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Abstract

In this chapter, we have investigated six loss functions. In particular, the squared
error loss function and the weighted squared error loss function that penalize
overestimation and underestimation equally are recommended for the unrestricted
parameter space (—oo, 00); Stein’s loss function and the power-power loss function,
which penalize gross overestimation and gross underestimation equally, are
recommended for the positive restricted parameter space (0, 0); the power-log loss
function and Zhang’s loss function, which penalize gross overestimation and gross
underestimation equally, are recommended for (0,1). Among the six Bayesian esti-
mators that minimize the corresponding posterior expected losses (PELs), there exist
three strings of inequalities. However, a string of inequalities among the six smallest
PELs does not exist. Moreover, we summarize three hierarchical models where the
unknown parameter of interest belongs to (0, o), that is, the hierarchical normal and
inverse gamma model, the hierarchical Poisson and gamma model, and the hierar-
chical normal and normal-inverse-gamma model. In addition, we summarize two
hierarchical models where the unknown parameter of interest belongs to (0, 1), that
is, the beta-binomial model and the beta-negative binomial model. For empirical
Bayesian analysis of the unknown parameter of interest of the hierarchical models,
we use two common methods to obtain the estimators of the hyperparameters, that
is, the moment method and the maximum likelihood estimator (MLE) method.

Keywords: Bayesian estimators, power-log loss function, power-power loss
function, restricted parameter spaces, Stein’s loss function, Zhang’s loss function

1. Introduction

In Bayesian analysis, there are four basic elements: the data, the model, the
prior, and the loss function. A Bayesian estimator minimizes some posterior
expected loss (PEL) function. We confine our interests to six loss functions in this
chapter: the squared error loss function (well known), the weighted squared error
loss function ([1], p. 78), Stein’s loss function [2-10], the power-power loss func-
tion [11], the power-log loss function [12], and Zhang’s loss function [13]. It is
worthy to note that among the six loss functions, the first and second loss functions
are defined on ® = (—o0, ), and they penalize overestimation and
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underestimation equally. The third and fourth loss functions are defined on

©® = (0, ), and they penalize gross overestimation and gross underestimation
equally, that is, an action a will suffer an infinite loss when it tends to 0 or co. The
fifth and sixth loss functions are defined on ® = (0, 1), and they penalize gross
overestimation and gross underestimation equally, that is, an action a will suffer an
infinite loss when it tends to 0 or 1.

The squared error loss function and the weighted squared error loss function
have been used by many authors for the problem of estimating the variance, ¢,
based on a random sample from a normal distribution with mean 4 unknown (see,
for instance, [14, 15]). As pointed out by [16], the two loss functions penalize
equally for overestimation and underestimation, which is fine for the unrestricted
parameter space ® = (—o0, ).

For ® = (0, ), the positive restricted parameter space, where 0 is a natural
lower bound and the estimation problem is not symmetric, we should not choose
the squared error loss function and the weighted squared error loss function but
choose a loss function which can penalize gross overestimation and gross underes-
timation equally, that is, an action a will suffer an infinite loss when it tends to 0 or
0. Stein’s loss function owns this property, and thus it is recommended for
® = (0, o) by many researchers (e.g., see [2-10]). Moreover, [11] proposes the
power-power loss function which not only penalizes gross overestimation and gross
underestimation equally but also has balanced convergence rates or penalties for its
argument too large and too small. Therefore, Stein’s loss function and the power-
power loss function are recommended for ® = (0, ).

Analogously, for a restricted parameter space ® = (0,1), where 0 and 1 are two
natural bounds and the estimation problem is not symmetric, we should not select
the squared error loss function and the weighted squared error loss function but
select a loss function which can penalize gross overestimation and gross underesti-
mation equally, that is, an action 4 will suffer an infinite loss when it tends to 0 or 1.
It is worthy to note that Stein’s loss function and the power-power loss function are
also not appropriate in this case. The power-log loss function proposed by [12] has
this property. Moreover, they propose six properties for a good loss function on
© = (0,1). Specifically, the power-log loss function is convex in its argument,
attains its global minimum at the true unknown parameter, and penalizes gross
overestimation and gross underestimation equally. Apart from the six properties,
[13] proposes the seventh property, that is, balanced convergence rates or penalties
for the argument too large and too small, for a good loss function on ® = (0, 1).
Therefore, the power-log loss function and Zhang’s loss function are recommended
for ® = (0,1).

