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Abstract

Ion implantation is a nonequilibrium doping technique, which introduces impurity
atoms into a solid regardless of thermodynamic considerations. The formation of meta-
stable alloys above the solubility limit, minimized contribution of lateral diffusion pro-
cesses in device fabrication, and possibility to reach high concentrations of doping
impurities can be considered as distinct advantages of ion implantation. Due to excellent
controllability, uniformity, and the dose insensitive relative accuracy ion implantation
has grown to be the principal doping technology used in the manufacturing of inte-
grated circuits. Originally developed from particle accelerator technology, ion implanters
operate in the energy range from tens eV to several MeV (corresponding to a few nms to
several microns in depth range). Ion implantation introduces point defects in solids.
Very minute concentrations of defects and impurities in semiconductors drastically alter
their electrical and optical properties. This chapter presents methods of defect spectros-
copy to study the defect origin and characterize the defect density of states in thin film
and semiconductor interfaces. The methods considered are positron annihilation spec-
troscopy, electron spin resonance, and approaches for electrical characterization of semi-
conductor devices.

Keywords: ion beam implantation, defects, metal-oxide-semiconductor (MOS) devices,
interfaces, diffusion

1. Introduction

Applications of ion implantation require an understanding of the lattice defects, which largely

control the optical and electrical properties of semiconductors. Characterization techniques

such as secondary ion mass spectrometry, spreading resistance, carrier and mobility profiling,
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Rutherford backscattering, ion channeling, and transmission electron microscopy with exam-

ples of using these techniques to investigate the dopant distribution in the implanted samples,

characterize dopants that are electrically active, examine accumulation of the ion beam

induced defects, and resolve their structure have been reviewed in the literature [1]. As the

main feature of ion implantation is the formation of point defects in the energetic ion collisions,

it is natural to present additional methods employed in semiconductor research to study

atomic origin and electrical activity of technologically relevant imperfections. The prime atten-

tion will be given to characterization techniques invented in technological development of the

Si/SiO2 system, though examples of other materials systems, which can be studied by applica-

tion of positron annihilation spectroscopy, electron spin resonance spectroscopy, and (photo)

electrical methods are provided.

2. Positron annihilation spectroscopy

Positron annihilation spectroscopy (PAS) is now a well-established tool to characterize elec-

tronic and defect properties of bulk solids, thin films, and surfaces. PAS allows studying the

electronic structure of defects in solids. The imperfections are represented by small volume

defects such as vacancies, vacancy clusters, and free volume defects. Positron beams can be

applied to study defects in metals, semiconductors, composite materials, and thin film systems

of different crystalline structure and chemical bonding. Methodologically, PAS mainly con-

siders the three experimentally accessible dependences schematically indicated in Figure 1: (i)

the time-dependent distribution of annihilating photons; (ii) the angular distribution of anni-

hilating photons; and (iii) the Doppler broadening of the 0.511 MeVannihilation line. While the

time-dependent distribution of photons bears information on the electron density in the vicin-

ity of the annihilation event, the latter two photon characteristics provide information on the

electron momentum distribution. The positron lifetime gives more integral information than

the momentummeasurements regarding the region fromwhich the positron annihilates. In the

case of a defect-containing sample, the average electron density at a defect site can be rather

defect-specific. This suggests position lifetime measurements are suitable for investigating

vacancy-clustering processes in rapidly quenched or (ion) irradiated materials. The momen-

tum measurements can also yield detailed defect-specific information. The positron energy

may vary allowing examination of the depth distribution of defects in solids and interfaces.

Other direct experimental methods including transmission electron microscopy and atomic

diffusion are less capable in detecting open volume defects located at interfaces and surfaces.

The threshold defects concentration ensured by PAS is 1014 to 1015cm�3.

The physics of positron annihilation spectroscopy has been explained in textbooks [2, 3] and

research articles [4, 5]. A positron injected into a solid becomes thermalized within a few picosec-

onds by ionizing collisions, plasmon and electron-hole excitations, and phonon interactions. If

lattice defects are present in the material, the positron can be trapped by these imperfections.

Lattice imperfections (vacancies, vacancy clusters, or dislocations), open volumes, nanoclusters,

and the surface states can serve as potential wells, which effectively trap positrons. Within hun-

dreds of picoseconds, a positron in a solid annihilates with an electron yielding two gamma rays.
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The distribution of the Δt values for a number of these events, measured in a PAS lifetime

experiment, provides the total electron density in the region of positron-electron annihilation. The

positron annihilation rate λ is the reciprocal of the positron lifetime and can be described by the

overlap integral of the electron ρ�ðrÞ and positron ρþðrÞ densities [4]:

λ ¼ πr20c∭ ρ�ðrÞρþðrÞd3 r, ð1Þ

where r0 is the classical electron radius and c is the velocity of light.

Because energy and momentum are conserved in the annihilation process, the two gamma

rays resulting from the electron-positron pair annihilation each have energy equal to the rest-

mass energy of an electron or positron (mc2 = 511 keV) and � an energy increment ΔE; the two

gamma rays propagate in opposite directions with some deviation θ. Since the thermal ener-

gies of the positions are about kT, the values of ΔE and θ correspond only to the momenta of

the annihilating crystal electrons. The similarity of information available from Doppler-

broadening spectra P(ΔE) and angular-correlation curves N(θ) can be inferred by comparing

the expressions for N(θ) and P(ΔE) in terms of the independent-particle-model (IPM) proba-

bility, R(p), that positron-electron annihilation yields 2γ-emission with total momentum p:

RðpÞ ¼ πr20c
X

k
nkj∭ e�ipr ΨþðrÞΨ�ðrÞj

2d3 r, ð2Þ

whereΨþðrÞ andΨ�ðrÞ are the positron and electronwave functions, respectively, nk is the Fermi

function, and k represents both the electron wave vector k and the band index. The expression for

Figure 1. Schematic representation of positron annihilation indicating the basis for the three experimental techniques of

positron annihilation spectroscopy: lifetime, angular correlation, and Doppler broadening.
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NðθÞ and PðΔEÞ is represented as NðθzÞ ¼ ʃʃRðpÞdpxdpy and PðΔExÞ ¼ ʃʃRðpÞdpydpz. The IPM

approximation ignores the effects of positron-electron correlations in the solid assuming the

particles act independently. The treatment of the electron-positron correlation, i.e., the enhance-

ment of the electron density at a positron trapped by a defect site has been considered in Ref. [6].

