ),α ∈ As then Draw event start/intermediate event α
26: perform activities As

27: drawControlFlow (π,δ)
28: revoke activities As

29: end forall

30: else

31: {v : v ∈V T M(π,δ)} 6= ; then Draw error event
32: ¬∃v : v ∈V T M(π,δ) then Draw end event
33: end if

to help process designers to check the impact of control–flow and timing constraints

on business process design.

Legal norms in PENELOPE are modelled using EC predicates. EC has a long

history of use in the agent–based systems and artificial intelligence and legal

reasoning domains. In Section 6.2, we argued that LTL has the ability to efficiently

model the specifications of business processes; however, it is severely compromised

164 CHAPTER 6. FORMAL EVALUATION OF CMFS

by major limitations when it comes to modelling legal norms. In the coming

sections, we formally show that EC also has problems with its semantics when it

comes to capturing the effects of obligations; in particular, when an obligation

comes into force and when an obligation is terminated, and with respect to the

effects of violations on other types of obligations. As discussed earlier, the first step

in verifying the compliant behaviour of business processes is to determine which

obligations are in force at the n–th instant of time at a particular state of the

execution trace of a business process. PENELOPE uses HoldsAt and Initiates

predicates to capture the effects of the obligations which give the semantics of state

function; however, these predicates have fundamental deficiencies with respect to

properly capturing the effects of the obligations. Hence, again, we need to question

whether the PENELOPE’s EC–based deontic properties can provide a conceptually

sound reasoning support for modelling all types of obligations.

6.3.1 Logic Background: Event-Calculus

Event-Calculus (EC Kowalski and Sergot, 1989) is a well–known event–based

formalism for reasoning about events and change and the effects of change resulting

from the occurrence of events over time. EC provides a set of rich axioms for

capturing the behaviour of dynamic occurrences of both domain–independent and

domain–dependent events; hence, the logic is particularly suitable for modelling the

dynamic behaviour of a variety of systems. It is based on the idea of the states that

time-varying properties of the world, called fluent hold at a particular time–point

initiated by some event at an earlier time, and is not terminated by some other event

during that time period. Accordingly, a fluent does not hold at some time if it was

previously terminated and not resumed during that time (Miller and Shanahan,

1999). In contrast, domain–independent axioms illustrate the situations under

which an event initiates and terminates. For the rest of this chapter, we use the

predicates and axioms from (Miller and Shanahan, 2002), as illustrated in Table 6.2.

The formalism provides predicates expressing the various types of states of an

event occurrence; for example, Happens (occurrence of an event at a time point);

Initiates (an event that triggers a property of a system), Terminates (an event

terminates the property of the system); and HoldsAt (that the property of a system

holds at a time point); as well as auxiliary predicates to express premature

termination (Clipped) and resumption (Declipped) of an event at a particular point

6.3. PENELOPE 165

Table 6.2: Event-Calculus Predicates and Meanings

Predicates Meanings

Basic
Initiates(X ,P,T) Event X initiates the variable (fluent) P at time T .
Terminates(X ,P,T) Event X terminates the variable (fluent) P at time T

InitiallyTrue(P) The variable (fluent) P is true from the beginning of time.
InitiallyFalse(P) The variable (fluent) P is false from the beginning of time.
Happens(X ,T) Event X occurs at time T .
HoldsAt(P,T) The variable (fluent) P holds at time T .

Auxiliary Predicates

C l i pped(T1,P,T2) The variable (fluent) P is interrupted sometime
between T1 and T2.

Decl i pped(T1,P,T2) The variable (fluent) P is resumed/initiated
sometime between T1 and T2.

Independent Axioms

HoldsAt(P,T2) ←− HoldsAt(P,T1)∧ (T1 < T1)∧¬Clipped(T,P,T1)
HoldsAt(P,T2) ←− H appens(P,T1)∧ Initiates(X ,P,T1)∧ (T1 < T2)∧

¬C l i pped(T1,P,T2)
¬HoldsAt(P,T2) ←− Happens(X ,T1)∧Terminates(X ,P,T1)∧ (T1 < T2)∧

¬Declipped(T1,P,T2)
¬HoldsAt(P,T2) ←− ¬HoldsAt(P,T1)∧ (T1 < T2)∧Declipped(T1,P,T2)

Clipped(T1,P,T2)
de f
== ∃X ,T : Happens(X ,T)∧ (T1 ≤ T < T2)∧Terminates(X ,P,T)

Declipped(T1,P,T2)
de f
== ∃X ,T : Happens(X ,T)∧ (T1 ≤ T < T2)∧ Initiates(X ,P,T)

in time between the interval. The InitiallyTrue and InitiallyFalse allow the

modelling of the system for states where only partial information about the domain

is available. In contrast, the domain–independent axioms describe the states when a

variable (fluent) holds—or does not hold at a particular point in time.

The basic domain–independent axioms are:

HoldsAt(P,T2) ←− Happens(P,T1)∧ Initiates(X ,P,T1)∧

(T1 < T2)∧¬Clipped(T1,P,T2)
(A1)

The axiom (A1) states that the fluent P continues to hold until an event occurs that

terminates it.

¬HoldsAt(P,T2) ←− Happens(X ,T1)∧Terminates(X ,P,T1)∧

(T1 < T2)∧¬Declipped(T1,P,T2)
(A2)

166 CHAPTER 6. FORMAL EVALUATION OF CMFS

(A2), on the other hand, states that the fluent P that has been terminated by the

event X , continues to hold until it is resumed (re-Initiates) by some other event

occurrence. The above axioms can be used to model the non-deterministic behaviour

of the system. Hence, EC is used for modelling obligations that can be affected by

unpredictable situations.

6.3.2 Modelling Obligations with PENELOPE

The PENELOPE’s deontic properties that modelling the deontic notions of

obligations, permissions, and conditional commitments are based on the EC

predicates and events. Generally, norms have an IF—THEN like structure and

produce effects depending on the conditions of the obligation hold (with or) after

the occurrence of an event. In Section 3.4, we introduced the Force and State

functions. The Force function identifies which obligations are in force at the n–th

instant of time in a given time–line; the objective of State function, on the other

hand, is to identify what formulas are to be evaluated as true at the n–th time

instance in the time–line. The semantics of PENELOPE corresponding to the

semantics of State function proposed in Chapter 3 are as follows:

HoldsAt(X ,T) ⇐⇒ X ∈ State(T) (A3)

Happens(X ,T) ⇐⇒ X ∈ State(T) (A4)

whereas the semantics of Force function, defining when an obligation is in force in

the process, are:

HoldsAt(Obl i g (X),T) ⇐⇒ X ∈ For ce(T) (A5)

HoldsAt(Per m(X),T) ⇐⇒ ¬X ∉ For ce(T) (A6)

Next, we examine how different types of obligations can be modelled with the

PENELOPE’s deontic properties and when their effects come into force onto tasks of

a process when an event occurs. As argued in Chapter 4, with the formalised rules,

we get the types and effects of the obligations, which are then linked to the

processes, using some logical model to evaluate their truth value. In PENELOPE, the

effects of the obligations are acquired using the Initiates predicate to populate the

State and Force functions. For this purpose, the regulations described in Section 7 of

the synthetic business contract (see Appendix A) are used.

6.3. PENELOPE 167

Example: Internal Complaints Resolution Regulations: all the complaints pertaining

to this contract, herein shall be dealt with in the following manners:

1. Internal complaints resolution: all the complaints pertaining to this contract

herein shall be dealt with in the following manners:

a) Making Complaints: Complaints can be made in person, by phone, or by

email.

i. Acknowledgment

A. Any complaint received in person or by phone shall be

immediately acknowledged, or

B. Within 2 working days where received by email or letter.

b) All received complaints shall be resolved within 7 working days.

The clauses of Section 7 prescribe two different types of obligations, namely:

(a) punctual obligation, and (b) an achievement obligation, to acknowledge oral and

written complaints. Now, consider the process fragment in Figure 6.2 that describes

the complaint–handling process where a received complaint must be acknowledged

before its resolution, and is subject to above regulations.

Received

Complaint

Acknow

Complaint

Resolve

Complaint

Escalate

Complaint

Archive

T1 T2 T3

T4

T5
Resolved?

start

immediately

acknowledge

End

yes

no

Figure 6.2: Complaint–Handling Process

We now formalise the above rules and examine when the obligation holds in the

process trace. The PENELOPE’s Initiates predicate, giving the conditions of HoldsAt

from axiom (A1) is as follows:

HoldsAt(P,T2) ←− Happens(P,T1)∧ Initiates(X ,P,T1)∧

(T1 < T2)∧¬Clipped(T1,P,T2)

The clause 7.1.a.i.A, which prescribes a punctual obligation, is represented as:

HoldsAt(Acknow,2) ←

Happens(Compl ai nt ,1)∧ Initiates(Compl ai nt , Acknow,1)∧

(1 < 2)∧Clipped(1, Acknow,2)

(A7)

168 CHAPTER 6. FORMAL EVALUATION OF CMFS

The meanings of axiom (A7) is that the punctual obligation to Acknowledge the

received complaint starts to hold from time instant 2 when the event compl ai nt

triggering the obligation occurs at time 1. From axiom (A7), we have

Happens(Compl ai nt ,1)∧ Initiates(Compl ai nt , Acknow,1)

which means that we have a complaint at State(1). Also, we get HoldsAt(Acknow,2),

meaning that an obligation starts to hold from the next time instant; that is, State(2).

Hence, based on above, we have the following situation:

Force(2) = {Acknowl ed g e}

State(1) = {Compl ai nt }

However, there is a problem with this representation because, for a punctual

obligation, by Definition 3, the obligation fluent starts to hold as soon as the event

triggering the obligation occurs; that is, at State(1). Thus, ideally, we should have

representation such as:

HoldsAt(Obl i g (Acknow),1) ←

Happens(Compl ai nt ,1)∧ Initiates(Compl ai nt , Acknow,1)

that corresponds to:

Force(1) = {Acknowl ed g e}

State(1) = {Compl ai nt }

The representation in (A7) does not reflect this situation because the obligation

fluent starts to hold from State(2), not from State(1). Thus, the obligation is not in the

Force function because we do not have the effects of the obligation on task T1 and,

consequently, it cannot be checked for compliance. This is because PENELOPE’s

Initiates predicate cannot capture the effects of deontic constraints that enter into

force at the time of event occurrence, rather than from the next instant.

Next, we examine the cases of violations handling and the obligations arising from

the violation of a primary obligation. Reporting and handling the violations of rules

is one of the major requirements for a compliance management framework (Awad,

2010). Timely reporting of the violations allows the analysts to address the problems

at the very beginning of the process design, thus saving a lot of efforts and time. Now,

we consider whether PENELOPE handles various violation situations whether the

notion of violations can be effectively handled with PENELOPE’s violation semantics,

6.3. PENELOPE 169

and whether modelling the compensatory cases (contrary–to–duty obligations) is

possible.

Consider the terms of payment process model in Figure 6.3. This illustrates that

when an invoice is received, payment must be made within the 15 days; otherwise, a

penalty of 3% interest is applicable. In the case where the obligation is not fulfilled

and the interest is not paid within next 7 days, another 2.5% is admissible. If the

obligation conditions are violated again, the contract can be terminated without any

further notice. The process is subject to the terms of payment regulations in Section

Receive
invoice

Make
payment

3% per day
+ Principal

amount

2.5% + 3%
per day +
Principal
amount

Terminate
contract

pay ≤

15 days
pay ≤

7 days
pay ≤

10 days

Start

End

Yes

No No No

Yes Yes

Figure 6.3: Terms of payment process fragment

5 of the business contract in Appendix A. The following conditions5 can be extracted

from the regulations:

C1. Contractor must issue the invoice to claim any payments;

C2. Principal receives the issued invoice;

C3. Principal must pay the received invoice (in full) within 15 days;

C4. If invoice deadline is violated, a 3% (per day) interest compensates it and must

be paid within 7 days.

C5. If the defaulted invoice is violated, another 2.5% (per day) interest

compensating the violation must be paid within next 10 days.

The conditions of C3., where the Contractor has the obligation to pay the invoice

within 15 days, is modelled as:

Initiates(Recei veInvoi ce,OBLIG(Pr i nci pal ,Pay Invoi ce,δ),τ) ←−

Happens(Recei veInvoi ce,τ)∧Happens(I ssueInvoi ce,τ′)

HoldsAt(PaymentC l ai ms,τ′)∧τ′ < τ∧δ= τ+15d ay s

(A8)

Axiom (A8) gives full instantiation of the interaction of the event, from where we get

Initiates(Recei veInvoi ce,OBLIG(Pr i nci pal ,Pay Invoi ce,δ),τ); in other words,
5Here, we purposefully use the parts of the rules that are relevant to the violation cases of the

terms of payment conditions only.

170 CHAPTER 6. FORMAL EVALUATION OF CMFS

an obligation to pay the invoice enters into force at time τ that must be paid by the

deadline δ. We also get Happens(I ssueInvoi ce,τ′), which means that Contractor

issued it at an earlier time instant at τ′. Now, assume that the obligation to pay the

invoice is violated. This can be modelled using PENELOPE’s violation semantics

(given in Table 6.1) as follows:

Happens(vi ol ati on(OBLIG(π,α,δ),δ) ←−

HoldsAt(OBLIG(π,α,δ),δ)∧∼ Happens(α,δ)
(A9)

The meanings of axiom (A9) is that the obligation to do α is violated if the obligation

fluent α that holds at time δ, does not happen at δ. In other words, if the obligation

is not fulfilled by the deadline, a violation of the obligation is triggered.

Let us now model the violation conditions of C3. with the above violation

semantics, assuming the obligation in axiom A8 is violated:

Happens(vi ol ati on(OBLIG(Pr i nci pal ,Pay Invoi ce,δ),δ) ←−

HoldsAt(OBLIG(Pr i nci pal ,Pay Invoi ce,δ)),δ)∧∼ Happens(Pay Invoi ce,δ)
(A10)

From axiom (A10), we have HoldsAt(OBLIG(Pr i nci pal ,Pay Invoi ce,δ),δ). This

means that the obligation to pay the invoice by the deadline (that is, 15 days from

the issue date) is in force; and if not paid in time, we have the violation; for this,

from A10, we derive Happens(vi ol ati on(OBLIG(Pr i nci pal ,Pay Invoi ce,δ)),δ);

that is, obligation is violated at deadline if the obligation fluent Pay Invovi ce does

not happen at state δ; that is, ∼ Happens(Pay Invoi ce,δ).

Here we have an issue with the temporal properties of the above violation

semantics because the violation has been evaluated at the deadline, which is not

feasible for detecting violations for different cases of norms. In the legal domain, for

norms, the violation can only be evaluated once the prescribed deadline has passed.

Axiom (A9) evaluates the violation at state δ, and the violation is triggered at δ. On

the contrary, in real life situations, the violation of an obligation is evaluated only

after the deadline has passed. Consider, for example, the violation semantics of

persistent obligations (Definitions 4-6) depicted in Figure 6.4, where the obligation o

holds between n and m. The obligation fluent can hold until the last moment and

could be fulfilled by the deadline; that is, m. A violation can be triggered only if the

obligation contents are not achieved after the deadline has passed; that is, m +1.

Generally, the violation conditions for obligations are provided by the analysts;

here, however, the objection to PENELOPE’s semantics properties is that they detect

6.3. PENELOPE 171

t
1 n −1

o ∉ Force(n−1)

n m m +1

violation of o

(achievement)

o ∉ Force(m+1)

z

o ∈ Force(k)

k

violation of o

(maintenance)
∃k : n ≤ k ≤ m,
o ∉ State(k)

Figure 6.4: Violation semantics of Persistent Obligations

the violations at state δ; this is unrealistic for many real life obligation types. For

example, for a maintenance obligation, a violation might occur even before the

deadline, because such obligations are enforced in intervals and must hold for all

time instants between the interval for the whole period of the validity of the

obligation. However, the violation axiom evaluating the violation at deadline,

indicates that PENELONE is not able to handle maintenance obligations.

Another issue with the violation semantics that are built upon the notion of

violations without reparation (VWR) is as follows:

V W R(τ) : {α : Happens(vi ol ati on(Obl i g (π,α,δ),τ)∧

¬∃Initiates(vi ol ati on(Obl i g (π,α,δ),o,τ)}
(A11)

The meanings of axiom (A11) is that after the violation of an obligation, no other

obligation is initiated. This would mean that after every violation, the penalty can be

directly imposed. Essentially, the notion of violation without reparation in

PENELOPE is closely related to the Arend’s reduction view of norms (Arend, 2001);

that whenever there is a violation, a direct penalty is imposed. In the legal domain,

however, there are several cases where a violation penalty is not always imposed, but

a sub–ideal situation can still make the process compliant. In other words, fulfilling

a contrary–to–duty obligation after the violation can make amends for the violation.

The violation conditions of an obligation generally include the conditions

whether the obligation is compensable after violation, and whether it can be further

violated and compensated for. Such compensatory conditions are provided by the

analysts at the time of modelling the norms. The rule conditions in C4. is one such

case where a sub–ideal situation is sought if the primary obligation is not realised;

172 CHAPTER 6. FORMAL EVALUATION OF CMFS

this, fulfillment of a contrary–to–duty obligation can be represented as:

Initiates(vi ol ati on(OBLIG(Pr i nci pal ,Pay Invoi ce,δ′)),

OBLIG(Pr i nci pal ,Pay Invoi ce +3%Inter est ,δ),τ)∧δ′ < τ≤ δ
(A12)

Axiom (A12) illustrates that the obligation to PayInvoice and 3%Interest comes into

force at state τ, after the primary obligation has been violated at a previous state

δ′ (that is, deadline). Notice that, EC does have expressiveness to represent the

notion of compensation, which can be trivially modelled, as shown in axiom (A12);

however, PENELOPE does not admit compensatory obligations. However, the same

problems of getting the effects of the obligations on the tasks (as discussed earlier)

remain. Furthermore, as the with the violation semantics, the violation is triggered

at the deadline even if the obligation is still in force. Thus, we cannot have a faithful

representation of that actual situation.