The rest of the chapter is organized as follows. In Section 2, we obtain two
Bayesian estimators for § € ® = (—o0, o) under the squared error loss function and
the weighted squared error loss function. In Section 3, we obtain two Bayesian
estimators for € ® = (0, c0) under Stein’s loss function and the power-power loss
function. In Section 4, we obtain two Bayesian estimators for € ® = (0, 1) under
the power-log loss function and Zhang’s loss function. In Section 5, we summarize
three strings of inequalities in a theorem. Some conclusions and discussions are
provided in Section 6.

2. Bayesian estimation for § €(—o0,0)
There are two loss functions which are defined on ® = (—0, ) and penalize

overestimation and underestimation equally, that is, the squared error loss function
(well known) and the weighted squared error loss function (see [1], p. 78).
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2.1 Squared error loss function

The Bayesian estimator under the squared error loss function (well known), &5 (x),
minimizes the posterior expected squared error loss (PESEL), E[L, (0, a)|x], that is,

55 (x) = arg miﬂ E[L,(6,a)|x], (1)

where A{a(x) : a(x) € (—o0, )} is the action space, a = a(x) € (—o0, ) is an
action (estimator),

Ly(6,a) = (0 —a)* (2)

is the squared error loss function, and 0 € (—0, ) is the unknown parameter of
interest. The PESEL is easy to obtain (see [16]):

PESEL(m,alx) = E[L(0,a)|x] = a* — 2aE(0]x) + E(6”|x). (3)

It is found in [16] that
& (x) = E(0]x) (4)
by taking partial derivative of the PESEL with respect to 2 and setting it to 0.

2.2 Weighted squared error loss function

The Bayesian estimator under the weighted squared error loss function, &, (x),
minimizes the posterior expected weighted squared error loss (PEWSEL) (see [1]),
E[L,»(6,a)|x], that is,

55 (%) = arg miLl E[L,2(0,a)|x], (5)
ae

where A{a(x) : a(x) € (—o0, )} is the action space, a = a(x) € (—o0, o) is an
action (estimator),

Lua(6,a) = 25(0 — a)’ (6)

is the weighted squared error loss function, and € € (—c0, ) is the unknown
parameter of interest. The PEWSEL is easy to obtain (see [1]):

PEWSEL (7, a|%) = ElLun (6, a)|x] = 4E (% |x> _ 24F ((% |x> t1. @

It is found in [1] that

E(G lx)

(%) = m (8)

by taking partial derivative of the PEWSEL with respect to @ and setting it to O.

3. Bayesian estimation for 6 € (0,)

There are many hierarchical models where the parameter of interest is
0 €O = (0, ). As pointed out in the introduction, we should calculate and use the
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Bayesian estimator of the parameter 6 under Stein’s loss function or the power-
power loss function because they penalize gross overestimation and gross underes-
timation equally. We list several such hierarchical models as follows.

Model (a) (hierarchical normal and inverse gamma model). This hierarchical
model has been investigated by [10, 16, 17]. Suppose that we observe X1, X, ..., X,
from the hierarchical normal and inverse gamma model:

{Xiwii‘iz\r(u,e), i=1,2..m, (©)

0 ~ IG(a, p),

where —co < pu < oo, a> 0, and > 0 are known constants, 6 is the unknown
parameter of interest, N(u, 0) is the normal distribution, and IG(a, f§) is the inverse
gamma distribution. It is worthy to note that the problem of finding the Bayesian
rule under a conjugate prior is a standard problem and the problem is treated in
almost every text on mathematical statistics. The idea of selecting an appropriate
prior from the conjugate family was put forward by [18]. Specifically, Bayesian
estimation of 6 under the prior IG(a, f3) is studied in Example 4.2.5 (p. 236) of [17]
and in Exercise 7.23 (p. 359) of [16]. However, they only calculate the Bayesian
estimator with respect to IG(a, f#) prior under the squared error loss, &5(x) = E(0|x).

Model (b) (hierarchical Poisson and gamma model). This hierarchical model
has been investigated by [1, 16, 19, 20]. Suppose that X3, X», ..., X, are observed
from the hierarchical Poisson and gamma model:

{Xiwii‘i‘P(e), i=12..n 10)

9 ~ G(“?ﬂ)’

where a> 0 and f > 0 are hyperparameters to be determined, P(0) is the Poisson
distribution with an unknown mean 6> 0, and G(a, f§) is the gamma distribution
with an unknown shape parameter a and an unknown rate parameter . The gamma
prior G(a, f3) is a conjugate prior for the Poisson model, so that the posterior distri-
bution of € is also a gamma distribution. The hierarchical Poisson and gamma model
(10) has been considered in Exercise 4.32 (p. 196) of [4]. It has been shown that the
marginal distribution of X is a negative binomial distribution if a is a positive
integer. The Bayesian estimation of @ under the gamma prior is studied in [19] and
in Tables 3.3.1 (p. 121) and 4.2.1 (p. 176) of [1]. However, they only calculated the
Bayesian posterior estimator of 6 under the squared error loss function.