The theory developed in this work considers the two-particle representation of an annihilating

positron-electronpair. The IPMapproximation is used to calculate themomentumdistribution for

each electron state. The individual contributions are weighted by the corresponding partial anni-

hilation rates. The partial rates are calculatedwithin the generalized gradient approximation. This

approach was found useful when considering the momentum region where the uppermost core

electron states dominate. The analysis of the momentum distribution curves up to rather large

momenta becomes possible enabling identification of the chemical environmentwhere the annihi-

lation event has occurred. The one-dimensional momentum distribution of the annihilating

electron-positron pairs can be extracted from the measurement of the Doppler broadening of the

annihilation radiation. Generally, the positron-enhanced electron density can be accounted for if a

constant, multiplicative factor (the enhancement factor) is used to take themany-body effects into

account, although different enhancement factors must be used for valence and core electrons

consistentwith their degree of tight-binding.

A typical positron lifetime experiment has been described in work [7]. It can be performed by

using a radioactive 22Na as a positron source. The positron source material can be deposited on a

sample or sealed in foil, then placed between two identical samples under study. The decaying

Na nuclei emit a high energy photon at 1.2745 MeV, which is used as a start signal for the

positron lifetime measurement, while a stop signal is characterized by 511 keV photons. The

photons serving as start and stop signals are detected by scintillating detectors coupled with

photomultiplier tubes. Detectors are chosen to optimize scintillating efficiency and resolution.

The use of digitization of the detector pulses significantly simplifies the postmeasurement signal

analysis. The measured positron lifetime spectrum is exponential and reveals several features

such as the background noise, the time resolution, and annihilations in the source. The back-

ground noise is determined by the source activity and arises due to rapid emissions of positrons

that produce false coincidences. Further, the data analysis methods are also described in Ref. [7].

Except for the least-squares fitting of the positron life time spectrum, the inverse Laplace trans-

form and the Bayesian-probability methods have been developed. The latter two methods do not

require the number of lifetime components to be a priori fixed and can be used if continuous

lifetime distributions are expected.

The surroundings of the vacancy defect can be studied with coincidence Doppler broadening

spectroscopy measurements. Nonzero electron and positron momentum causes a Doppler

shift of the annihilation photons. The Doppler shift is determined by the momentum of

electrons since positrons in a solid are thermalized. Analysis of the Doppler broadening of

annihilation radiation provides a sensitive method of defect characterization by extracting the

momentum distribution of the electrons. It allows examining high-momentum core electrons.

The principle of the method lies in the analysis of the positron annihilation line shape, which

directly corresponds to the distribution of momentum of electron-positron pairs as shown in

Figure 2. The momentum itself is measured from the amount of the Doppler shift of the

emitted photons. In the coincidence Doppler broadening spectroscopy developed in works
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[8, 9] determination of energy of both γ rays is done simultaneously. Coincidence measure-

ments of annihilation photons reduce the background signal by several orders of magnitude

and allow observation of the high-momentum part of the spectrum, which stems from posi-

trons annihilated by core electrons making possible identification of chemical elements sur-

rounding a positron annihilation site.

The discovery of slow positron emitters enabled analysis of solid surfaces [10, 11]. Slow positron

beams are utilized for nondestructive depth profiling of defects in surfaces and interfaces, low

energy positron diffraction, and positron remission microscopy studies on surfaces. A moderator

single crystal metal film (Au, Cu, W, Ta) was used to produce slow positron beams [12]. The

thermalized slow positrons are emitted from the metal surface spontaneously owing to the

negative positron-surface affinity. Since slow positron beam generation is a surface process, it is

sensitive to surface contaminations such as carbon, oxygen, and the surface defects [13, 14].

Energy loss mechanisms and the positron processes in condensed matter are described in Ref.

[15]. Except being ejected from the surface, positrons can form a positronium (Ps) by capturing a

surface electron. This bound state decays from either a singlet state, p-Ps (
1S0) or a triplet state,

o-Ps (
3S1), each having unique annihilation characteristics [16]. Positrons can become trapped by

the surface states or reflected back to the interior from the surface.

When a slow positron annihilates with a core electron, the released energy can be transferred to

another electron, which can be ejected and detected out of the surface. Weiss et al. [17] were first

to demonstrate that a low-energy positron creates core holes through matter-antimatter annihi-

lation generating Auger electrons with high efficiency and extremely low secondary electron

background. The latter is feasible to obtain by using incident beam energy below the secondary

Figure 2. A typical annihilation line. After Ref. [144].
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electron emission threshold. Positron-annihilation-induced Auger-electron spectroscopy (PAES)

is advantageous due to increased surface selectivity in systems where the localization of the

positron at the surface causes the excitation volume to be restricted almost to the top atomic

layer. In addition, because calculated PAES intensities are very sensitive to the spatial extent of

the positron wave function, PAES measurements provide an important test for models of the

positron surface state. This technique has been proved to be a useful tool for determining surface

composition, thin film and nanocrystal characterization, and surface diffusion of atoms.

Also, positrons can be used in diffraction experiments having the advantage that interaction with

solids can be easier modeled due to the sign of the scattering potential (the scattering potential

between the positron and the atomic nucleus is repulsive) and the total reflection, which is only

present in the positron diffraction [18, 19]. The interaction of an energetic positron with the solid

may differ from that of electrons of the same energy. The differences can be associated with the

relative differential and total elastic cross sections and also with the different energy loss pro-

cesses for the two particles in a solid. At low energy, the inelastic mean-free path of a positron is

shorter than that of an electron leading to an increased surface sensitivity of positrons. This is

especially useful in examining the features of reconstructed surfaces, adsorbates, single adsorbed

layers and their spacing to the substrate as well as layers with a nominal thickness in the

submonolayer range. The positron scattering cross sections are marginally dependent on the

specific element enabling analysis of compounds comprising unlike atoms.