6.4 Deontic Extension to Event-Calculus

In the previous sections, we have formally shown that both LTL and EC have

shortcomings in providing a conceptually sound reasoning and modelling support

for different types of obligations. Thus, the CMFs grounded on these formalisms are

inherently unreliable for the verification of business processes against a set of legal

norms. The effectiveness of a CMF might only be guaranteed if the problems with

these formalisms are efficiently addressed; that is, if they are fully able to fully

provide both the specifications of the processes models and that of the legal norms

without introducing any complexity and/or compromising the efficiency of the

formalism.

In this section, we introduce a deontic extension to EC to show how the

problems with a formal language can be addressed to increase its ability to provide

full reasoning support for all types of legal norms in a conceptually sound way.

Hence, the results of compliance verification of business processes from a CMF

would be more reliable. We extend EC calculus with new predicates and events to

address the issues with the base predicates Initiates and Happens, as raised earlier.

We extend EC because the formalism has relatively flexible semantics when

compared to LTL, which is based on standard possible worlds

semantics. Governatori (2015) argues that the problems identified by the scenario

presented in Section 6.2.2 depends on how permissions are evaluated in standard

6.4. DEONTIC EXTENSION TO EVENT-CALCULUS 173

possible worlds semantics. Accordingly, the issue of how to model norms in a

conceptually sound way is left as an open problem. We believe that, by the virtue of

the flexibility of the EC semantics, problems with these semantics can be easily

resolved without introducing any complexities compromising its efficiency.

Predominantly, the identified problems with the PENELOPEs arise from getting

the effects of obligations on the tasks of a business process, and representing

violations, and their compensations. This in turn, are the result of inherited

problems with the EC’s base predicates: Initiates, Happens, and Terminates. This

raises questions about the effectiveness of the PENELOPE framework when it comes

to representing different types of obligations for their compliance checking.

Next, we discuss in details the issues related to the EC predicates affecting the

expressiveness of the PENELOPE’s semantics, and introduce new predicates to

extend the EC (Hashmi et al., 2014).

6.4.1 Issues with Event-Calculus

The classical EC (Kowalski and Sergot, 1989) is a widely used formalism for modelling

norms because it provides a logical framework for representing and modelling the

effects of events and the current state of affairs, in terms of fluent(s). It also has

the ability to model the time when fluents come into existence and cease to hold

dynamically (Goedertier and Vanthienen, 2006a).

One might argue that the modelling of deontic notions with EC is rather well

developed, as several variants of EC exist (see Miller and Shanahan, 2002; Sadri and

Kowalski, 1995, for further listings of EC variants), and historically, many studies

have used EC for reasoning and representing the legal knowledge. For

example, Fornara and Colombetti (2009) provide formal specifications of

commitments and pre–commitments, and institutionalised power and context using

EC, whereas Bandara et al. (2003) use EC for translating the policies and systems

behaviour specifications into formal specifications. Meanwhile, Alrawagfeh (2013)

represents norms that enable agents to use these norms for their practical

reasoning, (see Hashmi et al., 2014, for more approaches).

Another argument about the suitability of EC for representing norms, is its use in

modelling the dynamic behaviour of non–deterministic systems, especially where

the norms can be affected by unpredictable situations. However, in the previous

section, we have formally shown that, by vitrue of EC semantics, PENELOPE has

174 CHAPTER 6. FORMAL EVALUATION OF CMFS

major issues with reasoning about the legal norms. One of the such issues is related

to the base predicate of EC Initiates(E , X ,T). Its meaning is that event E at time T

initiates the fluent X , and the fluent holds at the next instant of time. This effectively

means that the norm comes into force at the next instant; however, for legal norms,

this might not be the case. There are cases where the norm enters into force at the

same instant as the triggering event happens; for example, the obligation to remove

shoes when one enters in a mosque.

Figure 6.5 illustrates the case where the obligation fluent X comes into force; that

is, X starts to hold when the event E1 is initiated at time 10.

Timeline

0 10 30

X
HoldsAt(X ,10)

E1
Initiates(E1, X ,10)

Figure 6.5: Domain–dependent axiom (Simultaneous effects)

Accordingly, in some cases, norms might not take immediate legal effects when an

event is triggered; rather, they enter into force after a delay. In other words, the

triggering of an event does not necessarily mean the actual initiation of the legal

norm; that is, the fluent is not in its argument. For example, a complaint cannot be

acknowledged until all details pertaining to the issue have been received.6 Figure 6.6

shows the case where obligation fluent X , that is, acknowledge a complaint, comes

into force not at the time when the event E1 is triggered at time 10; rather, X starts to

hold from the next instant; that is, at time 11 .

Timeline

0 10

delay

30

X
HoldsAt(X ,11)

E1
Initiates(E1, X ,10)

Figure 6.6: Domain–dependent axiom (delayed effects)

6It is possible to have a norm that comes into force retroactively; for example, preemptive

obligations. Thus, the fluent holds before the event that initiates it. We blatantly ignore this aspect
throughout this chapter.

6.4. DEONTIC EXTENSION TO EVENT-CALCULUS 175

Another problem with the predicate Initiates is that it does not guarantee that the

fluent in its arguments is actually initiated by the event. Suppose that: the domain-

dependent axioms specify that both the events E1 and E2 individually initiate the

fluent X ; and event E1 happens at time 10 and event E2 at time 20; X does not hold

initially; and no other event initiates or terminates fluent X between 0 and 30. This

means that X starts to hold from 11 and continues to hold up to 30, and event E2 is

irrelevant to determine the status of X . Figure 6.7 illustrates the case where the same

fluent X is initiated at different times by two different events—E1 and E2 respectively.

Timeline

0 10 20 30

X
HoldsAt(X ,11)

E1
Initiates(E1, X ,10)

E2
Initiates(E1, X ,20)

Figure 6.7: Domain dependent axiom(no fluent in the argument)

6.4.2 Extending Event-Calculus

In this section, we discuss the deontic extension to EC by adding the deontic aspect

to EC, and introduce new predicates and events to alleviate the above–discussed

problems with the EC’s base predicates, Initiates and HoldsAt. The new predicates

and events not only allow capturing the legal effects when they enter into force, but

also faithfully model all types of obligations and conditions associated with them. In

what follows, we discuss in details the newly added predicates and events (illustrated

in Table 6.3).

6.4.2.1 DHoldsAt Predicate

As the standard EC Initiates and HoldsAt predicates are not able to capture the legal

effects of the obligations on the tasks of a process, we introduce a new deontically

holds at predicate DHoldsAt(X ,T), meaning that the deontic fluent that is, a specific

type of obligation X holds at time T .

Similar to HoldsAt predicate, the D Hold s At predicate requires the same number

of arguments, however the main difference is on the conditions of initiation—that is:

176 CHAPTER 6. FORMAL EVALUATION OF CMFS

Table 6.3: Deontic EC Predicates and Meanings

Predicates Meanings

DHoldsAt(X ,T) The variable (fluent) X deontically holds at
time T.

Happens(tr i g g er (Ox,T X , N),T)† The event tr i g g er (Ox,T X , N) with delay N
occurs at T.

DTerminates(tr i g g er (Ox,T X , N),T) The event tr i g g er (Ox,T X , N) with delay N
deontically terminates the variable (fluent) X
at time T.

compensates(Oy,TSc Q,Ox,T X) The variable (fluent) Q at time TSc

compensates another variable (fluent)
X .

Events

H appens(vi ol ati on(Ox,T X),Tv) The violation of variable (fluent) X occurs at
time Tv .

H appens(deadl i ne(Ox,T X),Td) The deadline to fulfil the variable (fluent) X

occurs at time Td .
H appens(compensati on(Ox,T X),TSc

) The compensation event for variable (fluent)
X occurs at time TSc

.

Boolean Switch

FulfillTerminable(Ox,T X) The variable (fluent) X is terminable upon
fulfilment.

ViolationTerminable(Ox,T X) The variable (fluent) X is terminable at
violation.

RecursivelyCompensable(Ox,T X) The variable (fluent) X is recursively
compensable for violation.

† Ox,T represents the obligation type and time when the variable(fluent) comes into force.

• each obligation (or a deontic fluent) has its own specific triggering events, and

only one of the triggers can initiate the deontic fluent,

• a trigger does not initiate the deontic fluent, if the deontic fluent already holds,

• there could be delay (which could be a null value) between the time the

triggering event occurs and the time when the obligation enters into force.

(see, Section 6.4.1).

Notice that, an obligation can deontically hold only if it is deontically initiated,

which is not possible with the current HoldsAt predicate. Accordingly, with the

current EC Initiates predicate as pointed earlier, it is not possible to deontically

initiate an obligation because the Initiates predicate cannot capture the delay. To

6.4. DEONTIC EXTENSION TO EVENT-CALCULUS 177

obviate this problem we introduce a special triggering–event predicate

tr i g g er (Ox,T X , N), where Ox,T X is a deontic fluent, and N is the delay. Ox,T

represents the type of obligation (cf. Chapter 3) and the time when the obligation

comes into force T , X is the variable attached to the obligation representing the

contents of the obligation—which can be either an event or a fluent. Notice that,

Ox,T in the triggering predicate, has only one time stamp because one can be certain

that an obligation holds after it is deontically initiated, but one cannot be certain

when it is going to be terminated. As was mentioned above, the aim of the triggering

event is to Initiate the obligation, thus for getting the effects of obligation on the task

of a process we embed the triggering event into the Happens predicate that is,

Happens(tr i g g er (X , N),T). This replaces the Initiates predicate to deontically

initiate an obligation. However, for a trigger to be effective, one has to specify the

conditions defining the trigger for an obligation. Also, the delay must be specified

because the delay N determines the difference in time when the triggering event

happens and when the obligation enters into force.

6.4.2.2 DTerminates Predicates and Events

To handle the termination of deontic fluent associated with the obligations,

we introduce a new predicate—deontically–terminates predicate. The

DTerminates(E , X , N ,TTer) means that an event E deontically terminates7 the

deontic fluent X , with some delay N at time TTer . The delay N defines the time

distance from when the terminating event occurs to the actual termination of

the deontic fluent happens. Essentially, the deontic termination of an obligation

means that it has no legal effects on the execution of the process from the time it is

terminated.

Also, for specifying the deadlines of the obligations, in the same way, we define

a special deadline–triggering event deadline(Ox,T X ,Td), where Ox,T and X are the

arguments for the deadline event and serve as the triggering event, and Td represents

the time of deadline event occurrence. The purpose of the deadline event is to signal

the time (deadline) until which the obligation conditions must be fulfilled; otherwise,

a violation of the obligation is triggered otherwise.

Accordingly, in many cases, not all the obligation conditions are fulfilled, and,

these unfulfilled obligation conditions lead to the violations. Hence, for specifying

7A deontic fluent can only be deontically terminated if it was deontically initiated.

178 CHAPTER 6. FORMAL EVALUATION OF CMFS

the violations of the obligations, a violation–triggering event violation(Ox,T X ,Tv) is

introduced, where Ox,T and X in the arguments of the violation event is obligation

with type and X is obligation fluent respectively, while Tv represents the time of

violation event occurrence. The violation event signals the time when the obligation

conditions are violated.

6.4.2.3 Terminability Predicates

In many cases, once an obligation has been fulfilled it is no longer required; thus, the

obligation is terminated. However, in some cases, the contents (full or part) of an

obligation might still be required to complete other obligations. To handle such cases,

to determine whether a deontic fluent will still be required after the fulfilment, we

introduced FulfillTerminable a boolean switch predicate FulfillTerminable(Ox,T X),

where Ox,T is the obligation with type, the time when obligation comes into force T ,

and X is the variable attached to the obligation. The aim of this boolean switch is

to signal whether a fluent is still required for the fulfilment. The conditions for the

switch are provided by the analysts as either YES or NO. With the Yes condition, the

obligation is terminated; for NO, the obligation remain in the set of active obligations,

even they are fulfilled.

Accordingly, in the similar way, we introduced the ViolationTerminable predicate

ViolationTerminable(Ox,T X) to signal that an obligation is terminable after it

has been violated. The predicate takes the same arguments as that of the

FulfillTerminable and operates in a similar manner as it does for the cases of

violations8.

6.4.2.4 Compensability Predicates

As discussed earlier (in Section 3.3), that violated obligations may be compensable.

Thus, to handle the compensation of violations we introduced a special event

compensation predicate Compensation(Ox,T X ,Tsc) where Ox,T and X are the

arguments for the Compensation event serving as trigger for compensation, and

Tsc is the time of the compensation event occurrence. The aim of the compensatory

event is to compensate the violated obligation. Also, we introduce a binary predicate

8Note that if the ViolationTerminable is evaluated as Ture, it would not necessarily mean that the
violated obligation could not be compensated for. A violated obligation can still be compensated for
depending upon the conditions of the violated obligation.

6.4. DEONTIC EXTENSION TO EVENT-CALCULUS 179

Compensates(Oy,Tsc Q,Ox,T X), where the two arguments are two deontic fluents.

The meaning of compensates is that fulfilling the first deontic fluent makes amends

for the violation of the second deontic fluent, and implements the Comp function

introduced in Section 3.4, Definition 7.

As compensation obligations are obligations themselves, they can be further

violated. Accordingly, a compensation obligation can be further compensable upon

violation. Based on the violation conditions of the compensation obligation, it can

be recursively compensable; thus, we introduced a special recursive compensation

predicate RecursivelyCompensable(Ox,T X). This is a boolean switch meant to

capture the intuition given by the condition 2 of Definition 9.

Timeline

violated(¬Q)

Obl(Q)
de

lay
Obl(P)

¬P

Obl(R)

¬R

Obl(S)

Figure 6.8: Recursive Compensation

Figure 6.8 illustrates the idea behind the recursive compensation of the violated

obligation. Assume an obligation in force Q, at some point in time (black dot), is

violated (¬Q), and depending on its violation conditions, Q is compensated by P ;

that is, Compensates(P,Q). Then P at some point in time, is violated (¬P) and, after

some delay, P is compensated by another obligation R; that is, Compensates(R,P)

that aim to amend the violation of Q. Now, if R is violated (¬R) and, given its

violation conditions, it is further compensable a new obligation S comes into force

to compensate; that is, Compensates(S,R).

Now, given the violation and compensation conditions

¬RecursivelyCompensable(P), the violation of P itself, is not recursively

compensable; but it is compensated to compensate the violation of Q. In the same

manner, ¬RecursivelyCompensable(R) is not recursively compensable; however, to

compensate the violation of P , which is compensated to recursively compensate Q,

and the violation of R, is compensated by S to recursively compensate Q; that is,

RecursivelyCompensable(S,Q). Note that the aim of the recursive compensation is

180 CHAPTER 6. FORMAL EVALUATION OF CMFS

to amend the effects of the violation of an obligation. The cycle of compensation,

depending on the violation and compensating conditions, continues until a

sub–ideal situation is achieved, or a penalty for the violation is enforced.

6.4.3 Modelling Obligations with Extended EC

Next, we use these predicates and events, giving the deontic EC semantics for the

various types of norms described in Chapter 3. Also, we give the generic axioms

required for modelling various cases of obligations prescribed in the business

contract. These axioms specify the conditions for no legal effects (that is, not

deontically HoldsAt) after termination of an obligation (A13), and the conditions

when no fluent deontically holds (A14):

¬DHoldsAt(X ,T +1) ←−∃E : DTerminates(E , X , N ,T) (A13)

¬DHoldsAt(X ,Tk) ←−¬DHoldsAt(X ,T)∧¬Happens(tr i g g er (X , N),T j)∧

(T ≤ Tk)∧ (T ≤ T j +N ≤ Tk)
(A14)

Remark 6. In what follows, we will have several situations where the trigger for the

obligation not only triggers the initiation for the obligation but also the termination.

This means that we have to write the expression in the following form:

DTerminates(tr i g g er (X , N), X , N ,T) (Eq.1)

where we have to repeat the parameters X and N twice. To avoid the repetition of these

parameters, we used the convention of dropping the X and N from the arguments

DTerminates to improve readability; thus, we have:

DTerminates(tr i g g er (X , N),T) (Eq.2)

Accordingly, the expressions in (Eq.2) is a shorthand for the expression in (Eq.1).

6.4.3.1 Punctual Obligation

The deontic EC axioms that describe when a punctual obligation holds as follows:

DHoldsAt(Op,Ts X ,Ts) ←

∃Tt , N : Happens(tr i g g er (Op,Ts X , N),Tt)∧

(Ts = Tt +N)∧N ≥ 0

(A15)

6.4. DEONTIC EXTENSION TO EVENT-CALCULUS 181

DTerminates(trigger(Op,Ts X , N),Ts) ←

∃Tt , N : Happens(tr i g g er (Op,Ts X , N),Tt)∧

(Ts = Tt +N)∧N ≥ 0

(A16)

Let us examine in detail the above axioms. In axiom (A15), an obligation is

represented as a fluent; specifically, the (punctual) obligation of X is represented by

the fluent Op,Ts X where Op,Ts is an obligation modality (a specific type of obligation)

and time when the obligation comes into force (Ts), and X is a variable referring to

the contents of an obligation. The special triggering event trigger(Ox,T X , N) initiates

the obligation by replacing the Initiates and is embedded in Happens

predicate. (A16) specifies that the same event that triggers the obligation terminates

the obligation, and the obligation terminates at the same time instant when it is

initiated. Thus, in combination with (A13), we have a punctual obligation is in force

for a one time instant only. The axiom specifying when a punctual obligation is

violated as follows:

Happens(violation(Op,Ts X),Tv) ←

DHoldsAt(Op,Ts X ,Ts)∧

¬Happens(X ,Ts)∧¬HoldsAt(X ,Ts)∧ (Tv = Ts)

(A17)

The violation of a punctual obligation happens when we do not have the contents of

the obligation at the right time. This can happen in the following two cases:

• the content is a fluent and does not hold at the time; or

• it is an event and does not happen at the time.