Model (c) (hierarchical normal and normal-inverse-gamma model). This
hierarchical model has been investigated by [2, 21, 22]. Let the observations
X1, X5, ..., X, be from the hierarchical normal and normal-inverse-gamma model:

{Xﬂ(ﬂ,@) SNW0), i=12 ..n an
10 ~ N(pg,0/x0), 0 ~ 1G(vo/2,v003/2),

where —oo0 <1y < 00, kg >0, v9 > 0, and g > 0 are known hyperparameters,
N(u,0) is a normal distribution with an unknown mean g and an unknown variance
0, ul0 is N(ug, 0/xo) which is a normal distribution, and € is IG(vo/2,v003/2) which
is an inverse gamma distribution. More specifically, with a joint conjugate prior
7(u,0) ~N —IG (,uo, k0,00, a%), which is the normal-inverse-gamma distribution,
the posterior distribution of 8 was studied in Example 1.5.1 (p. 20) of [21] and Part I
(pp. 69-70) of [22]. However, they did not provide any Bayesian posterior
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estimator of 6. Moreover, the normal distribution with a normal-inverse-gamma
prior which assumes that y is unknown is more realistic than the normal distribu-
tion with an inverse gamma prior investigated by [10] which assumes that y is
known.

3.1 Stein’s loss function
3.1.1 One-dimensional case

The Bayesian estimator under Stein’s loss function, 67 (x), minimizes the poste-
rior expected Stein’s loss (PESL) (see [1, 10, 16]), E[L,(0, a)|x], that is,

57 (x) = arg miJr41 E[Ls(0,a)|x], (12)
ae
where A{a(x) : a(x) > 0} is the action space, @ = a(x) > 0 is an action (estimator),
a a
LS(Q,Q) :5— 1-— loga (13)

is Stein’s loss function, and 6> 0 is the unknown parameter of interest. The PESL
is easy to obtain (see [10]):

PESL(m,a|x) = E[L(0,a)|x] = aE <% |x> —1— loga + E(log0|x). (14)

It is found in [10] that

1
(%) = =7 (15)
E(5lx)
by taking partial derivative of the PESL with respect to 2 and setting it to 0. The
PESLs evaluated at the Bayesian estimators are (see [10])

PESLS(”? x) = E[L5(97“)|x”a:5x”(x)’

(16)
PESL3 (%) = EIL,(0,)[x]|,_s.sy

where &5(x) = E(0|x) is the Bayesian estimator under the squared error loss
function.

For the variance parameter 6 of the hierarchical normal and inverse gamma
model (9), [10] recommends and analytically calculates the Bayesian estimator:

1

& (%) = Py (17)
where
-1
a* :a—irgandﬁ* = %—i—%inl (xi—ﬂ)zl s (18)

with respect to IG(a, f) prior under Stein’s loss function. This estimator mini-
mizes the PESL. [10] also analytically calculates the Bayesian estimator,
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33(x) = E(6lx) = g (19)

with respect to IG(a, #) prior under the squared error loss, and the
corresponding PESL. [10] notes that

E(log0lx) = —logp* —wy(a™), (20)
which is essential for the calculation of

PESL,(7,x) = loga™ —w(a™) (21)
and

PESL;(7,x) = + log (@™ —1) —y(a™), (22)

a* —

depends on the digamma function y(-). Finally, the numerical simulations
exemplify that PESL,(7,x) and PESL,(n,x) depend only on a and # and do not
depend on y, g, and x; the estimators &7 (x) are unanimously smaller than the
estimators &5 (x); and PESL,(x, x) are unanimously smaller than PESL,(x, x).