High energy diffraction of positrons generates two-dimensional (2D) pattern similar to elec-

trons, although there are several differences due to differences in the ion-core interaction and

crystal potential between positrons and electrons. Kikuchi lines stemming from multiple-

scattering of electrons are not observed in diffraction of high-energy positrons. The most

notable feature is in the total reflection of positrons at surfaces. The positron diffraction near

the critical angle is especially sensitive to the topmost atomic surface layer whereas at the

critical angle for total reflection in X-ray diffraction, which is usually less than 0.2� the pene-

tration depth of the photons into the solid still amounts to a few nanometers. Surface sensitivity

of positron techniques is especially suited to near-surfacemeasurements, which are particularly

relevant to ion beam modified devices.

The technique of positron annihilation spectroscopy in conjunction with a slow positron beam

has been proposed for the monitoring of ion implantation dose and uniformity [20]. Positron

dosimetry can nondestructively measure doses of implanted ions with significantly higher

sensitivity than that available using other techniques. The principle of the technique is that

implanted thermalized positrons diffusively move in the material and become trapped by the

open-volume vacancy-type defects created by ion implantation. The positron annihilation in

vacancy-type defects contributes less to the Doppler broadening of the energy spectrum of

annihilation γ rays compared to that in the defect-free bulk material. Doppler broadening

parameter S is defined as the ratio of the number of counts in the central part of 511 keV

gamma line to the total number of counts under the peak. A single parameter S describing the

linewidth of the annihilation gamma ray line at 511 keV is related to the defect concentration.

The concentration C of open-volume defects is related to the number φ of ions implanted as

C∝φ0.7. The defect depth profiling using positron beams has found applications in materials
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research to study ion beam damage in both inorganic [21–23] and organic materials [24]. In the

latter case, positron beam studies are of particular importance since application of X-ray or

electron beams to organic materials may appear invasive [25].

Though modern MOS device technology may rely on ion-implantation free approaches

[26, 27], applications of ion implantation are expanding over areas of quantum information

processing [28, 29] and photovoltaics [30, 31]. Plasma immersion ion implantation enables

fabrication of 3D transistor architectures [32, 33] required for scaling of metal-oxide-semicon-

ductor field-effect transistors (MOSFETs) and is technologically more convenient for the fabri-

cation of shallow pn-junctions. The ion implantation doping and the problems associated with

the formation of point defects in the ion collision processes have been reviewed in work [34]

highlighting the differences in the defect generation and accumulation in Si and Ge upon ion

implantation. The dopant behavior in Ge is dominated by vacancies, while both vacancies and

self-interstitials are active in Si. PAS has been applied to study point defects in interfaces

between high-k dielectrics and metal [35] and Si [36]. The open volume defects were found to

be located at both TiN/SiO2 and Si/SiO2 interfaces [37]. Annealing studies of defects indicated

that while the defects in the Si/SiO2 interface could be annealed out, the TiN/SiO2 interface

revealed an enhanced defect density due to the formation of the interfacial titanium oxynitride.

Open volume defects introduced in SiN
x
films [38] and SiGe/Si interfaces [39] by plasma

processing have been also revealed by PAS.

3. Electron spin resonance spectroscopy

Being integral to CMOS technology, ion implantation finds its applications at the forefront of

materials science for fabrication of quasi-2D materials [40, 41], exploration of electron and

nuclear spins of donor atoms in silicon as qubits for quantum information processing [42],

and fabrication of light-emitting diodes [43]. Pertaining to MOS device fabrication, ion implan-

tation is known to result in generation of electron and hole-trapping centers, which are

detrimental to the device performance [44]. Such trapping centers may reside in a gate oxide

and its interfaces with a semiconductor and a gate electrode. In amorphous SiO2, ion implan-

tation induces densification and the amorphous network reconstruction, not fully consistent

with the assumption of plastic deformation. Ion implantation forces SiO2 to freeze in a

nonequilibrium phase tolerating a substantial reduction in the mean Si�O�Si angle and a

subsequent change in the ring distribution statistics. As such, the radiation response of SiO2 is

dependent on the intrinsic structure of the material and the incorporated strain. Possible

structural modifications in amorphous SiO2 resulting in irradiation-induced charge have been

reviewed in Ref. [45]. When paramagnetic, electrically active defects can be studied by using

electron spin resonance (ESR) since the method is restricted to systems with a residual electron

spin. For example, molecular solids with singlet ground states are not observable by ESR. This

selectivity appears as useful in research on the electronic states of conducting materials, point

defects in thin films, interfaces, and nanocrystals [46–50]. For the subject of ESR describing the

fundamental theory and also the primary applications of the technique one can refer to the

textbooks [51, 52]. The potential of the method in application to interfaces and nanolayers is

detailed in Ref. [53].
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The actual quantity detected in the ESR experiment is the net magnetic moment per unit

volume, the macroscopic magnetization M. The microwave absorption spectrum is described

by the spin Hamiltonian consisting of two components. A spin Hamiltonian contains operators

for an effective electronic spin and for nuclear spins, the external magnetic field, and parame-

ters. Its eigenfunctions determine the allowed energy levels of the system for an ESR experi-

ment. The characteristics of paramagnetic species are the g-value, the spin-lattice relaxation

time, and the line width. The g-value is the magnitude of the electron Zeeman factor for the

paramagnetic species considered. The g-value can be determined as E ¼ gμBB, where E is the

energy of microwave, μB is Bohr magneton, and B is magnetic field. In the case of free

electrons, the g-value becomes 2.0023. For a paramagnetic defect, the g-value is different due

to the effect of local magnetic field induced by movement of electrons in their orbits. The

structure of the orbits contributes to the g-values via the effect of spin-orbit coupling, which is

anisotropic and depends on axis determined by the magnetic field.

The spin-lattice relaxation time characterizes interactions of a spin system with its environment

and reflects the strength of the interaction between the spin system and its surroundings. The

magnetic environment of an unpaired electron can give rise to the ESR line broadening. The

spectral lines are broadened either homogeneously or inhomogeneously. Homogeneous line

broadening can be fitted by a single Lorentzian line and indicates that all the spins are described

by the same spin Hamiltonian parameters. The line width of homogeneously broadened lines

depends on the relaxation time of the spins. In the case of inhomogeneous broadening, the

observed signal becomes a superposition of a large ensemble of individual spin packets, which

are of slightly different g-values from each other. The inhomogeneous broadening of the spectral

line can be caused, for example, by anisotropy of the g-tensor or the unresolved hyperfine

structure. The latter may occur when the number of hyperfine components located near nuclei

is so large that the hyperfine structure cannot be clearly observed. The large line width can be

also observed due to dipole-dipole interactions between the defects spins [54].