6.4.3.2 Persistent Obligation

The following axiom describes a persistent obligation with a natural deadline when

the fluent holds in interval:9

DHoldsAt(Oper,Ts X ,Tk) ←

∃Tt , N : Happens(trigger(Oper,Ts X , N),Tt)∧

¬DClipped(Ts ,Oper,Ts X ,Tk)∧

DTerminates(trigger(Oper,Ts X , N),Te)∧

(Ts = Tt +N)∧ (Te > Ts)∧ (Ts ≤ Tk ≤ Te)∧N ≥ 0

(A18)

9The definition of DClipped is the same as that for Clipped where Terminates is replaced by
DTerminates.

182 CHAPTER 6. FORMAL EVALUATION OF CMFS

Here, by the natural deadline means that if no other (relevant) event happens, the

obligation is in force from the Ts and Te , and that Te is determined by the same event

that triggers the (persistent) obligation.

Achievement and Maintenance obligations are two distinct cases of persistent

obligation. Next, we give various cases of achievement obligations such as, initiation,

violations and termination predicates in deontic EC (DEC).

6.4.3.3 Achievement Obligation

An achievement obligation is a special case of a persistent obligation where there

might not be a natural deadline for the obligation. Hence, there are two cases of

achievement obligations:

(i) when the obligation has no termination point; that is, initiation of the

achievement obligation.

DHoldsAt(Oa,Ts X ,Ts) ←

∃Tt , N : Happens(trigger(Oa,Ts X , N),Tt)∧ (Ts = Tt +N)∧N ≥ 0
(A19)

(ii) The obligation Holds at a particular time point deontically initiated and not

clipped between the interval; that is, start time and the point until it holds.

DHoldsAt(Oa,Ts X ,Tk) ←

DHoldsAt(Oa,Ts X ,Ts)∧¬DClipped(Ts ,Oa,Ts X ,Tk)∧ (Ts ≤ Tk)
(A20)

Since achievement obligations must be fulfilled within the stipulated time, they

can be achieved and terminated even before the deadline. Unlike a punctual

obligation, which is terminated by the same triggering event that initiates it, an

arbitrary event can terminate the achievement obligations. Accordingly, there are

two cases for the termination of achievement obligations:

(A) An arbitrary event terminates the obligation when the obligation conditions are

fulfilled before the deadline of and obligation.

DTerminates(−,Oa,Ts X , N ,Tk) ←

Happens(−,Tk)∧DHoldsAt(Oa,Ts X ,Tk)∧

(Happens(X ,Tk)∨HoldsAt(X ,Tk))∧

FulfillTerminable(Oa,Ts X)∧ (Ts ≤ Tk)

(A21)

The symbol ‘−’ represents an arbitrary event, which can be anything; for example, a

new obligation, an activity, or even a deadline that terminates the obligation.

(B) The deadline itself terminates the obligation.

6.4. DEONTIC EXTENSION TO EVENT-CALCULUS 183

DTerminates(deadline(Oa,Ts X ,Td),Td) ←

Happens(deadline(Oa,Ts X),Td)∧ (Ts ≤ Td)
(A22)

The axiom terminating the preemptive achievement obligations is as follows:

DTerminates(−,Oa,Ts X , N ,Te) ←

Happens(−,Te)∧DHoldsAt(Oa,Ts X ,Ts)∧

∃T ′ : (Happens(X ,T ′)∨HoldsAt(X ,T ′))∧

FulfillTerminable(Oa,Ts X)∧

(Te = Ts +1)∧ (T ′ < Ts)

(A23)

The earlier introduced predicate FulfillTerminable aims to check whether the

obligation can be terminated upon fulfillment. This leaves us to determine the

conditions under which a violation of an achievement obligation occurs. To capture

the violation of an achievement obligation, we introduced a deadline event (see,

Section 6.4.2.2), signalling the deadline after which a violation occurs if the

achievement obligation is not fulfilled by that time/event.

Happens(vi ol ati on(Oa,Ts X),Tv) ←

DHoldsAt(Oa,Ts X ,Te)∧

Happens(deadl i ne(Oa,Ts X),Te)∧

(¬Happens(X ,Te)∧¬HoldsAt(X ,Te))∧

ViolationTerminable(Oa,Ts X)∧ (Tv = Te)

(A24)

6.4.3.4 Maintenance Obligation

Maintenance is another case of persistent obligations; it is different from

achievement in the sense that the obligation conditions must be fulfilled for every

instant of the interval the obligation is in force. The axiom (A18) can represent the

maintenance obligations. Unlike an achievement obligation, a maintenance

obligation is violated if the obligation contents are not fulfilled for all the instances.

Happens(violation(Om,Ts X),Tk) ←

DHoldsAt(Om,Ts X ,Tk)∧

¬Happens(X ,Tk)∧¬HoldsAt(X ,Tk)∧ (Ts ≤ Tk)

(A25)

The violation of a maintenance obligation can terminate the obligation if the

obligation is ViolationTerminable, which is again, a boolean switch for checking

184 CHAPTER 6. FORMAL EVALUATION OF CMFS

whether a maintenance obligation can be terminated upon violation. The

conditions for termination after the violation are:

DTerminates(Om,Ts X ,Tv) ←

Happens(violation(Om,Ts X),Tv)∧

ViolationTerminable(Om,Ts X)

(A26)

For a non–perdurant maintenance obligation, the violation of the obligation itself

terminates the obligation.

DTerminates(violation(Om,Tv X),Tv) ←

DHoldsAt(Om,Tv X , tv)∧ViolationTerminable(Om,Ts X)∧

Happens(violation(Om,Ts X),Tv)∧ (Ts ≤ Tv)

(A27)

6.4.3.5 Compensation Obligation

As mentioned earlier in Section 6.3.2, one of the major shortcomings of PENELOPE’s

semantic properties is that they cannot handle the obligation arising from the

violation of an obligation. This is because the PENELOPE semantics do not admit

obligations after violations; that is, violations without reparations. In other words,

no obligation will be initiated if, for any reasons, an obligation is violated. We now

provide deontic semantics that show how the compensations obligations arising

from the violations can be handled. Since, a compensation is an obligation itself, we

introduced a special event compensates, where an event triggering a

compensation is the violation of a norm that compensation compensates. The

domain–specific axioms for the two cases of compensation are:

(1) Compensation of the violation by a single obligation:

Happens(Compensates(Ox,Ts P),Tsc) ←

∃Oy,Tsc Q : (Compensates(Oy,Tsc Q,Ox,Ts P),Tsc)∧

Happens(violation(Ox,Ts P),Tv)∧

DHoldsAt(Oy,Tsc Q,Tsc)∧

(Happens(Q,Tsc)∨HoldsAt(Q,Tsc))∧ (Ts ≤ Tv ≤ Tsc)

(A28)

(2) Recursive compensation when a compensation obligation itself is violated:

Happens(Compensation(Ox,Ts P),Tsc) ←

Compensates(Oy,Tsc Q,Ox,Ts P)∧

Happens(violation(Oy,Tsc Q),Tv)∧

Happens(Compensation(Oy,Tsc Q),Tz)∧

RecursivelyCompensable(Ox,Ts P)∧ (Ts ≤ Tsc ≤ Tz)∧ (Tv ≤ Tz)

(A29)

6.5. SOLVING PENELOPE’S ISSUES WITH DEONTIC EC 185

For the two axioms above, we introduced the special event Compensation, indicating

that a violated deontic fluent has been compensated for, and the binary predicate

Compensates where the two arguments are two deontic fluents. The meaning of

Compensates is that fulfilling the first deontic fluent makes amends for the violation

of the second deontic fluents and implements the Comp function introduced in

Chapter 3 (Definition 7). Again, the predicate RecursivelyCompensable is a boolean

switch meant to capture the intuition given by condition 2 of Definition 9.

The events and predicates introduced in this section allow capturing the deontic

effects of obligations from when they come into force, not from when the event is

triggered; we have formally shown this to be impossible with existing variants of

EC. Thus, PENELOPE’s semantics properties cannot give a faithful representation

of legal norms. In addition, new axioms provide the semantics for different types of

obligations, and various conditions associated with these obligations.

6.5 Solving PENELOPE’S Issues with Deontic EC

Now, we formally show how newly extended EC can be used to address the issues

with PENELOPE’s semantics, to acquire the effects of different types of obligations

on the tasks of a business process for populating the State and force functions. The

deontic axiom modelling the situations where the obligation enters into force with

the occurrence of the event is as follows:

DHoldsAt(Op,Ts Immedi atel y Acknowled g e,Ts) ←−

∃Tt , N : Happens(tr i g g er (Compl ai nt ,0),Tt)∧

Happens(Compl ai nt ,T)∧

(HoldsAt(i nPer son,T)∨HoldsAt(byPhone,T))∧

(Ts = Tt +N)∧N ≥ 0

(A30)

Let the event Complaint occur at state T , and the obligation fluent byPhone

holds at the same state. Then, from domain axiom (A30), we derive

Happens(tr i g g er (Compl ai nt ,0),Tt); and then from axioms: (A15),(A16)

and (A13), we obtain DHoldsAt(Op,Ts Immedi atel y Acknowled g e,Ts) and

¬DHoldsAt(Op,Ts Immedi atel y Acknowled g e,T + 1). This means that we have

an obligation to immediately acknowledge the complaint on its receipt; that is,

obligation enters into force with the event occurrence. Now, assume that we model

acknowledgment as an event, and we have an event Complaint at state T —that is,

186 CHAPTER 6. FORMAL EVALUATION OF CMFS

Happens(Compl ai nt ,T)—then, at this state, the conditions of violation do not hold.

Suppose now that Happens(Immedi atel y Acknowled g e,T) is not true; that is, the

complaint is not acknowledged; thus, ¬Happens(Immedi atel y Acknowled g e,T)

is true at state T . In addition, given that ImmediatelyAcknowledge is an event, if we

have ¬HoldsAt(Immedi atel y Acknowled g e,T), then we can use Axiom (A17) to

conclude that the obligation to acknowledge the oral complaint by phone on the

spot has been violated.

To address the violation–handling problems with PENELOPE’s semantics, in a

previous section, we introduced a violation event. The axioms capturing the effects

when an obligation is violated as follows:

DHoldsAt(Oa,Ts Pay Invoi ce,Ts) ←−

∃Tt , N : Happens(tr i g g er (Oa,Ts Pay Invoi ce,0),Tt)∧

Happens(Pay Invoi ce,T)∧Happens(Pay Invoi ce,T ′)∧

(Ts = Tt +N)∧N ≥ 0∧T ′ < T ≤ Ts

(A31)

Happens(vi ol ati on(Oa,Ts Pay Invoi ce),Tv) ←−

DHoldsAt(Oa,Ts Pay Invoi ce,Te)∧

Happens(deadl i ne(Oa,Ts Pay Invoi ce),Te)∧

(¬Happens(Pay Invoi ce,Te)∧¬HoldsAt(Pay Invoi ce,Te))∧

(Tv = Te)∧Ts < Te

(A32)

Let us assume that an event PayInvoice holds at time T , and that from

domain Axiom (A31), we then derive the triggering conditions—that is,

Happens(tr i g g er (Oa,Ts Pay Invoi ce,0),Tt)—and then, again from Axiom (A31),

we obtain DHoldsAt(Oa,Ts Pay Invoi ce,T); this mean that (A31) holds at

time T . Now assume that the agent does resolve the complaint by the

deadline, and the violation of the obligation occurs at Tv . Then, from

domain Axioms: (A31) and (A22) we obtain DHoldsAt(Oa,Ts Pay Invoi ce,Ts) and

Happens(deadline(Oa,Ts Pay Invoi ce),Te) meaning that the obligation to PayInvoice

holds at state Ts , and the payment must be made by the deadline Te . Now

suppose that the payment is not made by Te , then from Axiom (A17) we derive

Happens(violation(Op,Ts Pay Invoi ce),Tv); that is, we have state Tv where the

obligation is violated. Next, to give the violation semantics, suppose we model

the obligation fluent Pay Invoi ce as an event and, in the first instance, we assume

that payment is made thus, we have Happens(Pay Invoi ce,T), meaning that fluent

6.5. SOLVING PENELOPE’S ISSUES WITH DEONTIC EC 187

obligation fluent is true. Suppose now that Happens(Pay Invoi ce,T) is not true;

that is, the complaint is not resolved by Te ; thus, ¬Happens(Pay Invoi ce,Te)

becomes true at state Te . Accordingly, given that Pay Invoi ce is an event, if

¬HoldsAt(Pay Invoi ce,Te) is also true, then using Axiom (A24) we can conclude

that the obligation to pay the invoice by the deadline has been violated at Te .

Finally, we give the axiom for the compensation obligation amending the

violation of the obligation to the pay invoice in (A32).

Happens(Compensati on(Oa,Ts Pay Invoi ce),TSc) ←−

∃Oa,TSc Pay Invoi ce +3%Inter est :

(compensates(Oa,TSc Pay Invoi ce +3%Inter est ,Oa,Ts Pay Invoi ce),TSc)∧

Happens(vi ol ati on(Oa,Ts Pay Invoi ce),Tv)∧

DHoldsAt(Oa,TSc Pay Invoi ce +3%Inter est ,TSc)∧

(Happens(Pay Invoi ce +3%Inter est ,TSc)∨

HoldsAt(Pay Invoi ce +3%Inter est ,TSc)∧

(Tv ≤ TSc)
(A33)

Assume a compensation obligation Pay Invoi ce + 3%Inter est comes into

force at time TSc . Then, from Axiom (A33), we derive a special event

compensates(Oa,TSc Pay Invoi ce +3%Inter est ,Oa,Ts Pay Invoi ce), and then from

axioms: (A26) and (A33), we obtained Happens(vi ol ati on(Oa,Ts Pay Invoi ce),Tv)

and DHoldsAt(Oa,TSc Pay Invoi ce +3%Inter est ,TSc) respectively. In other words,

the deontic fluent Pay Invoi ce violated at time instant Tv is compensated by

the compensating event that comes into force at TSc . The binary predicate

Compensates, in its arguments, indicates two deontic fluents, and the meaning

of the predicate is that fulfilling the first deontic fluent compensates the violation

of the second deontic fluent. Accordingly, for the last condition, from (A21) we

derive fluent Happens(Pay Invoi ce + 3%Inter est ,TSc) ∨ HoldsAt(Pay Invoi ce +

3%Inter est ,TSc , which either deontically happens or holds at time TSc . Hence,

in combination with the compensation event derived from axiom (A33); that is,

Happens(Compensati on(Oa,Ts Pay Invoi ce),TSc) compensates the violation.

188 CHAPTER 6. FORMAL EVALUATION OF CMFS

6.6 Related Work

Primarily EC has been extensively used in multi-agents systems (MASs), for

modelling and reasoning about the agents behaviour, interaction, and planning

where it has rich publication record (Alberti et al., 2006; Chesani et al., 2013; Flores

and Kremer, 2002; Yolum and Singh, 2002). The legal domain, on the other hand, has

equally exploited the capabilities of EC for reasoning normative systems along the

temporal dimensions.

Fornara and Colombetti (2009) provide formal specifications of commitments

and pre-commitments, institutionalised power, and context using the EC. The

formal representation of norms is limited to obligations and permissions only, as

in (Goedertier and Vanthienen, 2006c). Also, they do not make any distinction

between different types of obligations and effects of violations on obligations as we

do although the notion of sanctions has been formally presented in the study. A

rather similar work by Artikis et al. (2005) proposed EC–based formal specifications

of obligations and permissions in the context of Ad–Hoc Networks. In contrast, we

make a clear distinction between the various types of obligations in terms of their

temporal aspect of validity, the effects they produce and the effects of violations on

them.

Bandara et al. (2003) translate both the policies and system behaviour

specifications into a formal specification, using EC. The proposed formal

specifications are expressive enough to efficiently model the systems, using various

types of policies representing obligations. These formal specifications can be used,

together with the abductive reasoning, for detecting and representing the conflicts

between the policy specifications (particularly those related to the authorisation and

permissions). Their formal specifications, used with abductive reasoning, are useful

in the sense that a priori knowledge about the event/fluent state can be used to

simplify the representation of preemptive obligations. Such obligations are fulfilled

even before they come into force. In this work, we do not consider a priori

knowledge of the events/fluent, but use the notion of preemptiveness to distinguish

different cases of the violation of an achievement obligation and model in the EC.

Yolum and Singh (2004) study norms as social commitments capturing the

obligations in the context of protocols. The authors employ Shanahan’s full EC

(Shanahan, 1997) for modelling base–level and conditional commitments. Primarily,

the study focuses on the persistent commitments and provides EC axioms for

6.6. RELATED WORK 189

reasoning commitments and operations on them. Also, it deals with the violation of

commitments in the context of protocols to identify the non–compliant behaviour

of an agent. In contrast, we go beyond the basic obligation types and provide axioms

for various obligation types including the persistence effects of obligations even

after the violation of an obligation. Overall, the notion of commitments used in this

work is somewhat similar to ours; however, their classes of commitment are

context–specific, while our classes of obligations are context–independent. Also,

unlike our work, they do not have the notion of temporal proposition for modelling

time interval, which is imperative for modelling maintenance obligations.

Paschke and Bichler (2005) provide a logical framework for automating the

electronic contracts for representing complex business rules and business policies.

The authors integrate the EC into other logical formalism—such that, Horn Logic

and Deontic Logic and ECA rules—to model the contract states and deontic

concepts (for example, obligations and permissions) as time-varying fluent. Evans

and Eyers (2008) use EC for encoding deontic clauses of contracts for data use rules

and the monitoring of subsequent compliance with these rules. Their work is similar

to that of Grosof et al. (1999), with the exception that the logic programming used in

their work is formalised in EC to represent the deontic state explicitly while latter is a

declarative approach to modelling various contract rules types. Our work is different

from these studies: as we consider rather complex obligation types, and the effects

of violations, while they simply work on basic deontic notions; that is, achievement,

permissions and prohibitions.