For the hierarchical Poisson and gamma model (43), [20] first calculates the
posterior distribution of 0, z(6|x), and the marginal pmf of x, z(x), in Theorem 1
of their paper. [20] then calculates the Bayesian posterior estimators &7 (x) and
&5 (x), and the PESLs PESL,(r,x) and PESL;(x,x), and they satisfy two inequalities.
After that, the estimators of the hyperparameters of the model (10) by the
moment method o (n) and f;(n) are summarized in Theorem 2 of their paper.
Moreover, the estimators of the hyperparameters of the model (10) by the
maximum likelihood estimator (MLE) method a,(%) and f,(n) are summarized in
Theorem 3 of their paper. Finally, the empirical Bayesian estimators of the param-
eter of the model (10) under Stein’s loss function by the moment method and the
MLE method are summarized in Theorem 4 of their paper. In numerical simulations
of [20], they have illustrated the two inequalities of the Bayesian posterior estima-
tors and the PESLs, the moment estimators and the MLEs are consistent estimators
of the hyperparameters, and the goodness of fit of the model to the simulated data.
The numerical results indicate that the MLEs are better than the moment
estimators when estimating the hyperparameters. Finally, [20] exploits the
attendance data on 314 high school juniors from two urban high schools to illustrate
their theoretical studies.

For the variance parameter 6 of the normal distribution with a normal-inverse-
gamma prior (11), [23] recommends and analytically calculates the Bayesian poste-
rior estimator, &7 (x), with respect to a conjugate prior u|6 ~ N(ug, 0/ko), and
6 ~ IG(v0/2,v00%/2) under Stein’s loss function which penalizes gross
overestimation and gross underestimation equally. This estimator minimizes the
PESL. As comparisons, the Bayesian posterior estimator, & (x) = E(0|x), with
respect to the same conjugate prior under the squared error loss function, and the
PESL at §5(x), are calculated. The calculations of 67 (x), &5 (x), PESL,(x,x), and
PESL;(n,x) depend only on E(6|x), E(6 |x), and E(log6|x). The numerical simu-
lations exemplify their theoretical studies that the PESLs depend only on vy and #,
but do not depend on g, ko, 69, and especially x. The estimators &5 (x) are unani-
mously larger than the estimators 67 (x), and PESL, (7, x) are unanimously larger
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than PESL,(x,x). Finally, [23] calculates the Bayesian posterior estimators and the
PESLs of the monthly simple returns of the Shanghai Stock Exchange (SSE) Com-

posite Index, which also exemplify the theoretical studies of the two inequalities of
the Bayesian posterior estimators and the PESLs.

3.1.2 Multidimensional case
For estimating a covariance matrix which is assumed to be positive definite,

many researchers exploit the multidimensional Stein’s loss function (e.g., see
[2, 8,24-31]). The multidimensional Stein’s loss function (see [2]) is originally

defined to estimate the p x p unknown covariance matrix X by > with the loss
function:

L(z, i) = tr2 'Y — logdetz'E — p. (23)
When p = 1, the multidimensional Stein’s loss function reduces to
a a
L, (az,a) =5 log o 1 (24)
which is in the form of (13), the one-dimensional Stein’s loss function.

3.2 Power-power loss function

The Bayesian estimator under the power-power loss function, &, (x), minimizes

the posterior expected power-power loss (PEPL) (see [11]), E[L, (0, a)|x|, that is,
8, (x) = arg Z’éiﬂ E[L,(0,a)|x], (25)

where A{a(x) : a(x) > 0} is the action space, 2 = a(x) > 0 is an action (estimator),

a 0
Lp(eva):§+a__2 (26)

is the power-power loss function, and 6> 0 is the unknown parameter of inter-
est. The PEPL is easy to obtain (see [11]):

PEPL(rn,alx) = E[L,(0,a)|x] = aE(% \x) —|—%E(€|x) -2 (27)

It is found in [11] that

E(0]x)

%) =\ &)

(28)

by taking partial derivative of the PEPL with respect to 4 and setting it to 0. The
PEPLs evaluated at the Bayesian estimators are (see [11])

PEPL,(m,x) = E[L,(0,a)|x||

a=8(x)

(29)
PEPLy(m,x) = E[L,(0,a)|x] |

=5 (%)



Bayesian Inference on Complicated Data

The power-power loss function is proposed in [11], and it has all the seven
properties proposed in his paper. More specifically, it penalizes gross overestimation
and gross underestimation equally, is convex in its argument, and has balanced
convergence rates or penalties for its argument too large and too small. Therefore, it is
recommended for the positive restricted parameter space ® = (0, ).

4. Bayesian estimation for 6 € (0,1)

There are some hierarchical models where the unknown parameter of interest is
0e€® = (0,1). As pointed out in the introduction, we should calculate and use the
Bayesian estimator of the parameter 6 under the power-log loss function or Zhang’s
loss function because they penalize gross overestimation and gross underestimation
equally. We list two such hierarchical models as follows.