As a starting point in defect identification, it is instructive to give an overview of intrinsic and

extrinsic point defects of the Si/SiO2 system as the most comprehensively studied system in

CMOS technology. Being oxidized, silicon forms network-lattice-induced dangling bond defects

at the Si/SiO2 plane. The structure of the Pb defects is dependent on the crystalline orientation of

Si. The (111)Si/SiO2 interface can be characterized by dangling bond defects of only one type—Рb

centers. This is a sp3 silicon-dangling bond directed along the [111]. The defect is of C3v symme-

try and can exist in four orientations in the silicon lattice [55, 56]. Thermally oxidized silicon

contains the Pb density of approximately 4.9�1012 см�2. In contrast to the (111)Si/SiO2 interface,

the (100)Si/SiO2 interface is characterized by two ESR active defects, Pb0 and Pb1 as shown in

Figure 3. When oxidation of silicon is implemented at 800–970�С, the defect density of both

defect types is similar (1012 см�2). The Pb1 defect is also a Si-dangling bond located slightly under

the interface plane. Unlike Pb0, it is of monoclinic-I point symmetry [48].

The dangling bond silicon defects, the Pb centers, are often employed as sensitive probes to

detect interfacial stress during the Si/SiO2 interface formation. When Si is subjected to oxidation

at Т > 900�C, structural relaxations occur at the Si/SiO2, and the density of Pb-centers decreases.

At this point, two stages of the silicon oxidation process can be distinguished. Suboxide
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bonding at the Si/SiO2 interface is diminishing when silicon is oxidizing at 850�C<Т< 900�C.

Increasing oxidation temperature to 1050�C reduces strain at the macroscale [57]. Spatial

uniformity of the dangling bond defects is determined by the temperature conditions during

silicon oxidation. ESR studies of Pb defects can be used to determine deformations at the

interface from dependence of the ESR line width as a function of magnetic field angle [58, 59].

Pb0 and Pb1 defects in (100)Si/SiO2 as well as Pb defects in (111)Si/SiO2 can be passivated in

molecular hydrogen [49]. Upon ion implantation or ionizing irradiation, the interface trap

generation may occur. A part of the interface states appears to be due to depassivated

dangling bond defects. The mechanism of the depassivation reactions has been considered

within the “hydrogen model”, which assumes defect precursors in SiO2 to create mobile

protons interacting with HPb and generating Pb centers. The interface trap generation coin-

cides with the positive charge built-up in the oxide. The model proposes that protons are

introduced in SiO2 as a product of reactions of atomic hydrogen with the hole carriers

trapped in the oxide; both the atomic hydrogen and the trapped holes are produced by

irradiation. It has been concluded that the positive charge trapped in the oxide is present in

the form of small polarons (self-trapped holes) in amorphous SiO2 [60]. Though in bulk

vitreous SiO2 intrinsic hole-trap centers have been found to be stable at relatively low

temperatures, thin films of insulating gate dielectrics in modern MOS devices are formed

by low-temperature depositions on semiconductors and could incorporate interfacial strain

sufficient to support self-trapped carriers at higher temperatures. The polaronic nature of the

oxide-trapped charge in amorphous SiO2 is consistent with the recent theoretical consider-

ation of hole and electron trapping in hafnia. The deep states of electron and hole polarons

have been predicted to exist in HfO2 with precursor sites being elongated Hf�O bonds or

under-coordinated Hf and O atoms [61]. This indicates that: (i) similar mechanisms of the

defect generation under irradiation or ion beam damage could be operative in MOS devices

containing HfO2 and other amorphous oxides. (ii) Dangling bond defects in oxides may not

be required for the charge trapping to occur.

Figure 3. Schematic representation of Pb0 и Pb1 defects at the (100)Si/SiO2 interface. After Ref. [145].
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Of the dangling bond defects in SiO2, there are point defects associated with a dangling bond

localized either on silicon or oxygen. The EX center belongs to the oxygen-related defects in

SiO2. The EX defect is the intrinsic network-stabilized defect in SiO2. It is formed in the upper

part of the oxide when the oxidation temperature Тox = 700–800�C. Being most prominent in

thin oxides, EX is linked to the specific way thermal oxide is grown, i.e., oxidation of c-Si. As a

working model, EX can be represented as an excess-O hole defect where an electron is

delocalized over the four oxygen atoms bordering a Si vacancy [62], Figure 4. There are also a

nonbridging oxygen hole center (O3�Si�O�) [63] and a peroxide-radical (Si�O�O�) [64], which

are not naturally present in SiO2 and introduced as damage defects in a postoxidation stage by

irradiation with some energetic species (e.g., γ and x photons, electrons, ions).

The E0 defect is also an extrinsic defect present in crystalline and amorphous SiO2. The E0

defects in SiO2 have an unpaired electron localized at a hybrid sp3 orbital of silicon, which is

bonded to three oxygen atoms (О3�Si�) [65]. Several schematic models of the E0 centers are

depicted in Figure 5. The model representation of Е' as the bridged hole-trapping oxygen-

deficiency center has not been experientially verified [66]. The model considers a paramagnetic

silicon atom connected via oxygen with another silicon atom, which is the trapping center for

positive charge carriers, Figure 5(b).Generation of E’defects may depend on hydrogen content

in a-SiO2, since dissociation energy of a strained Si�O bond by hydrogen is rather low and

amounts to 0.5–1.3 еВ [67]. The defect generation in interfaces and thin films by ionizing

radiation or hot electron injection is sensitive to the initial content of the strain bonds in MOS

devices [68]. Therefore, ESR studies could be employed to reveal the impact of the interfacial

strain on the defect generation.

Since electronic devices explore charge carries in their operation, it appeared natural to estab-

lish interrelationship between the silicon-dangling bond defects and the electron states at the

Figure 4. Schematic representation of the EX center.