In Marín and Sartor (1999), an analysis of two temporal profiles— (i) internal

and external time of the validity, and (ii) rules attributing the applicability of legal

norms after the triggering of an event—is provided. These notions are then formalised

using EC conceptualisation and correct representation of the legal feature norms for

automated reasoning. However, the effects of the occurrence of an event (expected

or unexpected) that might cause the validity of the norm, the effects of how and when

a norm is terminated, and the violation of norms, have not been covered in their

analysis. Also, no analysis has been performed on how such effects can be correctly

translated for automated reasoning.

Alrawagfeh (2013) propose a norms representation approach using EC, thus

enabling the agents to use norms in their practical reasoning. Also, this study

considers only two classes of norms—obligations and prohibitions—for which

190 CHAPTER 6. FORMAL EVALUATION OF CMFS

authors introduced three fluents; that is, fPun and oPun referring to obligation norm

violation and prohibition norm violation respectively, and oRew for obligation

fulfilment. The extended fluent can be used for representing the norms that are

composed of several actions, together with the norm’s context. Alrawagfeh’s

approach is rather limited because it does not consider other norms and various

obligation types as we do. Also, this study follows the Anderson’s reduction view of

norm that suggests every violation of a norm is followed by a sanction (Arend, 2001),

and the similar notion violation without reparation is employed in (Goedertier and

Vanthienen, 2006c), and essentially leads to termination of interaction, and a

penalty can be imposed. However, we argue that, initially, sanctions are not/cannot

be directly imposed in every case, as a sub–ideal situation can still make a business

process compliant. The notion of compensation obligations, and obligations

perduring after the violations (shown in this chapter), are the norms types that

strengthen our argument.

The analysis of three formalisms conducted in (Elgammal et al., 2011a) compares

the abilities and limitations of formal languages chosen from the temporal and

deontic families of logics. Their analysis specifically looks at the formality of these

formalisms for modelling compliance requirements, and 11 other features of the

chosen languages. On the other hand, Ly et al. (2013) evaluates five frameworks

against core compliance management functionalities from different domains. These

evaluations are fundamentally limited in scope as they do not consider the

compliance modelling languages and constructs for the specifications of norms. In

comparison, we evaluate the expressive power of LTL and EC, using the semantics to

define temporal properties of norms in terms of temporal validity of norms and the

effects of violations on other obligations; at the same time, we highlight the issues

with these formalisms that result from the modelling of different types of

obligations.

6.7 Summary

In this chapter, we contributed a detailed formal semantic evaluations of LTL and

EC based frameworks. The aim was to find the answer whether existing CMFs

based on these formalisms can fully represent legal norms in a conceptually sound

way. We used the constructs proposed in the COMPAS and PENELOPE frameworks

6.7. SUMMARY 191

based on these formalisms. Our evaluations show that the answer to the question

seems negative because both the evaluated CMFs based on these two formalisms

show several shortcomings in providing conceptually sound modelling support for

representing legal norms.

We began by modelling the clauses of a plausible scenario inspired by the real life

legal norms, using COMPAS patterns based on the compliance request language

(CRL) to translate them into LTL formulas. The translation showed that any

formalisation based on LTL is not suitable for representing the legal norms of the

scenario. However, it does necessarily mean that LTL per se is not able to represent

the scenario. The formalism is equally suitable to provide the formalisation of the

specification of process models, but it lacks the expressiveness to give the

formalisation of the specifications of legal norms. However, the CRL’s patterns giving

the specifications of the scenarios translated into LTL formulas do not fully capture

the semantics obligations. For example, the CRL Else/ElseNext compensation

pattern formalised into LTL, cannot represent maintenance obligations and

prohibitions prescribed by the scenarios; we have shown that how to address this

problem. Another problem with the LTL is that it cannot model permissions, since

they do not play a direct role in compliance but the clauses in the scenario that

specify permissions. Since, legal theory admits permissions as the absence of

obligations, we remarked that the F temporal operator can be used to model

obligations, and is a natural choice to model prohibitions. But if we do not use F

then how to represent permissions—or LTL does not support permissions.

As COMPAS and its underlying compliance requirements language include most

of the patterns used by other CMFs, our evaluation of LTL can be equally extendible

to other temporal logic based CMFs, such as, DELCARE and BMPMN–Q. As DELCARE

is based on LTL, it will have the same limitations as COMPAS. BPMN-Q, on the other

hand, is based on CTL, which is the superset of LTL. The natural question is then

whether the branching time logics with path quantifiers, such as, CTL and CTL*, are

more suited to modelling permissions. In such logics, permissions could be modelled

by EF. While modelling permissions using path quantifiers seems a better option

and provides more flexibility for modelling norms, it does not solve the problem

with the scenario we proposed, given that the problem requires just only a single

(non)–branching trace to arise, and thus path quantifiers are essentially irrelevant.

We can safely argue, therefore, that, overall LTL–based CMFs do not seem to be

192 CHAPTER 6. FORMAL EVALUATION OF CMFS

suitable for the verification of business processes against the rule sets of legal norms,

as the results they provide are not aligned with the expected outcomes based on

the legal interpretation of the scenario. The reason is that they fail to represent and

reason with the norms in a conceptually sound way. Accordingly, they cannot be

used to check compliance of real business processes with real norms.

We also evaluated the formal semantics of PENELOPE, a design-time CMF based

on EC. Similar to the case with LTL, EC also has fundamental deficiencies in

modelling different types of obligations. In particular, it is not possible to model the

punctual obligations with PENELOPE semantics because of the problems with the

Initiates predicate of EC. Since, Initiates predicate is not able to capture the effects

of various obligations on the tasks of a process, it not possible to check the

compliance. We also formally proved that PENELOPE’s violation semantics, wrongly

evaluate the violations at deadlines. Moreover, PENELOPE does not admit the

notion of compensatory obligations because of the use of the notion of violation

without reparation. To address some deficiencies with PENELOPE semantics, we

introduced a deontic extension to EC to show how to address the problems with a

formalism for representing legal norms. We introduced a special triggering event

replacing the Initiates predicate. The triggering event, with the help of delay,

captures the deontic effects of an obligation from the time it comes into force rather

than from the time when the event triggering the obligation occurs. Essentially, the

delay determines the difference in time between when the triggering event occurs

and when the obligation comes into force thus allows the capturing of deontic

effects of legal norms; that is, DHolds.

Similar to the trigger for the initiates, we introduced a triggering event

DTerminates, which deontically terminates an obligation. We then used the newly

proposed predicates and events and trivially modelled different types of obligations,

the violation situations, and obligations arising from the violations; these cannot be

modelled with PENELOPE’s existing semantics. Essentially, the proposed extension

increases the ability of EC to provide support for all types of obligations; this is

not possible with the existing base predicate Initiates used in PENELOPE, which

thus cannot capture the nuances and effects of the obligations for business process

compliance checking.

C
H

A
P

T
E

R

7
EPILOGUE

To conclude this thesis, we summarise and discuss its main contributions and

limitations, and shed some light on possible avenues for future research.

7.1 Synopsis

In response to the ever–changing organisational compliance reporting requirements,

researchers have shown a wider interest in, and have proposed several CMFs for

providing automated compliance checking of legal norms. These CMFs address the

compliance problem from a variety of perspectives, and offer specific capabilities.

Regardless of their nature and type, and how good and flexible these CMFs can

be, their effectiveness largely of depends on the underlying conceptual and formal

models that provide the reasoning support to model various types of normative

requirements. For the most part, CMFs are grounded on various formal models

that use different formalisms for reasoning and modelling the legal component of

business process compliance. Given the extensibility of the compliance domain,

and the existence of a large breed of CMFs determining the suitability of a CMF

for effective compliance reporting is a difficult task, and requires special tools and

methodologies. However, as the literature on business process compliance suggests,

the business process compliance domain lacks the accepted tools and methodologies

to evaluate the abilities of a CMF, in particular, to evaluate the effectiveness of its

193

194 CHAPTER 7. EPILOGUE

conceptual and formal models that provide the reasoning support to model the legal

component of the compliance problem. In this thesis, we addressed this shortcoming

and presented a formal framework comprising several methodologies to evaluate

the abilities of existing CMFs.

In addressing the key questions of this thesis, we presented a formal framework

that contributes: (i) a classification model for normative requirements, and the

formal semantics for each class of the classification required to properly model these

normative requirements; (ii) methodologies to evaluate the conceptual and formal

foundations of existing CMF; and (iii) a deontic extension to Event–Calculus (EC)

showing that how to address the problems with a formal language if we want to use

it to properly model and reason about different types of normative requirements in a

conceptually sound way. The framework has been exhaustive developed by

combining formal methods and case study methods and provides the formal

foundations for evaluating the abilities of existing CMFs.

In order to address Question 1, and Question 2, we asked: What are the generic

classes of normative requirements for which a CMF should be able to provide full

reasoning and modelling support? To address this question, we designed a

classification model (presented in Chapter 3) that provides a rich ontology of

deontic notions, for example, obligations, permissions, violations and

compensations. These notions are further divided into sub–classes along temporal

dimensions of the validity of the norms. Also, along the temporal dimensions, we

specified when an obligation comes into force and until what time it remains in

force, or when it is violated at a particular point in time. These classes of normative

requirements have been obtained in a systematic and exhaustive way using the

well–known divide and conquer method. In order to define the meanings of each

class in the classification model, along temporal dimensions, we provided formal

definitions in terms of the temporal validity of obligations, what constitutes a

violation, and the effects of violations on other types of obligations. We did not

restrict ourselves to any particular formalism, as the provided semantics are generic

ones and can be represented in any formal language despite beign grounded with

deontic logic in mind. We validated this fact, later in (Chapter 4), where we formally

modelled these notions over WF-nets giving formal specifications of business

processes; and in Chapter 6, we modelled them using Event-Calculus (EC). The

proposed classification model provides a list of generic classes (and sub-classes) of

7.1. SYNOPSIS 195

the normative requirements with which a CMF need to comply with.

With the new classes and semantic definitions of the norms now established, the

natural question was: How can we properly model and check the compliance of new

classificatory classes of the classification model? To address this question, Chapter 4

proposes a compliance checking approach that provides the formal models of

business processes and the specifications of norms, and details the steps required to

properly model the legal component of compliance. We began the process by

providing the formal models for business process specifications and normative

requirements, which are integral components of the modelling of the compliance of

business processes. For the specifications of a formal model for business processes,

we described a process as the sequence of states corresponding to the execution of a

process model using WF–nets. We then used these sequences of states to provide the

formal model of the norm classes provided in the proposed classification model.

Next, we formally defined what it means to comply with, or violate, a norm. Finally,

we integrated these formal models with an intermediary mechanism (adopted from

Sadiq et al., 2007) to semantically annotate business processes for compliance

checking purposes. To practically demonstrate the effectiveness of the compliance

checking approach, we used a real–life complaint–handling process.

To address Question 1, the main question of this research, and to practically

demonstrate how to evaluate existing CMFs, systems, approaches, and languages, we

put the designed framework into practice. The outcome is the contribution of

several conceptual and formal evaluations of existing CMFs; these are presented in

Chapters 5 and Chapter 6 respectively. The classifications model and the formal

semantics provided the bases for these evaluations, as they were used them to

examine whether existing CMFs are able to fully represent the classificatory classes

of our classification model.

For the conceptual evaluations (Chapters 5), we examined the conceptual

foundations of the selected CMFs—in particular, their underlying conceptual

models—and asked; What construct are provided for modellign the norms? Which

formal languages are used? How are the norms linked for compliance checking and

What is the level of compliance management? We adopted a case study–based sound

evaluation methodology, which allowed us to start the evaluation with minimal

information available on the CMFs. Under this methodology, we selected seven

CMFs, using pre–defined evaluation criteria, which were determined as the result of

196 CHAPTER 7. EPILOGUE

expert discussions. We then evaluated the various constructs proposed in a CMF to

examine their correspondence with the semantic definitions of each norm class, in

terms of their ability to fully capture the meanings of the specific type of norms. Our

conceptual evaluations portray somewhat a bleak picture that shows that not all the

existing CMFs are fully able to provide compliance checking support for all types of

normative requirements. Some frameworks cannot fully represent different types of

norms; for example, a specific notion might not be fully represented by a proposed

construct, or the idea of the notion might not be considered in the CMF.

Chapter 6 presents the formal evaluations of CMFs from two prominent families

of formalism: LTL and EC. The aim of these formal evaluations was to find the

answer whether CMFs based on these formalisms can fully represent the classes

of our classification model proposed in Chapter 3. The constructs provided in the

COMPAS and PENELOPE CMFs, which based on the LTL and EC formalism, were

used for the evaluation. Using the plausible scenarios inspired by real life legal norms,

we evaluated the COMPAS compliance requirement language (CRL) patterns and

translated them into LTL formulas. Our evaluation shows that any formalisation

of CRL patterns–based on LTL is not suitable for representing the different types

of norms in particular permissions, maintenance, and compensations. Because

COMPAS uses the patterns that are mostly used by other LTL based CMFs such as

BPMN–Q and DECLARE, the evaluation results can be simply extended to these

CMFs. Thus, we concluded the CMFs based on LTL are not suitable for representing

legal requirements in a conceptually sound way. Hence, they cannot be used to check

compliance of real business processes with real norms.

We also evaluated the formal semantics of PENELOPE, a design–time CMF based

on EC. Similar to LTL, EC also has fundamental deficiencies in modelling different

types of obligations; in particular, there are problems with the EC predicates

Initiates and Terminates, which fails to capture the effects of the tasks on business

processes. Thus, PENELOPE is incapable of checking the compliance of various

types of obligations, such as punctual obligations. We have also formally shown that

the PENELOPE’s violation semantics wrongly evaluate the violations at deadlines.

Moreover, PENELOPE does not admit the notions of compensatory obligations,

because of its use of the notion of violation without reparation. Hence, PENELOPE

can by no means be relied upon for the checking and verification of compliance

requirements. To address problems with the EC predicates, we then proposed a

7.2. LIMITATIONS 197

deontic extension to EC, and introduced new predicates and events. The newly

introduced predicates increases, the expressive power of EC, enabling it to trivially

model all types of obligations and the notions that PENELOPE cannot model. These

include, but are not limited to, prohibitions, violations, and compensations.

Moreover, the proposed extension also illustrates that how to address the problems

with a formal language, if we want to use it for properly modelling and reasoning

about all types of normative requirements in a conceptually sound way.

7.2 Limitations

This research developed a formal framework to evaluate the abilities of existing

CMFs to represent normative requirements in a conceptually sound fashion. Given

the breadth of the compliance domain where a plethora of CMFs exist, each of the

CMFs addresses the compliance problem either at design-time, run-time or post-

execution time, and offers a number of core functionalities. Due to extensibility of

the compliance domain, it is not possible to address all the problems faced by the

domain. Hence, to keep this research in a manageable scope, the main limitations of

this thesis are:

• a CMF might offer a number of functionalities e.g., representation and

checking of normative requirements, violation detection and explanation,

remedial actions to recover from violations etc. This thesis deals only with

norms representation functionality of CMFs whether they can properly

represent legal norms. Other functionalities such as compliance enforcement,

monitoring, traceability, reporting and violation handling etc., are not

addressed.

• only design-time CMFs are considered while run-time and post-execution

time CMFs have been excluded from this research.

7.3 Avenues for Future Work

Research is a never–ending process. Although the presented study achieved its

specific goals, the work presented here can be improved in various ways.

First, to validate the effectiveness of the overall framework—that is, the

classification model and the compliance checking approach—we evaluated CMFs

198 CHAPTER 7. EPILOGUE

from two families of logics: LTL and EC. The evaluation shows that the proposed

framework is flexible and can be used to evaluate any CMF, albeit grounded in

different formal languages. Further evaluations can be carried out against other

formalisms—such as, first–order–logic, π–calculus, deontic and defeasible logic—to

determine whether these languages can provide reasoning support for all types of

normative requirements for a more comprehensive validation of our framework. A

step in this direction can be the works proposed in (Governatori, 2015; Hashmi et al.,

2014).

Second (in Chapter 5), we evaluated norms modelling constructs of the selected

CMFs. Besides these CMFs there are formalism independent languages to represent

legal norms. For example, Nómos 3 is a primitive–based compliance verification

language that uses primitives as notations to design graphical models. Graphical

models are used to reason about the compliance requirements, and the roles with

the norms. Essentially, Nómos is a conceptual graph-based norm modelling

language (Croitoru et al., 2012). Analysis of such formalism independent languages

can certainly provide further insights into the state–of–the–affairs as well as their

shortcomings.

Another line of interest can be gaining a better understanding of the concerns on

the usability and the generalisation of norms modelling patterns evaluated in this

work—in particular, the balance between the semiotic clarity of the concepts and

the proposed patterns. A first step in this direction can be a detailed usability study

with the non-technical experts and industry professionals that can provide valuable

insights on these issues. A theoretical framework proposed by Figl et al. (2009) can be

used as a guiding framework to gain more understanding on the balance between the

complexity and the expressiveness of the modelling constructs, and logic formulas

to carry out such usability studies.

With respect to the deontic extension to EC, we included new deontic predicates

and events to the calculus. The deontic extension addresses the issues with EC, and

provides a theoretical contribution and it has not been implemented. Gaining a

detailed understanding on the effects of the extended predicates and events remains

a posible future work.

On the same note, the deontic extension proved to be expressive in capturing

the nuances of all types of normative requirements. However, we are unaware of

any complexities that might arise as the result of the inclusion of new predicates to

7.3. AVENUES FOR FUTURE WORK 199

the EC semantics. A detailed analysis of the expressiveness of the extended calculus

is thus required to gain a deeper understanding of the potential complexities. The

techniques proposed in Cervesato et al. (2000) can be used to analyse the complexity

of various extensions to EC increasing its expressiveness.