Model (d) (beta-binomial model). This hierarchical model has been investi-
gated by [1, 12, 13, 16, 32, 33]. Suppose that X3, X», ..., X, are from the beta-binomial
model:

id . .
{Xileszn(m,Q), i=12 .7, (30)

0 ~ Be(a, p),

where a> 0 and > 0 are known constants, 7 is a known positive integer,
0 € (0,1) is the unknown parameter of interest, Be(a, ) is the beta distribution, and
Bin(m, 0) is the binomial distribution. Specifically, Bayesian estimation of 6 under
the prior Be(a, f3) is studied in Example 7.2.14 (p. 324) of [16] and in Tables 3.3.1
(p. 121) and 4.2.1 (p. 176) of [1]. However, they only calculate the Bayesian esti-
mator with respect to Be(a, ) prior under the squared error loss, &;(x) = E(0|x).
Moreover, they only consider one observation. The beta-binomial model has been
investigated recently. For instance, [32] uses the beta-binomial to draw the random
removals in progressive censoring; [12, 13] use the beta-binomial to model some
magazine exposure data for the monthly magazine Signature; [33] develops estima-
tion procedure for the parameters of a zero-inflated overdispersed binomial model
in the presence of missing responses.

Model (e) (beta-negative binomial model). This hierarchical model has been
investigated by [1, 34]. Suppose that X3, X», ..., X, are from the beta-negative bino-
mial model:

X\08NBm,6), i=12 ..n, (31)
9 ~ Be<a7ﬁ)’

where @ > 0 and > 0 are known constants, 7 is a known positive integer,
0 € (0,1) is the unknown parameter of interest, Be(a, ) is the beta distribution, and
NB(m, 0) is the negative binomial distribution. Specifically, Bayesian estimation of ¢
under the prior Be(a, ) is studied in Tables 3.3.1 (p. 121) and 4.2.1 (p. 176) of [1].
However, he only calculates the Bayesian estimator with respect to Be(a, ff) prior
under the squared error loss function, &5 (x) = E(0|x). Moreover, he only considers
one observation.

4.1 Power-log loss function

A good loss function L(0,a) = L(a|0) = L(x)|,_, 4 for ® = (0,1) should have the
six properties summarized in Table 1 (see Table 1 in [12]).
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In Table 1, property (a) means that any action a of the parameter 6 should
incur a nonnegative loss. Property (b) means that whenx =a/0 =1, ora =0,
that is, a correctly estimates 6, the loss is 0. Property (c) means that when
x =a/0 — (1/0)", that is, a is moving away from 6 and tends to 17, it will incur an
infinite loss. Property (d) means that whenx = a/0 — 07, that is, a is moving away
from 6 and tends to 07, it will also incur an infinite loss. Properties (c) and (d)
mean that the loss function will penalize gross overestimation and gross underesti-
mation equally. Property (e) is useful in the proofs of some propositions of the
minimaxity and the admissibility of the Bayesian estimator (see [1]). Property (f)
means that 1 and 6 are the local extrema of L(x) and L(a|@), respectively. Property
(f) also implies that L(60 + Aa|€) = o(Aa), that is, the loss incurred by an action
a = 0 + Aa near 0 (Aa = 0), is very small compared to Aa.

Let
G-1° 1
gpl(x) = % Y logx andgpl(l) =3~ 1. (32)
Define
1_1)? 1
Lyi(x) =g, (x) — g, (1) = (% —x) — logx — (5 - 1>. (33)
Thus

(

S

- 1)2 a 1
Lpl(97a) - Lpl(a|9) = Lpl(x)|x:a/9 = — log 5 — 5 -1

I =
IR

(34)
oG- :

It is easy to check (see the supplement of [12]) that L,;(6,a) = Ly;(a|0) =
Ly(x)|._, Jo» Which is called the power-log loss function, satisfies all the six
properties listed in Table 1. Consequently, the power-log loss function is a good
loss function for ® = (0, 1), and thus it is recommended for ® = (0, 1).

We remark that the power-log loss function on ® = (0, 1) is an analog of the
power-log loss function on ® = (0, o), which is the popular Stein’s loss function.