Ion Implantation - Research and Application76



semiconductor/insulator (SI) interfaces. For the Si/SiO2 interfaces, it is known that technology

chosen for silicon oxidation is crucial for attaining low density of the interface state (Dit), which

is directly linked to the density of silicon-dangling bonds at the Si/SiO2 interface. The decrease

in Dit and the Pb density was observed when steam oxidation was used to grow SiO2. Also, the

higher Dit values are expected at the more closely packed (111)Si surface as compared to

the (100)Si one. A direct correlation between the Pb density and the free carrier concentration

in the field-effect transistor channel was reported in work [69]. Further studies of electrical

activity of the Si/SiO2 defects were undertaken by using various methodologies: capacitance-

voltage (CV) measurements [70], deep-level transient spectroscopy [71], and the photoioniza-

tion threshold method [72]. It was firmly established that Pb0 defects at the (100)Si/SiO2

interface form amphoteric surface states at 0.3 and 0.8 eV above the silicon valence band edge

[73]. In respect to the Pb1 centers at the (100)Si/SiO2, the Pb0 и Pb1 defect densities inferred from

ESR studies were compared with the interface trap densities determined from CV measure-

ments. It was concluded that Pb1 does not form electrically active states within the silicon band

gap [74]. Concerning the E´ center in thermal oxide, it is neutral when paramagnetic and

strongly interacts with hydrogen [75]. The model for the E´ center in this case is the H-

terminated center denoted as O3�Si–H. It has been supposed that the E´ center constitutes the

hole trap and releases hydrogen in the form of a proton upon hole-trapping. The released

Figure 5. The first model of E´γ center (а), the model of the bridged hole-trapping oxygen-deficiency center (b), and the

E´σ center model (c).
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proton can be trapped by the oxide network and form a donor-like surface state. When

hydrogen is available in gate oxides as it can be upon an irradiation process, the neutral E´

center may be again passivated serving as a hole-trapping site.

Charge trapping in gate oxides is one of themajor obstacles in integration of high-k gate dielectrics

in CMOS technology. Among the issues is the enhanced migration of dopant impurities originat-

ing from ion implantation steps. As such, ESR studies are indispensable to unravel point defects,

which may appear detrimental for MOSFET performance. For example, ESR studies of phospho-

rous implanted high-k dielectrics reveal that P incorporating in the metal oxide network forms

point defects by substituting for Hf or Zr in HfO2 or ZrO2, respectively [76]. Such defects formed

due to enhanced migration of dopant impurities during dopant activation thermal steps may

potentially trap charge.ESR studies have been applied to diverse ion-implanted systems. In SiO2,

a substantial reduction in S and E0

γ centers (Si enrichment in the oxide) was found when in situ

ultrasound treatmentwas appliedduring implantationof Si+ ions into thermal SiO2on (100)Si [77];

ESR founda radicalmechanismof degradation of the ion-implantedphotoresist [78]. Applications

of the ESR techniques to study ion-beam-induced implantation damage in carbon-basedmaterials

have been described in Ref. [79].

ESR techniques have been explored in studies of spintronic materials fabricated by ion implan-

tation. To probe the spin relaxation, the technique of choice is the pulse-electron spin resonance

spectroscopy. ESR studies have been undertaken to measure spin relaxation times of dopants

in Si. Shallow donors in Si are known for their long relaxation time suggesting a possible

application of spins as qubits. The transverse relaxation time measured for isolated spins is

associated with the decoherence time. ESR studies have been used to determine spin relaxation

times in Sb-implanted isotopically enriched 28Si [80]. It has been shown that annealing of

ultralow dose antimony implants leads to high degrees of electrical dopant activation with

minimal diffusion. Spin relaxation times were increased when paramagnetic defects at the Si/

SiO2 interface were passivated by hydrogen. Except for the Si/SiO2 system, pulsed ESR exper-

iments have been used to characterize the coherent spin dynamics of nanofabricated nitrogen

vacancy centers in nitrogen implanted high-purity diamond [81].

4. Electrical characterization of semiconductor interfaces: semiconductor

doping, interfacial and oxide charges

4.1. Steady-state capacitance

An overview of charge carrier profiling, steady-state and transient capacitance, deep-level

transient spectroscopy methods can be found in Ref. [82]. CV methods are most frequently

used to extract parameters critical for operation of semiconductor devices. The interface trap

densities, the fixed oxide charge, the carrier concentration in a semiconductor, and the permit-

tivity of an insulator can be obtained from CV measurements. Here, more emphasis is given to

basic limitations of CV methods, possible errors, and examples of using CV techniques.

The measure of charge responses in MOS devices as a function of electric field is the differen-

tial capacitance. To account for the interface trap effects, the Berglund method that establishes
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the relation between applied voltage across the MOS structure and the band-bending in

equilibrium can be used [83]. Figure 6 exemplifies the energy distributions of the interface

states at the (100)Si/SiO2 and (100)Si/HfO2 interfaces in panels (a) and (b), respectively. The Dit

distributions in panel (a) are obtained using the Berglund procedure. The results of Dit distri-

butions extracted from a low-frequency CV curve and ac admittance data are compared in

panel (b) indicating a perfect match in the energy range where the fast interface states contrib-

ute to the emission of charge carriers. The Si/SiO2 interface trap distributions derived from the

100 Hz CV curves reveal two peaks centered at 0.25 and 0.85 eVabove the Si valence-band edge,

Figure 6(a). The peaks are superimposed on the U-shaped background corresponding to a

continuous distribution of the surface states in energy and ascribed to the existence of weak

Si�Si and Si�O bonds at the Si/SiO2interface [84]. The observed peak energy positions corre-

spond to the (+/0) and (0/�) transitions of the amphoteric Pb0 defect. No measurable contribution

of the Pb1 center to the Dit could be detected in the central part of the Si bandgap, in agreement

with the previous studies [74], which compare the total interface trap densityNit and the Pb0 and

Pb1 densities inferred from the ESR data. The estimation of the total interface trap density Nit in

work [74] was done according to Gray and Brown as described in work [85]. This procedure is

advantageous over the low-frequency Berglund method in the following: (i) It allows detection

of the interface states close (20 meV) to the Si band gap edges, inaccessible for room-temperature

Figure 6. The interface trap distributions inferred from the capacitance-voltage measurements following the Berglund

method and compared with these determined from ac conductance data as denoted by (•) symbols in panel (b).
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CV analysis. (ii) It is decoupled from the uncertainty of Si surface potential determination near

the band edges when the interface trap density is high.