A comparative analysis of the expressiveness of the proposed deontic extension

to EC with other formalisms notably: linear temporal logic, deontic and defeasible

logic, first–order–logic, features and fluents calculus, and situation calculus could

certainly provide more insights into the state–of–the–affairs of formal modelling

languages for modelling and representing the legal knowledge. Most importantly,

it would highlight the deficiencies of these languages with respect to automated

business process compliance checking.

Appendices

201

A
P

P
E

N
D

I
X

A
SYNTHETIC BUSINESS CONTRACT

This Deed of Agreement is made between ‘ABC’, an independent body operating in

the Education Sector, which has its office at place PEL Tce APZ, and the legal entity

company ‘UBIX’ Inc., which has its office at Place Liberty Avenue, MPL.

WHEREAS the independent ABC (hereafter Principal) requires the professional

engineering, equipments, and other services as defined in the expression of interests

proposal.

WHEREAS , The UBIX Inc. (hereafter known as Contractor) can provide the services

(as per the terms of services) to the Principal, and is in the business of discharging

—and has the capabilities, resources, and experience to discharge—the obligations

set forth in the terms and conditions of this Agreement.

1. DEFINITIONS

a) Agreement: This agreement comprises (i) this document; (ii) the request

for proposal dated: XYZ; (iii) the qualifications and proposal dated XYZI;

and (iv) all other schedules attached hereto or incorporated herein by

reference.

b) Services: ‘Services’ include all the obligations (as per terms of services)

to perform the professional engineering services, to supply the

equipment, and other services defined in the program and as described

in the proposal.

203

204 APPENDIX A. SYNTHETIC BUSINESS CONTRACT

c) Obligation: ‘Obligation’ refers to a course of action corresponding to the

duties or services to be rendered under the conditions set forth in this

Agreement.

d) Effectiveness of This Agreement: This Agreement shall become effective

when signed by both the Principal and the Contractor.

e) Execution of This Agreement:

i. Start Date: The date when this Agreement is signed.

ii. End Date: 90 days from the signing date of this Agreement.

2. TERMS OF SERVICES

2.1 Scope of the work: The services including their related general and

special terms and conditions as described in Section 3 of this Agreement.

a) Changes in the Scope of the Work: The Principal can request major or

minor changes in the scope of the work at any time during the period of

this Agreement. Under such circumstances, the Contractor shall extend

full co-operation and accordingly make/implement such changes as per

the change request. The change request shall be within the scope of the

work agreed upon in this Agreement, and shall be subject to the following

conditions.

(i) Major changes: A major change, if requested, might require new

requirements or changes in the specifications of the tendered

equipment. These requirements or changes might include (but

might not be limited to) the required model, make, or manufacturer

of the equipment; technical (and/or configuration) specifications;

the number of required items; the acquisition of new services etc., or

(ii) Minor changes: A minor change, if requested, might require the

renewed requirements or changes in the specifications of the

tendered equipment. These might include (but might not be limited

to) changes to the agreed upon configuration, change to location of

the supply of the equipment, alteration (or alternative) in cabling,

and/or its installation etc., thereof.

b) If the Principal requests a major change in the services as described

in Section 3 (subject to sub-clauses) per sub-clause 2.1.a(i) hereof, the

205

Contractor reserves the right either to (i) accept, or (ii) reject, any such

major change request, and

c) Pursuant to clause 2.1.b(i), the Contractor shall make any such

acceptance only by a separate amendment.

d) The Contractor has the right to draw up new conditions for a major

change request in addition to the conditions of services defined in this

Agreement.

e) Pursuant to clause 2.1(d), the new conditions drawn up for the major

change shall be sent to the Principal for approval.

f) Subject to clauses 2.1(d) – 2.1(e), the contract shall be amended to include

approved new changes for an accepted major request.

g) Pursuant to sub-clause 2.1.a(ii), for a minor change request, the

Contractor shall accept such minor changes as an amendment to this

Agreement, without drawing up any new conditions.

h) The Principal shall pay the Contractor the extra costs of the requested

changes per the provisions set forth in Section 5 (sub-clauses 5a-5d).

3. PERFORMANCE OF SERVICES: The CONTRACTOR (pursuant to Sub-section

2.1, if applicable) shall be responsible for the following:

a) Delivery of Equipments: The conditions for the delivery of equipments

(as listed in Annexure X) are:

i. The Contractor must deliver the equipment within 7 working days to

the Principal’s designated location, within 7 working days of the date

this Agreement is signed.

ii. All the supplied equipment must be completely new, and conform to

the requirements set forth by the Principal.

iii. The Contractor must also provide adequate certification that the

supplied equipment is in alignment with the state-of-the art

technology.

iv. The Contractor must also provide certification that the supplied

equipment comply (and conform) to all applicable regulations, and

shall indemnify the Principal from any breaches committed by the

Contractor.

206 APPENDIX A. SYNTHETIC BUSINESS CONTRACT

v. The Contractor shall be responsible for all transportation, labour,

taxes, and freight charges related to the supply of the equipment.

vi. The Contractor must prepare an Equipment Delivery Report (EDR)

for submission no later than 3 working days from the actual delivery.

b) Installation&Testing of Equipment

i. The Contractor must install, as per the provided

specifications/configurations, the supplied equipment not later

than 5 working from the submission of an EDR.

ii. If needed, the Contractor can alter the provided specifications, if

needed so, to best fit the Principal’s requirements, or to enable the

equipment to function properly.

iii. Subject to sub-clause 3b(ii), the Contractor must inform the

Principal of any alternations made to the agreed upon

configurations, and provide complete documentation of such

alterations including drawings and other relevant information.

iv. The Principal shall not be responsible for any extra cost(s) arising as

the result of any alterations made, such as the costs of spare parts

or any new equipment required. Such expenses will be the sole

responsibility of the Contractor.

v. The Contractor must prepare and provide an installation report

within 3 working days of equipment installation.

vi. The Contractor must test the installation and functioning of the

installed equipment, under the supervision of the Principal’s

representative.

vii. The testing of equipment must begin as soon as practicable, and not

longer than 5 working days after its installation of equipments.

viii. The Contractor must document all the testing phases in consultation

with the Principal’s representative and submit a testing report (TR)

within 7 working days.

c) Staff Training

The Contractor shall be responsible for training the staff who will operate

the newly installed system. This will be conducted as detailed below:

207

i. The Users: The Contractor must train the staff members who are the

users of the newly installed system in the general use of the system,

and in the use of its various components in particular.

ii. The Maintenance Staff: If the staff members are responsible for the

maintenance of the new system, the Contractor must train them to

maintain the system in a manner that ensures its maximum

performance.

iii. The staff training can be provided either:

A. during the testing of the equipment, OR

B. once the system is fully commissioned and operational,

iv. The Contractor must provide any material (e.g., user manuals,

systems manuals, equipment manuals or any other relevant

documents) required for training purposes.

v. The Contractor shall be responsible for all expenses incurred in

providing the staff training (e.g., hiring of training staff, or training

material etc.

vi. The training must be completed before the delivery of the operating

system (see, clause 3[d]).

d) Delivery of the Operating System

i. The Contractor shall be responsible for delivering the operating

system within 90 days (see, sub-clause 1e.ii) from the time of the

signing of this contract.

ii. The Contractor is obliged to provide all mandatory and ancillary

documentation related to the operating system.

e) Penalties for Delaying in Delivering the Operating System

i. In a case where the Contractor fails to deliver the up and operating

system within the agreed upon time, the Contractor is obliged to

pay the Principal , as per payment conditions (see, Section 5a-5d), a

penalty amounting to 0.25% of the sum of the contract amount for

each calendar day of default. However, the penalty amount shall not

exceed 10% of the total amount of the contract.

ii. Subject to Section 3d(i), if the default causes damage to the Principal,

the latter can charge the Contractor the cost of damage incurred as

208 APPENDIX A. SYNTHETIC BUSINESS CONTRACT

well as the penalty cost, as per the payment policies listed in Section

5.

iii. Any penalty under sub Section 3d(i)–3d(ii) shall be charged on a

separate invoice to be issued by the Principal to the Contractor.

iv. The Principal shall not take any action or impose a penalty for any

matter subject to Section 7, unless it is resolved.

v. Pursuant to Section 8 (in part or full), the Contractor shall not

suspend and/or delay the performance of their duties under this

Agreement.

vi. Subject to clause (c) Section 7, the Contractor shall not

suspend/terminate its services pending resolution of on any conflict,

and shall continue its operation, as agreed upon in this Agreement.

4. RESPONSIBILITIES OF THE PRINCIPAL

The Principal:

a) Shall provide timely access to the places/sites where the equipment will

be delivered and installed.

b) Must assist the Contractor in undertaking their duties.

c) Must not hinder or cause anything that might hinders/limits the

Contractor’s ability to discharge their duties defined in this Agreement.

d) Shall pay all the agreed upon payments/compensations as per the Clause

5 of this Agreement.

e) Shall issue a Release Notice (RN) upon successful completion of the work

and receipt of a full commissioning report from the Head of the relevant

division.

5. TERMS OF PAYMENTS

The conditions of payment are as the follows:

a) The Contractor shall issue an invoice(s) for making payment claims

against the provided services.

b) The Principal is obliged to pay (in full) all the payments (and/or penalties)

to the Contractor after receiving an invoice for the performed services.

209

c) Any payment(s) must be paid within 15 days from the date of the receipt

of the invoice.

d) Pursuant to clause 5(c), if the Principal fails to pay the invoice, the total

invoice amount is subject to 3% default surcharge per calendar day.

e) If payment is not made within 7 days of the default, another 0.25% interest

per day shall be applied to the compound amount of the invoice, and the

payment must be made within the next 10 working days.

f) Pursuant to sub-clause 7(c), the Principal may suspend or delay any

payments until any conflict(s) are resolved to the satisfaction of both

parties, The Principal shall then make any suspended / outstanding

payments within 3 working days of such resolution.

g) Subject to Section 8 (sub-clauses a–b), the Principal shall not be held

responsible for any payments in relation to (any) duties, defined in this

Agreement, to any party outside this Agreement.

h) Subject to Section 12, sub-clauses 12a and 12b, the Principal shall not be

held responsible for any payments after the termination of this

Agreement.

RESPONSIBILITIES OF THE CONTRACTOR

6. INSURANCE

Under the terms of, and during the term of, this Agreement:

a) The Contractor shall maintain, during the term of this agreement, the

insurance coverage for the items listed in Exhibit C.

b) The Contractor shall furnish insurance certificates showing the types and

amounts of coverage, and the expiration dates of such policies, and

c) The Contractor shall furnish a statement that no insurance under such

policies will be terminated/cancelled by the insurer(s) without 30 days’

prior notice to the Principal.

7. DISPUTE HANDLING PROCESS

In the event of any dispute or complaints (arising for whatever reason[s]), both

the parties shall resolve the dispute in accordance with the sub-clauses 7(a)–

7(c).

210 APPENDIX A. SYNTHETIC BUSINESS CONTRACT

a) Internal Complaints Resolution: All complaints pertaining to this

contract herein shall be:

a Making Complaints: Complaints can be made in person, by phone,

or by email.

A. Acknowledgment

A. Immediately acknowledged, if received in person or by phone,

or

B. Acknowledge within 2 working days if received by email or

letter.

b All received complaints shall be resolved within 7 working days.

b) Escalation of Complaints

(i) Subject to sub-clause 7.a.(ii), if a complaint is not resolved within

the stipulated time frame, it must be escalated to the Head of the

relevant Division Head.

(ii) An escalated complaint must be resolved within 3 days of being

escalated.

c) Dispute Arbitration

Under this Agreement, in the event of any conflict, both the parties

reserve the right to seek independent arbitration from an external entity

(including a legal entity, such as a court of law), if the complaint is not

resolved under the internal complaint handling procedure pursuant to

clauses 7.a and 7.b.

8. DELEGATION AND SUBCONTRACTING

The delegation and conditions for subcontracting are as given below:

a) In principle, the Contractor shall be responsible for the provision of

assigned professional services, deliveries and any other services, as

defined in the terms of services, in its entirety.

b) The Contractor shall not delegate (or subcontract) the performance of the

work, or any portion thereof which is, by this Agreement, to be undertaken

by the Contractor.

c) The Principal reserves the right to terminate this Agreement without

any further notice, if the Contractor fails to discharge contractual duties

211

under sub-clauses 8(a)–8(b), and if there is reason to believe that the

Contractor is in breach of this Agreement.

9. PRIVACY AND CONFIDENTIALITY

The protection and safeguard of the private and confidential information of the

Principal will be strictly observed. Throughout the duration of this Agreement,

the Contractor:

a) Shall retain and maintain all personal and highly-sensitive information

in strict confidence, using such a degree of care as is appropriate to avoid

unauthorised access, use, or disclosure.

b) Use the provided information solely and exclusively for the purposes

for which the information, or access to it, is provided pursuant to the

clause-9(a) of the Agreement.

c) Unless instructed by a court, shall not distribute, make available, or

otherwise disclose the provided information to a third party(ies).

d) Pursuant to Section 9(a–c), this Agreement is terminated by default

without any further notice if the Contractor has breached confidentiality,

or if there is reason to believe that the privacy of the confidential

information has been compromised.

10. CREDIT RATING

a) It is the Contractor’s responsibility to maintain a positive credit balance

with their credit institution for the whole duration of the contract.

b) The credit rating must not drop below the acceptable minimum rating

level of B+ for the whole duration of the contract.

11. FORCE MAJEURE

In no event shall either party be responsible or liable for any failure or delay in

performance that results, directly or indirectly, in whole or in part, from any

cause or circumstances beyond their control. Such causes and circumstances

shall include, but not limited to: fire; floods; strikes; riots; sabotage; explosion;

adverse weather conditions; unavoidable causalities; unavailability of labour;

acts of God, or a government agency; or loss of permits that do not arise from

the actions or responsibilities of either party.

212 APPENDIX A. SYNTHETIC BUSINESS CONTRACT

Work stoppages or interruptions in the delivery of services under this

agreement that are caused by any of the above circumstances might result in

additional costs beyond outlined by the Principalin the proposal. This

occurrence shall entitle the Contractor to an adjustment in the charges and

fees for services under this Agreement.

12. TERMINATION OF THE AGREEMENT

The termination conditions for the contract are:

a) Termination by Fulfillment: The said contract automatically ceases to

exist under the following conditions:

i. When all the required services rendered under this contract have

been fulfilled to the Principal’s satisfaction; and

ii. When neither party liable pursuant to any clause (or sub-clauses)

of this contract; or involved in any court proceedings at the time of

termination.

b) Termination by Cause: The Principal and the Contractor each reserves

the right, in their reasonable discretion, to terminate this agreement at

any time, and without any liability to the other party, under the following

clauses:

i. If the Principal enters in 3 invoice defaults against payment for any

penalties or payment for materials, equipment or services rendered

the contractual obligations. In this case, the Principal must pay

the Contractor the whole amount of the contract plus the agreed

penalties, as per the procedure defined in this contract.

ii. In the event of the Contractor’s non-performance of services, as

described in the terms and conditions of the contract.

iii. On the receipt of an unfavorable credit report, or some other

reasonable indicator(s), that the other party will not be able to

discharge their obligations under this Agreement.

iv. Pursuant to Section 9(a–c), in the event of failure to protect and

safeguard the Principal’s personal and confidential information. In

this case, this Agreement is terminated by default.

c) Termination without Cause:

213

i neither party may terminate this agreement without any cause.

ii if the contract is terminated without any reasonable cause, subject

to Section 5, the terminating party shall pay the damages caused

to the other party (This can be equivalent to the full amount of the

contractual value).

END OF AGREEMENT

BIBLIOGRAPHY

Abate, F. and Jewell, E. J., editors (2001). New Oxford American Dictionary. Oxford

University Press.

Abdullah, N. S., Sadiq, S., and Indulska, M. (2010). Emerging Challenges in

Information Systems Research for Regulatory Compliance Management. In

Proceedings of the 22nd International Conference on Advanced Information Systems

Engineering, CAiSE’10, pages 251–265. Springer-Verlag.

Accorsi, R., Lowis, L., and Sato, Y. (2011). Automated Certification for Compliant

Cloud-based Business Processes. Business & Information Systems Engineering,

3(3):145–154.

Ågotnes, T., van der Hoek, W., Rodríguez-Aguilar, J. A., Sierra, C., and Wooldridge, M.

(2007). On the logic of normative systems. In IJCAI 2007, Proceedings of the 20th

International Joint Conference on Artificial Intelligence, Hyderabad, India, January

6-12, 2007, pages 1175–1180.

Ågotnes, T., Van der Hoek, W., and Wooldridge, M. (2010). Robust Normative Systems

and a Logic of Norm Compliance. Logic Journal of IGPL, 18(1):4–30.

Agrawal, R., Johnson, C., Kiernan, J., and Leymann, F. (2006). Taming Compliance

with Sarbanes-Oxley Internal Controls Using Database Technology. In Proceedings

of the 22nd International IEEE Conference on Data Engineering, page 92.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., and Torroni,

P. (2007). Expressing and Verifying Business Contracts with Abductive Logic

Programming. In Boella, G., van der Torre, L., and Verhagen, H., editors, Normative

Multi-agent Systems, number 7122 in Dagstuhl Seminar Proceedings. Dagstuhl,

Germany.

215

216 BIBLIOGRAPHY

Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., and Torroni, P. (2006).

Compliance Verification of Agent Interaction: A Logic-based Software Tool.

Applied Artificial Intelligence, 20(2-4):133–157.

Allaire, M. and Governatori, G. (2014). On the Equivalence of Defeasible Deontic

Logic and Temporal Defeasible Logic. In Dam, H., Pitt, J., Xu, Y., Governatori, G.,

and Ito, T., editors, PRIMA 2014: Principles and Practice of Multi-Agent Systems,

volume 8861 of LNCS, pages 74–90. Springer International Publishing.

Alrawagfeh, W. (2013). Norm Representation and Reasoning: A Formalization in

Event Calculus. In Boella, G., Elkind, E., Savarimuthu, B., Dignum, F., and Purvis,

M., editors, PRIMA 2013: Principles and Practice of Multi-Agent Systems, volume

8291 of LNCS, pages 5–20. Springer.