Properties L(x) L(a|0)
(@) L(x)>0forall 0<x<1 L(al0)>0forall 0<a<1
(b) L) =0 L(6J6) = L(alo)|,_y = 0
() L((3)") =lim,_ (- L(x) = L(1710) = lim,_;- L(al0) = oo
(d) L(0") = lim,_,+ L(x) = 0 L(07]0) = lim,_q+ L(a]d) = o
(e) Convex inx forall 0<x < % Convex ina forall 0<a<1
0 A I L@0)]],_, =0
Table 1.

(Table 1 in [12]) The six properties of a good loss function for © = (0,1). 0<0<1 is fixed.
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The Bayesian estimator under the power-log loss function, &} (x), minimizes the
posterior expected power-log loss (PEPLL) (see [12]), E[Lpl(é,a)|x] , that is,

(%) = argmin E[Ly (6, ) |x], (35)

where A{a(x) : a(x) €(0,1)} is the action space, a = a(x) € (0,1) is an action
(estimator), L,;(6,a) given by (34) is the power-log loss function, and # € (0,1) is
the unknown parameter of interest. The PEPLL is easy to obtain (see [12]):

PEPLL(z,a|x) = E[Lpz(H,aNx] _ fl(x)

14 loga + E>(x) — E3(x) + 1, (36)
where

Ei(x) = E [9*1(1 - 9)2|x} >0,

E,(x) = E[log0]x] <0, (37)

E3(x) = E[07'[x] > 0.

It is found in [12] that

_ 2+ Ei(%) — Ei(%)(Ex(x) + 4)
2

Zz(x) (38)

by taking partial derivative of the PEPLL with respect to @ and setting it to O.
The PEPLLs evaluated at the Bayesian estimators are (see [12])

PEPLL,(n,x) = E[L,(0,a)|x] \azﬁzl w0y
(39)
PEPLLZ(”v x) - E[Lpl(e’aﬂx] |a:5’2’(x)'
Finally, the numerical simulations and a real data example of some monthly
magazine exposure data (see [35]) exemplify the theoretical studies of two size
relationships about the Bayesian estimators and the PEPLLs in [12].

4.2 Zhang’s loss function

Zhang et al. [12] proposed six properties for a good loss function
L(0,a) = L(al0) = L(x),_,/y on ® = (0, 1). Apart from the six properties, [13] pro-
poses the seventh property (balanced convergence rates or penalties for the argu-
ment too large and too small) for a good loss function on ® = (0, 1). Moreover, the
seven properties for a good loss function on ® = (0, 1) are summarized in Table 1 of
[13]. The explanations of the first six properties in Table 1 of [13] can be found in
the previous subsection (see also [12]). In Table 1 of [13], property (g) (the seventh
property) means that L (k1(6) 1) and L(} (1 — 1)) tend to o at the same rate and

L(k2(6)1]0) and L(1 —1]0) tend to oo at the same rate. In other words,

L(kl(g) %) = land lim L(kz(e) % |9)

=1. (40)

10
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And they say that L(k1(0) 1) and L(} (1 — 1)) are asymptotically equivalent.
Similarly, L (k,(6) 26) and L (1 — 1|¢) are said to be asymptotically equivalent. They
also say that L(x) (L(|@)) has balanced convergence rates or penalties for x (a) too
large and too small. It is worthy to note that k1(6) 2 — 0 and 3 (1 — 1) — L at the

same order O(2). Analogously, k>(f) 1 — 0 and 1 — 1 — 1 at the same order O(2).
Finally, only when properties (c) and (d) hold, property (g) may hold.
Let

1 1 1
_ do (1) =+ 41
gz(x> (%_1)2x+%_x an gz( ) 9(%_1)2 ( )
Let
1 1 1
L) = e (1) — _ . 42
(x) =g, (x) —g.(1) (%_1)2x+%—x o2 —1)° @
Thus
1 1 1
L,(0,a) = Lz(al0) = La(x)],_, /9 = 1 20_l+1 a  g(1_1)?
G-075 ;-5 G-
(43)
Z 0 1

It is easy to check (see the supplement of [13]) that L,(0,a) = L.(a|0) =
L, (x)|,_, /9> which is called Zhang loss function, satisfies all the seven properties
listed in Table 1 of [13]. Consequently, Zhang’s loss function is a good loss function,
and thus it is recommended for ® = (0,1).