A strong capacitance dispersion and dc leakage current may hamper application of CV

methods based on low-high frequency CV measurements. As such, the Terman procedure

based on comparison of the calculated ideal and experimental high-frequency CV curves may

have limited applications in determining the interface trap densities in the case of interfaces of

high-k dielectrics with semiconductors. Also, the interface trap contribution to the CV curve

shift in voltage due to the interface traps becomes less prominent when equivalent electrical

thickness of an insulator decreases [86, 87].

CV techniques can be used to extract the charge carrier profile in a semiconductor, the

important characteristic of ion-implanted devices. The dopant profile is obtained from the

high-frequency CV curve to minimize possible uncertainties stemming from the interface

trap charge contribution to the depletion layer capacitance. The principle behind the dopant

profiling is that as the semiconductor becomes depleted by the majority carriers, the capac-

itance decreases. A rapid decrease of the capacitance indicates a low dopant concentration,

whereas a slow reduction indicates a high doping level. The capacitance as a function of

voltage is related to the majority carrier density and can be obtained from the slope of the

Mott-Schottky curve [88].

A variant of CV carrier profiling, which employs an electrochemical contact to a semiconductor,

is an electrochemical capacitance-voltage (ECV) technique. ECV may appear as advantageous

compared to the conventional CV methods due to its capability to measure spatial-ionized

impurity distribution to practically unlimited depth, not being hindered by the breakdown at a

high doping level [89]. ECV profiling can be applied to materials, which cannot be studied by the

Hall measurements, for example, to conductive ferromagnetic semiconductors [90]. Despite its

utility, ECV applicability is limited by the sample thickness when it is comparable with the

Debye length, or, if a sample consists of several thin layers, which are either of different chemical

composition or doping. The charge transfer at the interface is an important difference between

a semiconductor/electrolyte (SE) interface and a Schottky contact. In the former case, it is

supported by an electrochemical process. Parameters of the SE interface are determined by the

electronic structure of the interface. The potential distribution in the SE interface and the effects

of the semiconductor surface states on the potential redistribution between the semiconductor

and the Helmholtz layer have been considered in review articles [91, 92]. When the surface states

are not present at the semiconductor electrode the reverse bias drops across the semiconductor

space charge region. It is than possible to determine the carrier concentration in the semiconduc-

tor. Except for the charge trapped in the surface states, there can be other charges, which result in

the flat band voltage shift (Vfb) and modify the capacitive-frequency responses. An interfacial

electric dipole layer can also result in a Vfb shift when the latter coincides with the change in

electron affinity indicating that the dipoles attached to the semiconductor surface contribute to

the Vfb shift, not surface charges.

Analysis of CMOS devices with nanometer thin insulators requires taking into account quantum-

mechanical effects in the accumulation capacitance [93, 94] and the inversion capacitance [95] in

order to extract the equivalent oxide thickness or the semiconductor doping density, respectively.
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The doping density can be extracted from the inversion layer capacitance by relating the deple-

tion layer widthWD and the carrier concentration NA,D

WD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4εs kTlnðNA,D=niÞ

q � ðNA,DÞ

s

, ð3Þ

where ni is the intrinsic concentration in a semiconductor at a given temperature T and q is the

elemental charge [96].

Alternatively, the doping density can be known from the band bending at the onset of strong

inversion Ψ s inv ≈
2kT
q ln

NA,D
ni

� �

: The surface potential is obtained by using the Berglund integral.

For the scaled MOS devices, one has to take into account the contribution of the finite density of

states and the finite inversion layer thickness to the inversion layer capacitance or utilize the

capacitance in the weak inversion to extract the substrate doping (cf. Figure 2 in Ref. [95]). The

inference of the semiconductor substrate doping from the inversion capacitancemay appear to be

superior over other experimental approaches, because it is decoupled from the possible contribu-

tion of the interface states to the depletion layer capacitance. This technique has been applied to

trace boron concentration in silicon as a probe for the presence of radiolytic hydrogen in SiO2

when analyzing the impact of vacuum ultraviolet irradiation and ion implantation of fluorine

and argon on charge built-up in Si/SiO2 MOS systems [97, 98]. Local characteristics of dopants

can be obtained on semiconductor devices by using the scanning capacitance microscopy, a

technique based on local capacitance-voltage analysis with submicron spatial resolution [99].

4.2. Steady-state ac conductance

The dynamic electrical responses of junction space-charge layers can be probed by using ac

admittance spectroscopy or transient spectroscopy methods. These methods are applicable to

both the deep bulk trap [100, 101] and interface trap [102, 103] studies in MOS devices. The ac

admittance method is a classical approach to characterize the interface states in MOS structures

[104]. The method better accentuates fast interface states, which are spatially located at the SI

interface plane. The method considers the imaginary part of the measured admittance, which

is directly linked to the charge trapped and emitted from the interface states as a consequence

of the applied ac electric field. The localized states exchanging charge with the majority carrier

band of a semiconductor respond to ac signal with both the capacitive and conductive compo-

nents. At a particular frequency ω which is ωτ = 1, where τ is the characteristic time constant

for the charge exchange with the localized state. The ratio Gp/ω reaches a maximum value

directly proportional to the density of the surfaces states Dit. The trap occupancy is modulated

by the semiconductor surface potential Ψs. The capture cross sections sp,n and the trap densi-

ties Nt(p,n) can be inferred from the frequency dependences of conductance exemplified in

Figure 7. The interface trap resonances can be analyzed by using different models. Initially, it

was suggested that there exists a quasicontinuous distribution of the interface states localized

at the SI interface and that the surface charge and potential are uniform all over the interface.

The broadening of the experimental normalized conductance curves was explained by

Nicollian and Goetzberger as related to a random oxide charge and charge of the interface
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states distributed in the interface plane [105]. The tunnel recharging of the traps has been

considered in Ref. [106]. To account for asymmetric conductance peaks, another model

suggested that the interface traps at a particular energy have a range of cross sections spanning

over orders of magnitude [107].