Arbab, F. (2004). REO: A Channel-based Coordination Model for Component

Composition. Mathematical. Structures in Comp. Sci., 14(3):329–366.

Arbab, F., Kokash, N., and Meng, S. (2009). Towards Using REO for Compliance-Aware

Business Process Modeling. In Margaria, T. and Steffen, B., editors, Leveraging

Applications of Formal Methods Verification and Validation, volume 17 of

Communications in Computer and Information Science, pages 108–123. Springer.

Arend, S. (2001). Pluralism and Law. In Proceedings of the 20th IVR World Congress of

the International Association of Philosophy of Law and Social Philosophy, volume 4,

page 104.

Artikis, A., Kamara, L., Pitt, J., and Sergot, M. (2005). A Protocol for Resource Sharing

in Norm-Governed Ad Hoc Networks. In Leite, J., Omicini, A., Torroni, P., and

Yolum, P., editors, Declarative Agent Languages and Technologies II, volume 3476

of LNCS, pages 221–238. Springer.

Arya, A., van Dongen, B., and van der Aalst, W. (2010). Towards Robust Conformance

Checking. In Business Process Management Workshops’10, pages 122–133.

Ashby, S. (2008). Operational Risk: Lessons from Non-Financial Organisations.

Journal of Risk Management in Financial Institutions, 1:406–415.

Awad, A. (2007). BPMN-Q: A Language to Query Business Processes. In Proceedings of

the 2nd International Workshop on Enterprise Modelling and Information Systems

Architectures (EMISA’07), St. Goar, Germany, October 8-9, 2007, pages 115–128.

BIBLIOGRAPHY 217

Awad, A. (2010). A Compliance Management Framework for Business Process Models.

PhD thesis, Hasso Plattner Institut, Potsdam University, Germany.

Awad, A., Decker, G., and Weske, M. (2008a). Efficient Compliance Checking Using

BPMN-Q and Temporal Logic. In BPM, LNCS, pages 326–341. Springer.

Awad, A., Polyvyanyy, A., and Weske, M. (2008b). Semantic Querying of Business

Process Models. In Enterprise Distributed Object Computing Conference, 2008.

EDOC ’08. 12th International IEEE, pages 85–94.

Awad, A., Weidlich, M., and Weske, M. (2009). Specification, Verification and

Explanation of Violation for Data Aware Compliance Rules. In Baresi, L., Chi,

C.-H., and Suzuki, J., editors, Service-Oriented Computing, volume 5900 of Lecture

Notes in Computer Science, pages 500–515. Springer Berlin / Heidelberg.

Awad, A., Weidlich, M., and Weske, M. (2011). Visually Specifying Compliance Rules

and Explaining their Violations for Business Processes. Journal of Visual Languages

& Computing, 22(1):30–55.

Awad, A. and Weske, M. (2009). Visualisation of Compliance Violations in Business

Process Models. In 5th Workshop on Business Process Intelligence, volume 9, pages

182–193.

Bai, X., Liu, Y., Wang, L., Tsai, W.-T., and Zhong, P. (2009). Model-Based Monitoring

and Policy Enforcement of Services. In proceedings of the 2009 World Conference

on Services–I, pages 789 –796.

Baier, C. and Katoen, J.-P. (2007). Principles of Modeling Checking. MIT Press,

Cambridge.

Bandara, A., Lupu, E., and Russo, A. (2003). Using Event Calculus to Formalise Policy

Specification and Analysis. In Proceedings of IEEE 4th International Workshop on

Policies for Distributed Systems and Networks (POLICY’03), pages 26–39.

Bandara, W., Miskon, S., and Fielt, E. (2011). A Systematic, Tool-supported Method for

Conducting Literature Reviews in Information Systems. In Virpi, T., Joe, N., Matti,

R., and Wael, S., editors, Proceedings of 19th European Conference on Information

Systems, ECIS 2011, Helsinki,Finland.

218 BIBLIOGRAPHY

Baral, C. and Zhao, J. (2007). Non-monotonic Temporal Logics for Goal Specification.

In Proceedings of the 20th International Joint Conference on Artificial Intelligence

(IJCAI 2007), pages 236–242. Morgan Kaufmann Publishers Inc.

BCBS (2013). Basel III: The Liquidity Coverage Ratio and Liquidity Risk Monitoring

Tools.

Becker, J., Delfmann, P., Eggert, M., and Schwittay, S. (2012). Generalizability and

Applicability of Model-Based Business Process Compliance-Checking Approaches

– A State-of-the-Art Analysis and Research Roadmap. BuR - Business Research

Journal, 5(2):221–247.

Becker, M. and Laue, R. (2012). A Comparative Survey of Business Process Similarity

Measures. Computers in Industry, 63(2):148–167.

Bench-Capon, T. and Gordon, T. F. (2009). Isomorphism and Argumentation. In

Proceedings of the 12th International Conference on Artificial Intelligence and Law,

ICAIL ’09, pages 11–20, New York, USA. ACM.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., and

Schnoebelen, P. (2001). System and Software Verification - Model Checking

Techniques and Tools. Springer.

Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S., and

Tluczek, M. (2010). An Integrated Solution for Runtime Compliance Governance

in SOA. In ICSOC, pages 122–136.

Bonatti, P. A., Shahmehri, N., Duma, C., Olmedilla, D., Nejdl, W., Baldoni, M., Baroglio,

C., Martelli, A., Coraggio, P., Antoniou, G., Peer, J., and Fuchs, N. E. (August 2004).

Rule-based Policy Specification: State of the Art and Future Work, REWERSE

Project Report-i2-D1. Report, Universitá di Napoli Fedrecio II.

Bonazzi, R. and Pigneur, Y. (2009). Compliance Management in Multi-Actor Contexts.

Proceedings of International Workshop on Governance, Risk and Compliance

(GRCIS), An ancillary meeting of CAISE.

Broersen, J. (2006). Strategic Deontic Temporal Logic as a Reduction to ATL, with an

Application to Chisholm’s Scenario. In Goble, L. and Meyer, J.-J., editors, Deontic

BIBLIOGRAPHY 219

Logic and Artificial Normative Systems, volume 4048 of Lecture Notes in Computer

Science, pages 53–68. Springer Berlin Heidelberg.

Cabanillas, C., Resinas, M., and Ruiz-Cortés, A. (2010). On the Identification of Data-

related Compliance Problems in Business Processes. In VI Jornadas Científico-

Técnias En Servicios Web Y SOA (JSWEB’10), volume 1, pages 89–102, Valencia,

España.

Cabannilas, C., Resinas, M., and Ruiz-Cortes, A. (2010). Hints on How to Face

Business Process Compliance. In III Taller de Procesos de Negocio e Ingenieria de

Servicios PNIS10 in JISBD10, volume 4, pages 26–32.

Cervesato, I., Franceschet, M., and Montanari, A. (2000). A Hierarchy of Modal Event

Calculi: Expressiveness and Complexity. In Barringer, H., Fisher, M., Gabbay, D.,

and Gough, G., editors, Advances in Temporal Logic, volume 16 of Applied Logic

Series, pages 1–20. Springer Netherlands.

Chesani, F., Mello, P., Montali, M., and Torroni, P. (2013). Representing and Monitoring

Social Commitments using the Event Calculus. Autonomous Agents and Multi-

Agent Systems, 27(1):85–130.

Clark, A. and Dawson, R. (1999). Evaluation Research: An Introduction to Principles,

Methods and Practice. SAGE Inc., European Foundation Centre, 1060 Brussels,

Belgium.

COBIT (2007). Control Objectives for Information Related Technology - COBIT 4.1.

COSO (1994). Internal control –integrated framework.

Croitoru, M., Oren, N., Miles, S., and Luck, M. (2012). Graphical Norms via

Conceptual Graphs. Knowledge Based Systems, 29:31–43.

Cunningham, H., Maynard, D., Tablan, V., Ursu, C., and Bontcheva, K. (2001).

Developing Language Processing Components with GATE: A User Guide.

Daniel, F., Casati, F., D’Andrea, V., Mulo, E., Zdun, U., Dustdar, S., Strauch, S.,

Schumm, D., Leymann, F., Sebahi, S., de Marchi, F., and Hacid, M.-S. (2009).

Business Compliance Governance in Service-Oriented Architectures. In Advanced

Information Networking and Applications, 2009. AINA ’09. International Conference

on, pages 113 –120.

220 BIBLIOGRAPHY

D’Aprile, D., Giordano, L., Gliozzi, V., Martelli, A., Pozzato, G., and Theseider Dupré,

D. (2010). Verifying Business Process Compliance by Reasoning about Actions. In

Dix, J., Leite, J. a., Governatori, G., and Jamroga, W., editors, Computational Logic

in Multi-Agent Systems, volume 6245 of LNCS, pages 99–116. Springer.

de Maat, E. and Winkels, R. (2007). Categorisation of Norms. In Legal Knowledge and

Information Systems - JURIX 2007, The Netherlands, pages 79–88.

de Maat, E. and Winkels, R. (2010). Automated Classification of Norms in Sources

of Law. In Francesconi, E., Montemagni, S., Peters, W., and Tiscornia, D., editors,

Semantic Processing of Legal Texts, volume 6036 of Lecture Notes in Computer

Science, pages 170–191. Springer Berlin Heidelberg.

de Medeiros, A. K. A. and van der Aalst, W. (2005). Process Mining and Security:

Detecting Anomalous Process Executions and Checking Process Conformance.

Electronice Notes in Theoratical Computer Science., pages 3–21.

de Moura Araujo, B., Schmitz, E. A., Correa, A. L., and Alencar, A. J. (2010). A

Method for Validating the Compliance of Business Processes to Business Rules. In

Proceedings of the 2010 ACM Symposium on Applied Computing (SAC’10), pages

145–149, New York, USA. ACM.

DECLARE (2010). Declarative Process Models, http://www.win.tue.nl/declare/.

Dehnert, J. and Rittgen, P. (2001). Relaxed Soundness of Business Processes. In

Dittrich, K., Geppert, A., and Norrie, M., editors, Advanced Information Systems

Engineering, volume 2068 of LNCS, pages 157–170. Springer Berlin / Heidelberg.

Dijkman, R. M., Dumas, M., and Ouyang, C. (2008). Semantics and Analysis

of Business Process Models in BPMN. Information and Software Technology,

50(12):1281 – 1294.

Doganata, Y. and Curbera, F. (2009). Effect of Using Automated Auditing Tools on

Detecting Compliance Failures in Unmanaged Processes. In Business Process

Management, pages 310–326.

Dumas, M., La Rosa, M., Mendling, J., and Reijers, H. A. (2013). Fundamentals of

Business Process Managment. Springer Berlin Heidelberg.

BIBLIOGRAPHY 221

Dwyer, M., Avrunin, G., and Corbett, J. (1999). Patterns in Property Specifications for

Finite-state Verification. In Software Engineering, 1999. Proceedings of the 1999

International Conference on, pages 411–420.

El Kharbili, M. (2012). Business Process Regulatory Compliance Management

Solution Frameworks: A Comparative Evaluation. In APCCM 2012, CRPIT 130,

pages 23–32.

El Kharbili, M. and Stein, S. (2008). Policy-Based Semantic Compliance Checking for

Business Process Management. In MobIS Workshops, CEUR Workshops 420, pages

178–192.

El Kharbili, M., Stein, S., Markovic, I., and Pulvermüller, E. (2008). Towards a

Framework for Semantic Business Process Compliance Management. Banking,

08(i):1–15.

Elgammal, A. (2012). Towards A Comprehensive FramewCompliacBusiness Process

Compliance. PhD thesis, Tiburg Universtity.

Elgammal, A., Turetken, O., van den Heuvel, W.-J., and Papazoglou, M. (2011a). On

the Formal Specification of Regulatory Compliance: A Comparative Analysis. In

Proceedings of ICSOC’10, pages 27–38.

Elgammal, A., Turetken, O., van den Heuvel, W.-J., and Papazoglou, M. (2011b). On

the Formal Specification of Regulatory Compliance: A Comparative Analysis. In

Proceedings of ICSOC’10, pages 27–38.

Elgammal, A., Turetken, O., van den Heuvel, W.-J., and Papazoglou, M. (2014).

Formalizing and Applying Compliance Patterns for Business Process Compliance.

Software & Systems Modeling, pages 1–28.

Elgammal, A., Türetken, O., van den Heuvel, W.-J., and Papazoglou, M. P. (2010). Root-

Cause Analysis of Design-Time Compliance Violations on the Basis of Property

Patterns. In ICSOC, pages 17–31.

Evans, D. and Eyers, D. M. (2008). Deontic Logic for Modelling Data Flow and Use

Compliance. In Proceedings of the 6th International Workshop on Middleware for

Pervasive and Ad-hoc Computing, MPAC ’08, pages 19–24. ACM.

222 BIBLIOGRAPHY

Evans, G. P. (2014). Managing Risk with an End-to-End Process View: Adopting a

Process-based Approach to Risk Management. BPTrends Article.

Fellmann, M. and Zasada, A. (2014). State-of-the-Art of Business Process Compliance

Approaches. In 22nd European Conference on Information Systems, ECIS 2014, Tel

Aviv, Israel, June 9-11, 2014.

Figl, K., Mandling, J., and Strembeck, M. (2009). Towards a Usability Assessment of

Process Modelling Languages. volume 554 of CEUR Workshop Proceedings, pages

138–156.

Flores, R. A. and Kremer, R. C. (2002). To Commit or Not to Commit: Modeling Agent

Conversations for Action. Computational Intelligence, 18(2):120–173.

Fongon, P. and Grillo, K. (2004). Corporate Implications of Sarbanes Oxley Act: A

Public Polcy.

Fornara, N. and Colombetti, M. (2009). Specifying Artificial Institutions in the Event

Calculus, pages 335–366. IGI Global.

Förster, A., Engels, G., and Schattkowsky, T. (2005). Activity Diagram Patterns for

Modeling Quality Constraints in Business Processes. In MoDELS’05, pages 2–16.

Förster, A., Engels, G., Schattkowsky, T., and Straeten, R. V. D. (2006). A Pattern-Driven

Development Process for Quality Standard-conforming Business Process Models.

In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC

2006), pages 135 –142.

Frank, D., Jan, B., Virginia, D., and John-Jules, C. M. (2004). Meeting the Deadline:

Why, When and How. In Formal Approaches to Agent-Based Systems, Third

InternationalWorkshop, FAABS 2004, Greenbelt, MD, USA, April 26-27, 2004,

Revised Selected Papers, pages 30–40.

Gambini, M., Rosa, M., Migliorini, S., and Hofstede, A. (2011). Automated Error

Correction of Business Process Models. In Rinderle-Ma, S., Toumani, F., and Wolf,

K., editors, Business Process Management, volume 6896 of LNCS, pages 148–165.

Springer Berlin Heidelberg.

BIBLIOGRAPHY 223

Ghanavati, S., Amyot, D., and Peyton, L. (2007). Towards a Framework for Tracking

Legal Compliance in Healthcare. In Proceedings of the 19th International

Conference on Advanced Information Systems Engineering (CAiSE’07), pages 218–

232, Berlin, Heidelberg. Springer-Verlag.

Ghose, A. and Koliadis, G. (2007). Auditing Business Process Compliance. In Krämer,

B., Lin, K.-J., and Narasimhan, P., editors, Service-Oriented Computing (ICSOC

2007), volume 4749 of LNCS, pages 169–180. Springer.

Giblin, C., Liu, A. Y., Müller, S., Pfitzmann, B., and Zhou, X. (2005). Regulations

Expressed As Logical Models (REALM). In Proceeding of the 18th Annual Conference

on Legal Knowledge and Information Systems (JURIX 2005), pages 37–48. IOS Press.

Gilliot, M. and Accorsi, R. (2009). Runtime Predictions of Policy Violations in

Automated Buisness Processes. Extended Abstract: presented at Prime Life/IFIP

Summer School Program, 7-11 September, Nice/France.

Goedertier, S. and Vanthienen, J. (2006a). Business Rules for Compliant Business

Process Models. In Proceeding of the 9th International Conference on Business

Information Systems (BIS 2006), volume P-85 of Lecture Notes in Informatics, pages

558–579. Gesellschaft für Informatik.

Goedertier, S. and Vanthienen, J. (2006b). Compliant and flexible business processes

with business rules. In BPMDS. CEUR Workshop Proceedings, CEUR-WS.org, vol

236.

Goedertier, S. and Vanthienen, J. (2006c). Designing Compliant Business Processes

with Obligations and Permissions. In Eder, J. and Dustdar, S., editors, Business

Process Management Workshops 2006, LNCS 4103, pages 5–14. Springer.

Gordon, T. (1993). The Pleadings Game. Artificial Intelligence and Law, 2(4):239–292.

Gordon, T. F., Governatori, G., and Rotolo, A. (2009). Rules and Norms: Requirements

for Rule Interchange Languages in the Legal Domain. In RuleML 2009, LNCS 5858,

pages 282–296. Springer.

Governatori, G. (2005). Representing Business Contracts in RuleML. International

Journal of Cooperative Information Systems, 14(2-3):181–216.

224 BIBLIOGRAPHY

Governatori, G. (2015). Thou Shalt is not You Will. In Atkinson, K., editor, Proceedings

of the Fiftheenth International Conference on Artificial Intelligence and Law, New

York: ACM.

Governatori, G. and Hashmi, M. (2015a). No Time for Compliance. In Proceedings of

19th IEEE the Enterprise Computing Conference (EDOC’15), Adelaide Australia.

Governatori, G. and Hashmi, M. (2015b). Permissions in Deontic Event-Calculus.

In Proceedings of the 28th International Conference on Legal Knowledge and

Information Systems (Jurix’ 15), Braga Portugal. [Short Paper].

Governatori, G., Hoffmann, J., Sadiq, S. W., and Weber, I. (2008a). Detecting

Regulatory Compliance for Business Process Models Through Semantic

Annotations. In Business Process Management Workshops’08, pages 5–17.