The Bayesian estimator under Zhang’s loss function, &7 (x), minimizes the poste-
rior expected Zhang’s loss (PEZL) (see [13]), E[L.(0,a)|x], that is,

&7 (x) = arg miJr41 E[L.(0,a)|x], (44)

where A{a(x) : a(x) €(0,1)} is the action space, a = a(x) € (0,1) is an action
(estimator), L,(0,a) given by (43) is Zhang’s loss function, and 0 € (0, 1) is the
unknown parameter of interest. The PEZL is easy to obtain (see [13]):

El(x) Ez(x)

PEZL(x,alx) = EIL.(6,a)lx] = = + 72— By (x), (45)
where
93
Ei(x) =E lm ]x},
E>(x) = E(0]x), (46)

0
Es(x) =E [(1 P ]x] .

11
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It is found in [13] that

El(x)

= 47
VE1(x) + /Ea(x) “7)

& (%)

by taking partial derivative of the PEZL with respect to 4 and setting it to 0. The
PEZLs evaluated at the Bayesian estimators are (see [13])

PEZL,(n, %) = E[L;(0, a)[5]|,_sx (x>

(48)
PEZL; (. %) = B[L+(6,a)|]|,_.s-

Zhang et al. [13] considers an example of some magazine exposure data for the
monthly magazine Signature (see [12, 35]) and compares the numerical results with
those of [12].

For the probability parameter 6 of the beta-negative binomial model (31), [34]
recommends and analytically calculates the Bayesian estimator &7 (x), with respect
to Be(a, p) prior under Zhang’s loss function which penalizes gross overestimation
and gross underestimation equally. This estimator minimizes the PEZL. They also
calculate the usual Bayesian estimator &5 (x) = E(6|x) which minimizes the PESEL.
Moreover, they also obtain the PEZLs evaluated at the two Bayesian estimators,
PEZL,(7,x) and PEZL,(n,x). After that, they show two theorems about the
estimators of the hyperparameters of the beta-negative binomial model (31) when
m is known or unknown by the moment method (Theorem 1 in [34]) and the
MLE method (Theorem 2 in [34]). Finally, the empirical Bayesian estimator of the
probability parameter € under Zhang’s loss function is obtained with the
hyperparameters estimated by the moment method or the MLE method from the
two theorems.

In the numerical simulations of [34], they have illustrated three things: the
two inequalities of the Bayesian posterior estimators and the PEZLs, the moment
estimators and the MLEs, which are consistent estimators of the hyper-
parameters, and the goodness of fit of the beta-negative binomial model to the
simulated data. Numerical simulations show that the MLEs are better than the
moment estimators when estimating the hyperparameters in terms of the good-
ness of fit of the model to the simulated data. However, the MLEs are very
sensitive to the initial estimators, and the moment estimators are usually proved
to be good initial estimators.

In the real data section of [34], they consider an example of some insurance
claim data, which are assumed from the beta-negative binomial model (31). They
consider four cases to fit the real data. In the first case, they assume that m = 6 is
known for illustrating purpose (of course, one can assume another known m value).
In the other three cases, they assume that 7 is unknown, and they provide three
approaches to handle this scenario. The first two approaches consider a range of m
values, for instance, m = 1,2, ..., 20. The first approach is to maximize the
log-likelihood function. The second approach is to maximize the p-value of the
goodness of fit of the model (31) to the real data. The third approach is to determine
the hyperparameters a, f§, and m from Theorems 1 and 2 in [34] by the moment
method and the MLE method, respectively, when m is unknown. Four tables which
show the number of claims, the observed frequencies, the expected probabilities,
and the expected frequencies of the insurance claims data are provided to illustrate
the four cases.

12
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5. Inequalities among Bayesian posterior estimators

For the six loss functions, we have the corresponding six Bayesian estimators
8 (%), 3y (%), 5 (%), &, (), 85 (%), and &7 (x). Interestingly, for the six Bayesian esti-
mators, we discover three strings of inequalities which are summarized in Theorem 1
(see Theorem 1 in [36]). To our surprise, an order between the two Bayesian estima-

tors &, () and &, (x) on ©® = (0, 1) does not exist. It is worthy to note that the three

strings of inequalities only depend on the loss functions. Moreover, the inequalities are

independent of the chosen models, and the used priors provided the Bayesian estima-

tors exist, and thus they exist in a general setting which makes them quite interesting.
In this section, we compare the six Bayesian estimators &;,,(x), 3, (%), &7 (%),

8,(x), 83(x), and &7 (x). The domains of the loss functions, the six Bayesian estima-

tors, the PELs, and the smallest PELs are summarized in Table 2 (see Table 1 in
[36]). The six PELs are PEWSEL, PEPLL, PESL, PEPL, PESEL, and PEZL. In
Table 2, each Bayesian estimator minimizes some corresponding PEL. Further-
more, the smallest PEL is the PEL evaluated at the corresponding Bayesian
estimator.