In nanoscale CMOS devices, the excessive leakage current impacts characterization of the

interface traps by application of ac admittance spectroscopy. It has been demonstrated that

errors in series resistance are critical when Dit values are determined at the accumulation

band bending, while high tunnel currents hamper characterization of the midgap interface

states [108]. The practical solution of the problem associated with the interface trap charac-

terization in tunnel MOS-devices is the use of the charge pumping method [109, 110]. When

the leakage current does not impede the interface trap analysis, the interface states in the

(100)Si/SiO2 and (100)Si/HfO2 entities can be reliably inferred from the capacitance frequency

dispersion [111, 112] or ac admittance spectroscopy combined with the CV methods [113]. In

the latter work, it has been observed that the Dit density measured on Hf-containing samples

subjected to a high-temperature anneal in oxygen and a subsequent passivation in hydrogen

is still higher than that inferred for the equally treated (100)Si/SiO2 interface. After passiv-

ation in molecular hydrogen, both the HfO2 and SiO2 interfaces with Si exhibited theDit peak

positioned at 0.4 eV above the silicon valence band top. When Pb0 centers are passivated by

molecular hydrogen the ac conductance responses are dominated by the contribution of the

slow states, which are usually ascribed to the oxide-related imperfections. The slow states

giving rise to the feature observed at 0.4 eV are likely to originate from the near interfacial

oxide interlayer and could exist due to a lattice distortion in strained interfaces.

Figure 7. Equivalent parallel conductance as a function of frequency. The points are experimental values taken on a MOS-

capacitor at different surface potentials ψs. The silicon substrate is of p-type conductivity.

Ion Implantation - Research and Application82



4.3. Transient capacitance

Transient-capacitance spectroscopy has been initially developed to study deep bulk trap levels

in semiconductors and termed by Lang as deep-level transient spectroscopy (DLTS). The

capacitance DLTS is a preferred variant of the transient measurements, because it allows to

separate minority and majority carrier emissions [114]. The technique is based on recording

fast capacitance transients and passing the transient signal through a rate window circuit

using a boxcar integrator and predefining the width of the gate pulse, the integrator response

time, and the rate-window time constant. A lock-in amplifier used instead of a boxcar integra-

tor requires settings for the rate-window, the initial gate-off period and the phase. When the

traps are continuously distributed in energy (such as the interface traps) the measurement

yields an emission time-constant spectrum, which depends on both the trap distribution and

capture cross sections. A conventional DLTS procedure uses biases in depletion and pulsed

voltage to populate interface traps with majority carriers. The responses of the device capaci-

tance are recorded as the interface trap occupancy tends to equilibrium distribution. The

energy of the traps can be determined independently of the emission rate by using two

charging pulses of slightly different amplitude to selectively populate the interface traps

[115]. A new method to determine capture cross sections independently of temperature and

energy has been proposed in the work [116]. The method exploits the use of small trap-filling

pulses to narrow the energy range within which the surface states become populated with

majority carriers. Schematic diagrams representing (a) energy bands at the SI interface and (b)

the pulsing sequence are shown in Figure 8.

When a voltage pulse sequence ΔV is superimposed on a constant voltage biasing a MOS

structure to the surface depletion by the majority carriers, the capacitance difference recorded

between times t1 and t2 is expressed as

Figure 8. Schematic diagrams representing (a) energy bands at the SI interface and (b) the capacitance and the surface

potential at the SI interface.
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ΔC ¼ A

ðEc

Ev

NsðEÞ e�
t1
τn � e�

t2
τn

h i

½f 0ðEÞ � f 1ðEÞ�dE, ð4Þ

where NS(E) is the surface state density at energy E, τn is the emission time constant for

electrons when considering n-type semiconductor. A constant A= С
3
0=εsCoxND, where C0 is a

capacitance at reverse bias, εs is the Si permittivity, and Cox is the insulator capacitance, ND is

the substrate doping. The integration limits span from the valence band edge Ev to the con-

ductance band edge Ec, and Ef is the Fermi level.The electron occupation of the surface states at

the surface potential values Ψ s and Ψ s � ΔE=q is described by the Fermi functions f oðEÞ and

f 1ðEÞ. As the pulse amplitude is small, the occupancy of the surface states can be approximated

by the δ function, and Eq. (4) can be written as the capacitance of a discrete level.

ΔC ¼ ANsðEtÞ e
�

t1
τn ðEtÞ

� �

� e
�

t2
τn ðEtÞ

� �

" #

ð5Þ

For a discrete level, DLTS spectrum peaks at

τn ¼
t2 � t1
ln t2=t1ð Þ

ð6Þ

The emission time constant is expressed as

τn ¼ ½vth �Nc � σne
ð�ΔEt=kTÞ��1, ð7Þ

where vth is the thermal velocity of electrons, Nc ¼ NDe
ðqV f =kTÞ is the effective density of states

in the conduction band, σs is the capture cross section for electrons, and ΔEt is the activation

energy.

Assuming a capture cross section is exponentially dependent on energy

σn ¼ σ0e
�ΔEσ=kT , ð8Þ

with σ0 and ΔEσ being the preexponential factor and the activation energy, respectively, a set of

the capture cross sections at different energies can be expressed as

σnðEt, TÞ ¼ σ0ðEtÞe

�

�ΔEσðEtÞ=kT

�

: ð9Þ

The apparent activation energy and the energy-dependent term σ0ðEtÞ can be determined from

the Arrhenius plot. Repeating the DLTS measurements at different gate voltages (i.e., different

surface potentials), one obtains σ0ðEtÞ. The surface potential values can be determined from CV

curves. The doping density and the oxide capacitance are estimated from the CV curves under

the inversion and the accumulation, respectively.