Governatori, G., Hulstijn, J., Riveret, R., and Rotolo, A. (2007a). Characterising

Deadlines in Temporal Modal Defeasible Logic. In Proceedings of the 20th

Australian joint conference on Advances in artificial intelligence, AI’07, pages 486–

496, Berlin, Heidelberg. Springer-Verlag.

Governatori, G. and Milosevic, Z. (2005). Dealing with Contract Violations:

Formalism and Domain Specific Language. In 9th International Enterprise

Distributed Object Computing Conference (EDOC 2005), pages 46–57. IEEE

Computer Society.

Governatori, G., Milosevic, Z., and Sadiq, S. (2006a). Compliance Checking between

Business Processes and Business Contracts. In Enterprise Distributed Object

Computing Conference, 2006. EDOC ’06. 10th IEEE International, pages 221–232.

Governatori, G., Milosevic, Z., and Sadiq, S. (2006b). Compliance Checking between

Business Processes and Business Contracts. In 10th International Enterprise

Distributed Object Computing Conference (EDOC 2006), pages 221–232. IEEE

Computing Society.

Governatori, G., Olivieri, F., Scannapieco, S., and Cristani, M. (2011). Designing for

Compliance: Norms and Goals. In RuleML 2011, Ft Lauderdale.

Governatori, G. and Rotolo, A. (2006). Logic of Violations:A Gentzen System for

Reasoning with Contrary-To-Duty Obligation. Australasian Journal of Logic, 4:193–

215.

BIBLIOGRAPHY 225

Governatori, G. and Rotolo, A. (2008a). An Algorithm for Business Process

Compliance. In Legal Knowledge and Information Systems, pages 186–191. IOS

Press.

Governatori, G. and Rotolo, A. (2008b). Changing Legal Systems: Abrogation and

Annulment. Part II: Temporalised Defeasible Logic. In Proceedings of Normative

Multi Agent Systems (NorMAS 2008).

Governatori, G. and Rotolo, A. (2010a). A Conceptually Rich Model of Business

Process Compliance. In Proceedings of APCCM ’10, volume 110, pages 3–12.

Governatori, G. and Rotolo, A. (2010b). Norm Compliance in Business Process

Modeling. In RuleML 2010: 4th International Web Rule Symposium, pages 194–209.

Springer.

Governatori, G., Rotolo, A., Riveret, R., Palmirani, M., and Sartor, G. (2007b). Variants

of Temporal Defeasible Logics for Modelling Norm Modifications. In Proceedings

of the 11th International Conference on Artificial Intelligence and Law, ICAIL ’07,

pages 155–159, New York, USA. ACM.

Governatori, G., Rotolo, A., and Sartor, G. (2005). Temporalised Normative Positions

in Defeasible Logic. In Proceedings of the 10th international conference on Artificial

intelligence and law, ICAIL ’05, pages 25–34, New York. ACM.

Governatori, G. and Sadiq, S. (2009). The Journey to Business Process Compliance.

In Handbook of Research on Business Process Management, pages 426–454. IGI

Global.

Governatori, G. and Shek, S. (2013). Regorous: A Business Process Compliance

Checker. In International Conference on Artificial Intelligence and Law (ICAIL)

2013, pages 245–246, Rome. ACM.

Governatori, G., Thakur, S., and Pham, D. H. (2008b). A Compliance Model of Trust.

In Proceedings of the 2008 conference on Legal Knowledge and Information Systems:

JURIX 2008: The Twenty-First Annual Conference, pages 118–127, Amsterdam, The

Netherlands. IOS Press.

Grosof, B. N., Labrou, Y., and Chan, H. Y. (1999). A Declarative Approach to Business

Rules in Contracts: Courteous Logic Programs in XML. In Proceedings of the 1st

226 BIBLIOGRAPHY

ACM conference on Electronic commerce, EC ’99, pages 68–77, New York, USA.

ACM.

Han, J., Jin, Y., Li, Z., Phan, T., and Yu, J. (2007). Guiding the Service Composition

Process with Temporal Business Rules. In Web Services 2007.

Hashmi, M. (2015). A Methodolgy for Extracting Legal Norms from Regulatory

Documents. In Proceedings of 8th International Workshop on Evolutionary Business

Processes (EVL-BP 2-15), co-located with EDOC 2015, Adelaide Australia.

Hashmi, M. and Governatori, G. (2013). A Methodological Evaluation of Business

Process Compliance Management Frameworks. In Song, M., Wynn, M. T., and Liu,

J., editors, Asia Pacific Business Process Management, volume 159 of LNBIP, pages

106–115. Springer, Switzerland.

Hashmi, M., Governatori, G., and Wynn, M. (2015a). Normative Requirements for

Regulatory Compliance: An Abstract Formal Framework. Information Systems

Frontiers, pages 1–27. [Online First].

Hashmi, M., Governatori, G., and Wynn, M. T. (2012). Business Process Data

Compliance. In Proceedings of 6th International Symposium, RuleML 2012,

Montpellier, France, pages 32–46.

Hashmi, M., Governatori, G., and Wynn, M. T. (2013). Normative Requirements for

Business Process Compliance. In Proceedings of 3rd Symposium (ASSRI’13) on

Service Research and Innovation, Sydney, Australia, pages 100–116.

Hashmi, M., Governatori, G., and Wynn, M. T. (2014). Modeling Obligations with

Event-Calculus. In Proceedings of 8th International Symposium, RuleML 2014,

Prague, Czech Republic, pages 296–310.

Hashmi, M., Governatori, G., and Wynn, M. T. (2015b). Norms Modelling Constructs

of Business Process Compliance Management Frameworks: A Conceptual

Evaluation. Enterprise Information Systems Journal. [Submitted].

Hee, K., Hidders, J., Houben, G.-J., Paredaens, J., and Thiran, P. (2010). On-the-Fly

Auditing of Business Processes. In Jensen, K., Donatelli, S., and Koutny, M., editors,

Transactions on Petri Nets and Other Models of Concurrency IV, volume 6550 of

LNCS, pages 144–173. Springer.

BIBLIOGRAPHY 227

Herrestad, H. (1991). Norms and Formalization. In proceedings of ICAIL 1991, pages

175–184.

Hilty, M., Basin, D. A., and Pretschner, A. (2005). On Obligations. In ESORICS, pages

98–117.

Hinge, K., Ghose, A., and Koliadis, G. (2009). Process SEER: A Tool for Semantic Effect

Annotation of Business Process Models. In EDOC ’09. IEEE International, pages

54–63.

HIPAA, T. U. G. (1996). The US Health Insurance Portability and Accountability Act

of 1996.

Hoffmann, J., Weber, I., and Governatori, G. (2009). On Compliance Checking for

Clausal Constraints in Annotated Process Models. Information Systems Frontieres,

14(2):155–177.

IFRS (2014). IFRS 7 International Financial Reporting Standards: Financial

Instruments Disclosures.

James, E. and Jonathan, S. (2011). The Benefits of Static Compliance Testing for SCA

Next. In Proceedings of the SDR’11 Technical Conference and Product Exposition.

The Wireless Innovation Forum, Inc.

Jiang, J., Aldewereld, H., Dignum, V., Wang, S., and Baida, Z. (2014). Regulatory

Compliance of Business Processes. AI & SOCIETY, pages 1–10.

Jiang, J., Virginia, D., Huib, A., Frank, D., and Yao-Hua, T. (2013). Norm compliance

checking. In International conference on Autonomous Agents and Multi-Agent

Systems,AAMAS ’13, Saint Paul, MN, USA, May 6-10, 2013, pages 1121–1122.

Johansson, L.-O., Wärja, M., and Carlsson, S. (2012). An Evaluation of Business

Process Model Techniques, using Moody’s Quality Criterion for a Good Diagram.

In BIR12. CEUR Workshop Proceedings, CEUR-WS.org, vol 963.

Johnson, C. and Grandison, T. (2007). Compliance with Data Protection Laws using

Hippocratic Database Active Enforcement and Auditing. IBM Systems Journal,

46(2):255 –264.

228 BIBLIOGRAPHY

Kabilan, V., Johannesson, P., and Rugaimukamu, D. (2003a). Business Contract

Obligation Monitoring through Use of Multi-Tier Contract Ontology. In Meersman,

R. and Tari, Z., editors, On The Move (OTM) Workshops to Meaningful Internet

Systems, volume 2889 of LNCS, pages 690–702. Springer Verlag Berlin Heidelberg.

Kabilan, V., Johannesson, P., and Rugaimukamu, D. M. (2003b). An Ontological

Approach to Unified Contract Management. In proceedings of 13th European

Jananese Conference (EJC) on Information Modelling and Knowlege Bases, pages

106–110.

Kähmer, M., Gilliot, M., and Müller, G. (2008). Automating Privacy Compliance with

ExPDT. In Proceedings of the 10th IEEE Conference on E-Commerce Technology

and 5th Conference on Enterprise Computing, pages 87 –94.

Karagiannis, D. (2008). A Business Process-Based Modeling Extension for Regulatory

Compliance. In Multikonferenz Wirtschaftsinformatik.

Karagiannis, D., Mylopoulos, J., and Schwab, M. (2007). Business Process-

Based Regulation Compliance: The case of the Sarbanes-Oxley Act. 15th IEEE

International Requirements Engineering Conference RE 2007, pages 315–321.

Kazmierczak, P., Pedersen, T., and Ågotnes, T. (2012). NORMC: A Norm Compliance

Temporal Logic Model Checker. In STAIRS, volume 241 of Frontiers in Artificial

Intelligence and Applications, pages 168–179.

Keller, A. and Ludwig, K. (2002). Defining and Monitoring Service-Level Agreements

for Dynamic e-Business. In Proceedings of the 16th USENIX conference on System

administration, pages 189–204, Berkeley, USA. USENIX Association.

Kelsen, H. (1991). General Theory of Norms. Clarendon, Oxford.

Kharbili, M. E., Medeiros, A. K. A. D., Stein, S., and van der Aalst, W. (2008).

Business Process Compliance Checking:Current State and Future Challenges. In

Modellierung Betrieblicher Informationssyteme, MobIS, pages 107–113.

Kharbili, M. E. and Stein, S. (2008). Policy-Based Semantic Compliance Checking for

Business Process Management. In MobIS Workshops, pages 178–192.

BIBLIOGRAPHY 229

Kowalski, R. and Sergot, M. (1989). A Logic-Based Calculus of Events. In Schmidt, J.

and Thanos, C., editors, Foundations of Knowledge Base Management, Topics in

Information Systems, pages 23–55. Springer.

Küster, J. M., Ryndina, K., and Gall, H. (2007). Generation of Business Process Models

for Object Life Cycle Compliance. In Business Prcess Management, pages 165–181.

Lam, H.-P. and Governatori, G. (2009). The Making of SPINdle. In Governatori, G.,

Hall, J., and Paschke, A., editors, Rule Interchange and Applications, volume 5858

of Lecture Notes in Computer Science, pages 315–322. Springer Berlin Heidelberg.

Leitner, P., Michlmayr, A., Rosenberg, F., and Dustdar, S. (2010). Monitoring,

Prediction and Prevention of SLA Violations in Composite Services. In Proceedings

of IEEE International Conference on Web Services (ICWS’10), pages 369 –376.

Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., and Leymann, F.

(2009). Runtime Prediction of Service Level Agreement Violations for Composite

Services. In Proceedings of the 3rd Workshop on Non-Functional Properties and SLA

Management in Service Oriented Computing co-located with ICSOC 2009, pages

176–186. Springer,Germany.

Letia, I. A. and Groza, A. (2013). Compliance Checking of Integrated Business

Processes. Data & Knowledge Engineering, 87(0):1 – 18.

Lin, Y. (2008). Semantic Annotation for Process Models: Facilitating Process Knowledge

Management via Semantic Interoperability. PhD thesis, Department of Computer

and Information Science, Nowegian University of Science and Techology (NTNU).

Liu, Y., Müller, S., and Xu, K. (2007). A Static Compliance-Checking Framework for

Business Process Models. IBM Systems Journal, 46(2):335–361.

Lohmann, N. (2012). Compliance by Design for Artifact-centric Business Processes.

Information Systems, 38(4):606–618.

Lomuscio, A., Qu, H., and Solanki, M. (2008). Towards Verifying Contract Regulated

Service Composition. In Proceedings of IEEE International Conference on Web

Services (ICWS’08), pages 254 –261.

230 BIBLIOGRAPHY

Lu, R. and Sadiq, S. (2007). A Survey of Comparative Business Process Modeling

Approaches. In Abramowicz, W., editor, Business Information Systems, volume

4439 of LNCS, pages 82–94. Springer Berlin / Heidelberg.

Lu, R., Sadiq, S., and Governatori, G. (2007). Compliance Aware Business Process

Design. In 3rd International Workshop on Business Process Design (BPD’07), pages

120–131. Springer.

Lu, R., Sadiq, S., and Governatori, G. (2008). Measurement of Compliance Distance

in Business Processes. Information Systems Management, 25(4):344–355.

Ly, L., Rinderle-Ma, S., and Dadam, P. (2010a). Design and Verification of Instantiable

Compliance Rule Graphs in Process-Aware Information Systems. volume 6051,

pages 9–23. Springer Berlin Heidelberg.

Ly, L., Rinderle-Ma, S., Knuplesch, D., and Dadam, P. (2011). Monitoring Business

Process Compliance Using Compliance Rule Graphs. In Meersman, R., Dillon,

T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt,

D., White, J., Hauswirth, M., Hitzler, P., and Mohania, M., editors, On the Move

to Meaningful Internet Systems: OTM 2011, volume 7044 of LNCS, pages 82–99.

Springer Berlin Heidelberg.

Ly, L. T., Knuplesch, D., Rinderle-Ma, S., Goeser, K., Reichert, M., and Dadam, P.

(2010b). SeaFlows Toolset - Compliance Verification Made Easy. In CAiSE’10

Demos.

Ly, L. T., Maggi, F. M., Montali, M., Rinderle, S., and van der Aalst, W. (2013).

A Framework for the Systematic Comparison and Evaluation of Compliance

Monitoring Approaches. In Proceeding of EDOC.

Ly, L. T., Rinderle-Ma, S., Göser, K., and Dadam, P. (2012). On Enabling Integrated

Process Compliance with Semantic Constraints in Process Management Systems.

Information Systems Frontiers, 14(2):195–219.

Maggi, F., Montali, M., Westergaard, M., and van der Aalst, W. (2011a). Monitoring

Business Constraints with Linear Temporal Logic: An Approach Based on Colored

Automata. In BPM, LNCS 6896, pages 132–147. Springer.

BIBLIOGRAPHY 231

Maggi, F., Westergaard, M., Montali, M., and van der Aalst, W. (2011b). Runtime

Verification of LTL-Based Declarative Process Models. In Proc. of RV, LNCS.

Springer-Verlag.

Makinson, D. and van der Torre, L. (2003). Permission from an input/output

perspective. J. Philosophical Logic, 32(4):391–416.

Marín, R. H. and Sartor, G. (1999). Time and Norms: A Formalisation in the Event-

Calculus. In ICAIL, pages 90–99.

MASTER (2008). Managing Assurance, Security, and Trust for Services. FP7-ICT

Integrated Project for Secure, Dependable, and Trusted Infrastructures.

Mateescu, R. and Sighireanu, M. (2003). Efficient On-the-Fly Model-Checking

Ror regular Alternation-Free Mu-Calculus. Science of Computer Programming,

46(3):255 – 281. Special issue on Formal Methods for Industrial Critical Systems.

McIntyre, S. R. (2008). Integrated Governance, Risk and Compliance: Improve

Performance and Enhance Productivity in Federal Agencies. Technical report,

PricewaterhouseCoopers.

Mili, H., Tremblay, G., Jaoude, G. B., Lefebvre, E., Elabed, L., and Boussaidi, G. E.

(2010). Business Process Modeling Languages:Sorting Through the Alphabet Soup.

ACM Computing Surveys, 43(1):1–56.

Miller, R. and Shanahan, M. (1999). The Event Calculus in Classical Logic - Alternative

Axiomatisations. Electron. Trans. Artif. Intell., 3(A):77–105.

Miller, R. and Shanahan, M. (2002). Some Alternative Formulations of the Event-

Calculus. In Kakas, A. and Sadri, F., editors, Computational Logic: Logic

Programming and Beyond, volume 2408 of LNCS, pages 452–490. Springer.

Milosevic, Z. (2005). Towards Integrating Business Policies with Business Processes.

Journal of Business Process Management, 3649:404 – 409.

Milosevic, Z., Jösang, A., Dimitrakos, T., and Patton, M. A. (2002). Discretionary

Enforcement of Electronic Contracts. In Proceedings of the 6th International

Enterprise Distributed Object Computing Conference (EDOC’02), EDOC ’02, pages

39–, Washington, DC, USA. IEEE Computer Society.

232 BIBLIOGRAPHY

Milosevic, Z., Sadiq, S., and Orlowska, M. (2006a). Towards a Methodology for

Deriving Contract-Compliant Business Processes. In Dustdar, S., Fiadeiro, J., and

Sheth, A., editors, Business Process Management, volume 4102 of Lecture Notes in

Computer Science, pages 395–400. Springer Berlin / Heidelberg.

Milosevic, Z., Sadiq, S., and Orlowska, M. (2006b). Translating Business Contract

into Compliant Business Processes. In Enterprise Distributed Object Computing

Conference, 2006. EDOC ’06. 10th IEEE International, pages 211 –220.

Montali, M. (2010). Specification and Verification of Declarative Open Interaction

Models: A logic-Based Approach, volume 56 of LNBIP. Springer-Verlag Berlin

Heidelberg.

Montali, M., Pesic, M., Aalst, W. M. P. v. d., Chesani, F., Mello, P., and Storari, S. (2010).

Declarative Specification and Verification of Service Choreographiess. ACM Trans.

Web, 4(1):3:1–3:62.

