

The Effect of Desflurane vs. Sevoflurane on Perioperative Respiratory Complications in Laryngeal Mask Airway Anaesthesia: A Prospective Randomised Double-Blinded Controlled Trial

Prangmalee Leurcharusmee MD, Pathomporn Pin-On MD, Suwannee Tanasungnuchit MD, Katekanog Srivita RN, Parichad Khunwittaya RN Department of Anaesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, 50200

Table 3: Recovery profiles

Introduction

- The pungent odor of desflurane (DES) has led to the controversy of its safety when it is used with laryngeal mask airway (LMA).
- A number of trials have been reported concerning benefits and side effects of using DES compared with sevoflurane (SEVO) during LMA anaesthesia^(1,2).
 - Only a few were high-quality RCTs that used adverse respiratory responses as primary outcomes^(3,4).
 - Anaesthetic techniques during induction, maintenance and emergence were not always well-described^(1,2).

Objective

This is a non-inferiority patient-assessor blinded RCT designed to compare occurrences of respiratory complications between DES and SEVO during LMA anaesthesia.

Methods and Materials

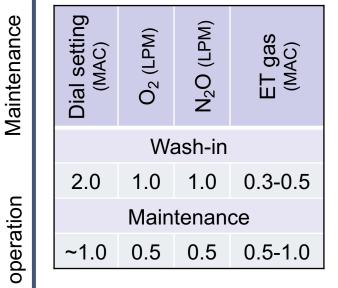
enance

- ClinicalTrials.gov ID:
- NCT03006250
- **❖ Ethics approval:** 31/8/16
- Recruitment: 26/9/16-24/4/18

Inclusion criteria:

- ❖ 18-75 yr, BMI 18-30, ASA I-III
- Elective LMA anaesthesia

Exclusion criteria:

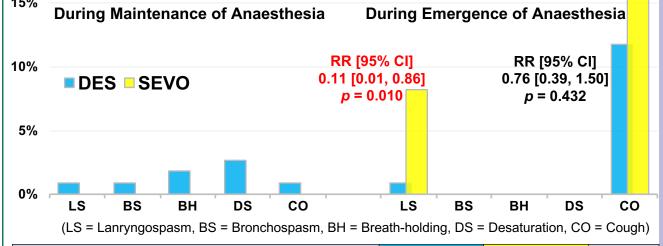

- URI within 1 month
- Heavy smoker (>20 cigs/day)
- Aspiration risk
- Muscle relaxant required
- Primary outcome:

Adverse respiratory events

Secondary outcomes: Time to and quality of recovery

Primary outcome analysed (n=110)

- Standard monitoring nduction
 - Intravenous induction (propofol, fentanyl, lidocaine)
 - ❖ LMA® Unique™# 3.0-4.0
 - DES or SEVO adjustment:



- Pressure support ventilation
- .**❖LMA** removal while awake

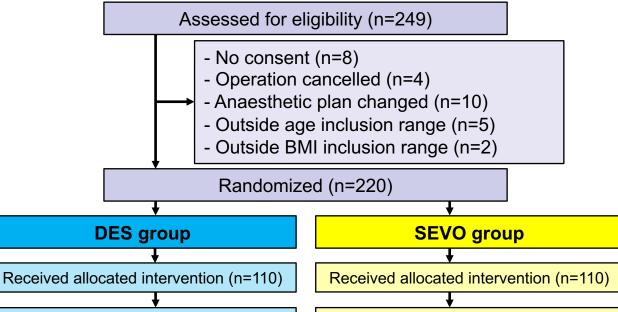
Table 1: Baseline data	DES	SEVO	<i>p</i> -value
Age (years)	44.7 ± 15.5	43.5 ± 15.9	0.545
Female	88.2%	84.5%	0.556
BMI (kg/m2)	22.5 ± 3.4	23.0 ± 3.2	0.283
ASA I-II	99.1%	95.5%	0.212
Non-smoker	94.5%	95.5%	1.000
Operation time (minutes)	54.4 ± 31.8	54.4 ± 29.9	1.000

Results

Figure 2: Occurrence of Respiratory Events

Table 2: Anaesthetic data	DES	SEVO	<i>p</i> -value
Induction data			
Propofol (mg/kg)	2.4 ± 0.5	2.5 ± 0.5	0.320
1-2 insertion attempt(s)	95.5%	94.5%	0.525
Intraoperative data			
Fentanyl (µg/kg)	0.3 ± 0.4	0.4 ± 0.4	0.571
Hypotension	25.5%	32.7%	0.235
Bradycardia (HR ≤ 50)	25.5%	20.0%	0.334
Postoperative data			
Nausea/vomit (PONV)	16.4%	9.1%	0.156
Good satisfaction	91.3%	91.7%	1.000

Emergence times							
Time to eyes opening (minutes)	4.6	±	1.8	5.7	±	2.3	< 0.001
Time to hand grip (minutes)	4.8	±	1.9	6.2	±	2.4	< 0.001
Time to LMA removal (minutes)	5.0	±	1.8	6.2	±	2.1	< 0.001
Quality of recovery							
Orientation to time and place at 15 minutes	98.5%			94.3%		0.366	
Bed-to-bed self-transfer ability at 15 minutes	88.7%		68.6%		0.004		
Recovery times							
Modified Aldrete scores ≥ 9 at 30 minutes	85.5%		84.5%		0.850		
Modified Aldrete scores ≥ 9 at 60 minutes	100.0%			100.0%			1.000


p-value

Discussion

- No serious respiratory incidence occurred. All cough events were self-limiting. Laryngospasm episodes were recovered by CPAP.
- Airway events during maintenance were related to technical errors including LMA displacement and anesthetic circuit disconnection.
- Slower LMA removal time induced cough at emergence in SEVO.
- DES was identified as an independent risk factor for PONV⁽⁵⁾.
- Comparison with other trials was limited due to differing protocols.

Figure 1: CONSORT diagram

of

Conclusion

- DES is possibly superior to SEVO even with LMA removal during the awake state when its pungent odor is a factor.
- DES group showed significantly greater recovery profiles with fewer adverse respiratory events during the emergence period.
- Stevanovic A, et al. Airway reactions and emergence times in general laryngeal mask airway anaesthesia: a meta-analysis. Eur J Anaesthesiol. 2015;32:106-16. References: 1)

Primary outcome analysed (n=110)

- de Oliveira GS, et al. The effect of sevoflurane versus desflurane on the incidence of upper respiratory morbidity in patients undergoing general anesthesia with a laryngeal mask airway: a meta-analysis of randomized
- controlled trials. J Clin Anesth. 2013;25:452-8. Eshima RW, et al. A comparison of airway responses during desflurane and sevoflurane administration via a laryngeal mask airway for maintenance of anesthesia. Anesth Analg. 2003;96:701-5.
- Lema FE, et al. [Incidence of cough after desflurane and sevoflurane administration through a laryngeal mask: a controlled clinical trial]. Rev Esp Anestesiol Reanim. 2010;57:141-6. Choi JB, et al. Incidence and risk factors of postoperative nausea and vomiting in patients with fentanyl-based intravenous patient-controlled analgesia and single antiemetic prophylaxis. Yonsei Med J. 2014;55:1430-5.