Ion Implantation - Research and Application84



In DLTS measurements, the bias dependence of the peak is a distinct signature of the charge

carrier emission from the interface states [117]. Being characterized by DLTS and CV measure-

ments, the oxide charge, the interface state densities, and capture cross sections in the energy

gap can be utilized to obtain surface recombination velocities [118]. Applying DLTS pulses of

opposite polarity (from accumulation to inversion) allows estimating the thermal generation

times of bulk and surface centers [119]. DLTS techniques are capable in determining the trap

properties in terms of relaxation mechanism and the defect profiling, the information valuable

to study defects introduced by ion beams and ionizing radiation [100]. Naturally, characteriza-

tion approaches are purpose-specific and can be based on several experimental techniques to

identify a particular defect or study its energetics and kinetics. For example, commonly used

techniques for studying the electrical- and optical characteristics of point defects such as DLTS

and photoluminescence are sensitive to the defect states within the bandgap but have to be

complemented by ESR studies to obtain information on the atomic structure of a defect or a

defect complex.

4.4. Photoinjection

The methods based on photoinjection of charge carriers in metal-semiconductor barrier struc-

tures are sensitive to local nonuniformities in semiconductor interfaces because charge in a

semiconductor induces an equal charge in the electrodes giving rise to electric fields at the inter-

faces, with a consequent field-effect modulation of the barrier heights (for the all-encompassing

review on the subject of internal photoemission spectroscopy (IPE) methods one can refer to

the book [120]). The early application of scanning internal photoemission to map sodium

contamination at the Si/SiO2 interface has been reported in work [121]. The IPE and trap

photodepopulation methods were applied to reveal electron traps in Na+ and Al+ implanted

SiO2 [122]. At present, this technique has been revived to study ion beam induced charge

nonuniformities in GaN and SiC [123].

Experimentally, the charge injected into an oxide, i.e., the current over the time of injection

should remain unchanged by the method used for the charge detection. The trapped charge

density is determined sensing the electric field created by the trapped charge. The electric field

created by the charge of trapped carriers can be also observed in variations of the surface band

bending of a semiconductor, i.e., a semiconductor space-charge layer serves as the field-sensing

element. The band bending as a function of electric field can be extracted from capacitance-

voltage measurements and the additional contribution of trapped charge to the field can be

determined as a voltage shift of a CV curve. In MOSFETs, the trapped charge can be monitored

as a function of the threshold voltage. This technique senses the charge carrier density in the

inversion channel to monitor the electric field at the SI interface. Alternatively, the electric field

induced by the trapped charge can be monitored by the Kelvin probe or photovoltage. In the

latter case, the light intensity should be sufficient to set the flat band conditions at the semicon-

ductor surface.

The experimental studies of the trapped charge in ion-implanted insulators are numerous with

several examples represented in Refs. [124–131]. The interfacial defect densities modified by

Ion-Beam-Induced Defects in CMOS Technology: Methods of Study
http://dx.doi.org/10.5772/67760

85



ion implantation have been studied combining IPE and ac conductance spectroscopy methods

on nitrogen implanted SiC/SiO2interfaces [132]. IPE reveals that nitrogen incorporates in car-

bon clusters at the SiC/SiO2 interface that causes a shift of the electron levels to higher binding

energies. Inferring the Schottky barrier height from the IPE spectra, it has been shown that ion

implantation of sulfur in the NiSi/Si barrier does not induce changes in the barrier height, but

increases doping in silicon [133]. The silicide/Si barrier modification by intentional dopant

segregation has been verified in work [134].

4.5. Slow interface states as a special case of study

Defects generated by ionizing radiation and/or electric field, as well as the defects in

undamaged devices, are considered to be spatially distributed across the SI interface and can

be classified accordingly to the spatial location as the oxide-related traps and the interface

traps. In respect to the latter, it is generally accepted that the interface traps are rapidly

communicating with the silicon conduction or valence bands. The defects within the oxide

interlayer also can exchange charge with silicon as has been revealed by the noise measure-

ments [135]. Combining ac admittance spectroscopy and the noise measurements, it has been

established that the fast interface states at the Si/SiO2 interface, likely associated with the

dangling bond defects, contribute to the loss peak in conductance measurements [136]. The

defect states residing in an oxide layer are responsible for 1/f noise and random telegraph

noise. These trapping centers in the oxide contribute to the conductance plateau at low fre-

quency in ac conductance spectra (cf. Figure 2 of Ref. [137]). A separable contribution of the

oxide-related traps has been revealed employing measurements of subthreshold current [138]

and the charge-pumping technique [139] to MOSFETs and CV measurements taken on the

gate-controlled diode [140]. The latter technique is applicable for characterization of the inter-

face traps in MOS devices composed on wide band gap semiconductors, because it allows

supplying minority carriers in an amount sufficient to compensate for the low thermal gener-

ation rates of the minority carriers. An alternative method of providing minority carriers to

invert a semiconductor surface is a controlled deposition of surface charges onto an insulator

surface from corona discharging in air as it has been proposed in Ref. [141]. In this work, a

surface charge has been deposited on SiO2 and high-k dielectrics to overcompensate the carrier

leakage current in silicon MOS capacitors and enable extraction of Dit(E) profiles following the

Berglund formalism. There are several advantages of the inverting semiconductor surfaces by

employing noninvasive electrostatic charging of an insulator surface in a MOS structure: (i)

The method does not involve fabrication of a transistor or a gate-controlled diode. (ii) The

Berglund analysis can be used to reliably estimate Dit(E) over the major part of a semiconduc-

tor band gap (for Si, from 0.2 to 0.9 eVabove the valence band edge) using just MOS capacitors

of one type of semiconductor conductivity. (iii) The method may employ CV measurements at

mid-kHz frequency range allowing investigation of samples, which experience relatively high

leakage current.

The sub-division of the interface trap responses into slow and fast on the basis of their character-

istic time constants is important in research on the irradiation-induced damage in MOS devices.

The interface state generation under irradiation or high electric field stress can involve electron-
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hole recombination in a gate insulator as proposed by Lai [142], the hole trapping according to

the ”hydrogen model” by Griscom [60], or generation of dangling bond defects in the oxide.

Experimentally, it has been shown that both the fast and slow interface states can be generated

upon oxide damage by high electric field or irradiation [143]. The mechanisms operative in the

interface trap built-up upon irradiation or electric field stress are governed by hydrogen impu-

rity, interfacial strain preexisting in thin insulating films on semiconductors, and experimental

conditions used to impose damage on MOS devices.
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