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of

the IEEE, 77(4):541–580.

Namiri, K. and Stojanovic, N. (2007a). Pattern-Based Design and Validation of

Business Process Compliance. In Proceedings of the 2007 OTM Confederated

international conference on On the move to meaningful internet systems, pages

59–76, Berlin, Heidelberg. Springer-Verlag.

Namiri, K. and Stojanovic, N. (2007b). Using Control Patterns in Business Processes

Compliance. In Proceedings of the 2007 international conference on Web

information systems engineering, (WISE’07), pages 178–190, Berlin, Heidelberg.

Springer-Verlag.

Namiri, K. and Stojanovic, N. (2008a). Towards a Formal Framework for Business

Process Compliance. In Multikonferenz Wirtschaftsinformatik’08, pages –1–1.

Namiri, K. and Stojanovic, N. (2008b). Towards A Formal Framework for Business

Process Compliance. In Proceedings of Multikonferenz Wirtschaftsinformatik,

MKWI 2008, München.

Nishizaki, S.-y. and Ohata, T. (2013). Real-Time Model Checking for Regulatory

Compliance. In Das, V. and Chaba, Y., editors, Mobile Communication and Power

BIBLIOGRAPHY 233

Engineering, volume 296 of Communications in Computer and Information Science,

pages 70–77. Springer Berlin Heidelberg.

Nute, D. (2003). Defeasible Logic. In Bartenstein, O., Geske, U., Hannebauer, M., and

Yoshie, O., editors, Web Knowledge Management and Decision Support, volume

2543 of LNCS, pages 151–169. Springer Berlin Heidelberg.

OCEG (2012). Governance,Risk and Compliance (GRC) Capability Model, version

2.1.

Ochsenschläger, P., Repp, J., Rieke, R., and Nitsche, U. (1998). The SH-Verification

Tool - Abstraction-based Verification of Co-operating Systems. The Journal of

Formal Aspects of Computing, 10(4):381–404.

Olivieri, F. (2014). Compliance by Design. Synthesis of Business Processes by Declarative

Specifications. Phd, Dipartimento di Informatica, Università digli Studi di Verona,

Italy and Institute for Integrated and Intelligent Systems, Griffith University,

Australia.

OMG (2010). Business Process Model Notation (BPMN), Version 2.0. Standard.

OMG (2011). Unified modeing language (uml 2.0).

Oro, E. and Ruffolo, M. (2012). Advances in Knowledge Representation,

chapter A Knowledge Representation Formalism for Semantic Business Process

Management. InTech Europe.

Otto, P. and Anton, A. (2007). Addressing Legal Requirements in Requirements

Engineering. In Requirements Engineering Conference, 2007. RE ’07. 15th IEEE

International, pages 5–14.

Ouyang, C., Dumas, M., Breutel, S., and ter Hofstede, A. H. M. (2006). Translating

Standard Process Models to BPEL. In Proceedings of Advanced Information Systems

Engineering, 18th International Conference (CAiSE 2006), June 5-9,Luxembourg,

pages 417–432.

Ouyang, C., Dumas, M., van der Aalst, W., ter Hofstede, A. H. M., and Mendling, J.

(2009). From Business Process Models to Process-oriented Software Systems. ACM

Trans. Softw. Eng. Methodol., 19(1).

234 BIBLIOGRAPHY

Palmirani, M., Governatori, G., and Contissa, G. (2011). Modelling Temporal Legal

Rules. In ICAIL, pages 131–135.

Paschke, A. and Bichler, M. (2005). SLA Representation, Management and

Enforcement. In proceedings of The IEEE International Conference on e-Technology,

e-Commerce and e-Service, EEE’05, pages 158–163.

Pattersson, P. and Larson, K. (2000). UPPAAL 2K. Bulletin of the European Association

of Theoratical Computer Science, 70:40–44.

Pershkow, B. (2002). Sarbanes-Oxley: Investment Company Compliance. Journal of

Investment Compliance, 3(4):16 – 30.

Pesic, M., Schonenberg, H., and van der Aalst, W. (2007). DECLARE: Full Support for

Loosely-Structured Processes. In Procedings of 11th IEEE International Conference

on Enterprise Distributed Object Computing (EDOC’07), pages 287–287.

Pesic, M. and van der Aalst, W. (2006). A Declarative Approach for Flexible Business

Processes Management. In BPM Workshops, volume 4103 of LNCS, pages 169–180.

Springer.

Pnueli, A. (1977). The Temporal Logic of Programs*. In Foundations of Computer

Science, 1977., 18th Annual Symposium on, pages 46–57.

Prakken, H. and Sartor, G. (1996). A Dialectical Model of Assessing Conflicting

Arguments in Legal Reasoning. Artificial Intelligence and Law, 4(3-4):331–368.

Ramezani, E., Fahland, D., and van der Aalst, W. (2012a). Where Did I Misbehave?

Diagnostic Information in Compliance Checking. In Proceedings of Business

Process Management, pages 262–278.

Ramezani, E., Fahland, D., van der Werf, J., and Mattheis, P. (2012b). Separating

Compliance Management and Business Process Management. In Daniel, F.,

Barkaoui, K., and Dustdar, S., editors, Business Process Management Workshops,

volume 100 of LNBIP, pages 459–464. Springer Berlin Heidelberg.

Ramezani, E., Fahland, D., van Dongen, B. F., and van der Aalst, W. (2013). Diagnostic

Information for Compliance Checking of Temporal Compliance Requirements. In

CAiSE, pages 304–320.

BIBLIOGRAPHY 235

Rangan, R. M., Rohde, S. M., Peak, R., Chadha, B., and Bliznakov, P. (2005).

Streamlining Product Lifecycle Processes: A Survey of Product Lifecycle

Management Implementations, Directions, and Challenges. Journal of Computing

and Information Science in Engineering, 5(3):227–237.

Rieke, R., Repp, J., Zhdanova, M., and Eichler, J. (2014). Monitoring Security

Compliance of Critical Processes. In 22nd Euromicro International Conference on

Parallel, Distributed and Network-Based Processing (PDP’14), pages 552–560.

Rifaut, A. and Dubois, E. (2008). Using Goal-Oriented Requirements Engineering

for Improving the Quality of ISO/IEC 15504 based Compliance Assessment

Frameworks. In 16th IEEE International Requirements Engineering Conference (RE

’08)., pages 33 –42.

Rosemann, M. and zur Muehlen, M. (2005). Integrating Risks in Business Process

Models. In Proceedings of the 16th Australasian Conference on Information Systems

(ACIS’05).

Rubino, R., Rotolo, A., and Sartor, G. (2006). An OWL Ontology of Fundamental Legal

Concepts. In Legal Knowledge and Information Systems - JURIX 2006, Paris, France,

7-9, pages 101–110.

Sadiq, S. and Governatori, G. (2010). Managing Regulatory Compliance in Business

Processes. In Handbook of Business Process Management, volume 2, pages 157–173.

Springer.

Sadiq, S., Governatori, G., and Namiri, K. (2007). Modeling Control Objectives for

Business Process Compliance. In Proceedings of BPM’07, pages 149–164. Springer.

Sadiq, S., Orlowska, M., Sadiq, W., and Foulger, C. (2004). Data Flow and Validation in

Workflow Modelling. In Proceedings of the 15th Australasian database conference -

Volume 27, pages 207–214, Darlinghurst, Australia.

Sadri, F. and Kowalski, R. (1995). Variants of the Event Calculus. In Sterling, L., editor,

Proceedings of the Twelth International Conference on Logic Programming. MIT

Cambrdige.

Sapkota, K., Aldea, A., Duce, D. A., Younas, M., and Bañares Alcántara, R. (2011).

Towards Semantic Methodologies for Automatic Regulatory Compliance Support.

236 BIBLIOGRAPHY

In Proceedings of the 4th workshop for Ph.D. students in Information and Knowledge

management, (PIKM ’11), pages 83–86, New York,USA.

Sartor, G. (2005). Legal Reasoning: A Cognitive Approach to the Law. Springer.

SCBS (2004). BASEL II Accord.

Schleicher, D., Anstett, T., Leymann, F., and Mietzner, R. (2009). Maintaining

Compliance in Customizable Process Models. In Meersman, R., Dillon, T., and

Herrero, P., editors, On the Move to Meaningful Internet Systems: OTM 2009, volume

5870 of LNCS, pages 60–75. Springer Heidelberg.

Schleicher, D., Anstett, T., Leymann, F., and Schumm, D. (2010). Compliant Business

Process Design Using Refinement Layers. In OTM Conferences (1), pages 114–131.

Schmidt, R., Bartsch, C., and Oberhauser, R. (2007). Ontology-based Representation

of Compliance Requirements for Service Processes. In Proceedings of Workshop on

Semantic Business Porocess and Product Lifecycle Management (SBPM’07), pages

28–39.

Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., and Heuvel, W.-J.

V. D. (2010). Business Process Compliance through Reusable Units of Compliant

Processes. In Proceedings of International Conference on Current Trends in Web

Engineering.

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation of

the Common Sense Law of Inertia. MIT Press, Cambridge, MA.

Strecker, S., Heise, D., and Frank, U. (2011). RiskM: A Multi-perspective Modeling

Method for IT Risk Assessment. Information Systems Frontiers, 13(4):595–611.

Thomason, R. H. (1981). Deontic Logic Founded on Tense Logic. In Hilpinen, R.,

editor, New Studies on Deontic Logic, pages 165–176. Kluwer.

Türetken, O., Elgammal, A., van den Heuvel, W.-J., and Papazoglou, M. (2011).

Enforcing Compliance on Business Processes Through the use of Patterns. In

Proceeding of Eurpoean Conference on Information System.

Túretken, O., Elgammal, A., van den Heuvel, W.-J., and Papazoglou, M. (2012).

Capturing compliance requirements: A pattern-based approach. Software, IEEE,

29(3):28 –36.

BIBLIOGRAPHY 237

Turki, S. and Bjekovic-Obradovic, M. (2010). Compliance in e-Government Service

Engineering: State-of-the-Art. In Exploring Services Science, LNBIP, pages 270–275.

Springer.

US-Government (2002). Public Company Accountng Reforms and Investor

Protection Act (Sarbanes-Oxley Act). Public Law 107-204, 116 Stat. 745.

van der Aalst, W. (1997). Verification of Workflow Nets. In Proceedings of the 18th

International Conference on Application and Theory of Petri Nets, pages 407–426,

London, UK. Springer-Verlag.

van der Aalst, W. (1998). The Application of Petri Nets to Workflow Management.

Journal of Circuits, Systems, and Computers, 8(1):21–66.

van der Aalst, W. (2000). Workflow Verification: Finding Control-Flow Errors Using

Petri-Net-based Techniques. In van der Aalst, W. M. P., Desel, J., and Oberweis, A.,

editors, Business Process Management: Models, Techniques, and Empirical Studies.

van der Aalst, W. (2009). Business Process Management, Encyclopedia of Database

Systems. Springer.

van der Aalst, W., Adriansyah, A., and van Dongen, B. (2012). Replaying History on

Process Models for Conformance Checking and Performance Analysis. Wiley Int.

Rev. Data Min. and Knowl. Disc., 2(2):182–192.

van der Aalst, W., de Beer, H. T., and van Dongen, B. F. (2005). Process Mining

and Verification of Properties: An Approach Based on Temporal Logic. In

Robert Meersman, Z. T., editor, On the Move to Meaningful Internet Systems,

volume 3760 of LNCS, pages 130–147. Springer-Verlag.

van der Aalst, W., Pesic, M., and Schonenberg, H. (2009). Declarative Workflows:

Balancing Between Flexibility and Support. 23:99–113.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., and Barros., A. (2002). Workflow

Patterns. QUT Technical report. FIT-TR-2002-02, Queensland University of

Technology, Brisbane, Australia.

van der Aalst, W., van Hee, K., van der Werf, J. M., Kumar, A., and Verdonk, M. (2011).

Conceptual model for online auditing. Decision Support Systems, 50(3):636 – 647.

On quantitative methods for detection of financial fraud.

238 BIBLIOGRAPHY

van der Aalst, W., van Hee, K. M., van Werf, J. M., and Verdonk, M. (2010). Auditing

2.0: Using Process Mining to Support Tomorrow’s Auditor. Computer, 43(3):90

–93.

Vicente, P. and Mira da Silva, M. (2011). A Conceptual Model for Integrated

Governance, Risk and Compliance. In Mouratidis, H. and Rolland, C., editors,

Advanced Information Systems Engineering, volume 6741 of Lecture Notes in

Computer Science, pages 199–213. Springer Berlin Heidelberg.

von Wright, G. H. (1963). Norm and Action. Routledge, London.

Wang, Z., ter Hofstede, A. H., Ouyang, C., Wynn, M., Wang, J., and Zhu, X. (2014). How

to Guarantee Compliance Between Workflows and Product Lifecycles? Information

Systems.

Ward, M. (1995). Physical Electrochemistry: Principles, Methods and Applications,

chapter Principles and Applications of Electrochemical Quartz Crystal

Microbalance, pages 293–338. Marcel Dekker, Inc., New York.

Weigand, H., van den Heuvel, W.-J., and Hiel, M. (2011). Business Policy Compliance

in Service-Oriented Systems. Information Systems, 36(4):791 – 807.

Wen, L., Wang, J., van der Aalst, W., Huang, B., and Sun, J. (2010). Mining Process

Models with Prime Invisible Tasks. Data Knowl. Eng., 69(10):999–1021.

Wolter, C., Miseldine, P., and Meinel, C. (2009). Verification of Business Process

Entailment Constraints Using SPIN. In Massacci, F., Redwine, S., and Zannone, N.,

editors, Engineering Secure Software and Systems, volume 5429 of Lecture Notes in

Computer Science, pages 1–15. Springer Berlin / Heidelberg.

Wyner, A. Z. (2008). Violations and Fulfillments in the Formal Representation of

Contracts. PhD thesis, School of Physical Sciences and Engineering.

Yip, F., Parameswaran, N., and Ray, P. (2007). Rules and Ontology in Compliance

Management. In Proceedings of (EDOC’07), pages 435–, Washington DC, USA.

Yolum, P. and Singh, M. P. (2002). Flexible Protocol Specification and Execution:

Applying Event-Calculus Planning using Commitments. In Proceedings of the first

international joint conference on Autonomous agents and multiagent systems: part

2, AAMAS ’02, pages 527–534.

BIBLIOGRAPHY 239

Yolum, P. and Singh, M. P. (2004). Reasoning about Commitments in the Event

Calculus: An Approach for Specifying and Executing Protocols. Annals of

Mathematics and Artificial Intelligence, 42(1-3):227–253.

Yu, J., Han, Y.-B., Han, J., Jin, Y., Falcarin, P., and Morisio, M. (2008). Synthesizing

Service Composition Models on the Basis of Temporal Business Rules. Journal of

Computer Science and Technology, 23:885–894.

Yu, J., Manh, T., Han, J., Jin, Y., Han, Y., and Wang, J. (2006). Pattern Based Property

Specification and Verification for Service Composition. In Aberer, K., Peng, Z.,

Rundensteiner, E., Zhang, Y., and Li, X., editors, Web Information Systems WISE

2006, volume 4255 of LNCS, pages 156–168. Springer Berlin Heidelberg.

	Dedication
	Keywords
	Abstract
	Acknowledgement
	Statement of Authorship
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Background
	Introduction
	Problem Area
	Business Process Compliance Management
	Problem Statement
	Research Questions
	Research Approach
	Research Contributions
	Publications
	Structure of the Thesis

	State-of-the-Art
	Compliance Management Frameworks
	Organisational Compliance Requirements Management
	Static Compliance Checking Frameworks
	Policy-Based Frameworks
	Internal Controls-based Frameworks
	Ontology and Semantics-based Frameworks

	Design-time Compliance Management
	Logic–based Approaches
	Object-Lifecycle Approaches
	Patterns/Graph-based Approaches
	Query-Based Approaches

	Run-time Compliance Management
	Run-Time Compliance Monitoring
	Logic-based Formal Run-time Approaches
	Model Checking-based Approaches

	Compliance Auditing Approaches
	Process Mining Based Approaches
	Database Technology–based Formal Approaches

	Hybrid Approaches
	Existing Evaluation Approaches for CMFs
	Summary

	Modelling Process Compliance
	Normative Requirements
	Background
	Norms, Time, and Compliance
	Classification of Normative Requirements
	Formal Semantics
	Related Work
	Summary

	Business Process Compliance
	Background
	Formal Foundations of Business Processes
	Modelling Obligations
	Business Process Compliance

	Compliance Checking Approach
	Motivating Example: Complaint Handling Process
	Compliance Checking of Complaint Handling Process

	Evaluation
	Related Work
	Summary

	Evaluating BPC Frameworks
	Conceptual Evaluation of CMFs
	Background
	Approach
	Conceptual Evaluation of Compliance Frameworks
	PENELOPE
	COMPAS
	DECLARE
	Business Process Modelling Notations–Query Language
	SEAFLOWS
	Process Compliance Language (PCL)
	Business Process Compliance Auditing Framework

	Discussion
	Related Work
	Summary

	Formal Evaluation of CMFs
	Background
	COMPAS
	Logic Background: Linear Temporal Logic
	Motivating Example: Privacy Act
	Modelling Privacy Act with LTL/CRL

	PENELOPE
	Logic Background: Event-Calculus
	Modelling Obligations with PENELOPE

	Deontic Extension to Event-Calculus
	Issues with Event-Calculus
	Extending Event-Calculus
	DHoldsAt Predicate
	DTerminates Predicates and Events
	Terminability Predicates
	Compensability Predicates

	Modelling Obligations with Extended EC
	Punctual Obligation
	Persistent Obligation
	Achievement Obligation
	Maintenance Obligation
	Compensation Obligation

	Solving PENELOPE'S Issues with Deontic EC
	Related Work
	Summary

	Epilogue
	Synopsis
	Limitations
	Avenues for Future Work

	Appendices
	Synthetic Business Contract
	Bibliography