It is easy to see that all the six loss functions are well defined on ® = (0, 1), and
thus all the six Bayesian estimators are well defined on ® = (0, 1). There are only
four loss functions defined on ® = (0, ), since the power-log loss function and
Zhang’s loss function are only defined on ® = (0, 1). Hence, only four Bayesian
estimators are well defined on ® = (0, o). Moreover, only the weighted squared
error loss function and the squared error loss function are defined on ® = (-0, ),
and therefore only two Bayesian estimators are well defined on ® = (—o0, ).
Among the six Bayesian estimators, there exist three strings of inequalities which
are summarized in the following theorem.

Theorem 1 (Theorem 1 in [36]). Assume the prior satisfies some regularity condi-
tions so that the posterior expectations involved in the definitions of the six Bayesian
estimators exist. Then for © = (0, 1), there exists a string of inequalities among the six
Bayesian estimators:

ma (8, (x), 5 (¥) ) <0 (x) <83 (x) <35(x) <5 (). (49)

Moreover, for ® = (0, ), there exists a string of inequalities among the four Bayes-
ian estimators:

(%) S &7 (x) <67 (%) < 5 (). (50)

w2
Finally, for ® = (—o0, ), there exists an inequality between the two Bayesian estimators:

wn (%) <55 (). (51)

The proof of Theorem 1 exploits a key, important, and unified tool, the covari-
ance inequality (see Theorem 4.7.9 (p. 192) in [16]), and the proof can be found in
the supplement of [36].

It is worthy to note that the six Bayesian estimators and the six smallest PELs are
all functions of 7, x, and the loss function. Because there exists three strings of
inequalities among the six Bayesian estimators, we would wonder whether there
exists a string of inequalities among the six smallest PELs, in other words,
PEWSEL 5 (x, ), PEPLL (%, x), PESL,(r, %), PEPL, (%), PESEL, (x,x), and
PEZL,(7,x). The answer to this question is no! The numerical simulations of the
smallest PELs exemplify this fact (see [36]).
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6. Conclusions and discussions

In this chapter, we have investigated six loss functions: the squared error loss
function, the weighted squared error loss function, Stein’s loss function, the power-
power loss function, the power-log loss function, and Zhang’s loss function. Now we
give some suggestions on the conditions for using each of the six loss functions. It is
worthy to note that among the six loss functions, the first two loss functions are
defined on ® = (—o0, ) and they penalize overestimation and underestimation
equally on (—o0, ), and thus we recommend to use them when the parameter
space is (—o0, ). Moreover, the middle two loss functions are defined on
©® = (0, ), and they penalize gross overestimation and gross underestimation
equally on (0, ), and thus we recommend to use them when the parameter space is
(0, 00). In particular, if one prefers the loss function to have balanced convergence
rates or penalties for its argument too large and too small, then we recommend to
use the power-power loss function on (0, o). Furthermore, the last two loss func-
tions are defined on ® = (0, 1), and they penalize gross overestimation and gross
underestimation equally on (0, 1), and thus we recommend to use them when the
parameter space is (0,1). In particular, if one prefers the loss function to have
balanced convergence rates or penalties for its argument too large and too small,
then we recommend to use Zhang’s loss function on (0, 1).

For each one of the six loss functions, we can find a corresponding Bayesian
estimator, which minimizes the corresponding posterior expected loss. Among the
six Bayesian estimators, there exist three strings of inequalities summarized in
Theorem 1 (see also Theorem 1in [36]). However, a string of inequalities among the
six smallest PELs does not exist.

We summarize three hierarchical models where the unknown parameter of
interest is € ® = (0, o), that is, the hierarchical normal and inverse gamma
model (9), the hierarchical Poisson and gamma model (10), and the hierarchical
normal and normal-inverse-gamma model (11). In addition, we summarize two
hierarchical models where the unknown parameter of interest is § € ® = (0, 1), that
is, the beta-binomial model (30) and the beta-negative binomial model (31).

Now we give some suggestions on the selection of the hyperparameters. One
way to select the hyperparameters is through the empirical Bayesian analysis, which
relies on a conjugate prior modeling, where the hyperparameters are estimated
from the observations and the “estimated prior” is then used as a regular prior in the
later inference. The marginal distribution can then be used to recover the prior
distribution from the observations. For empirical Bayesian analysis, two common
methods are used to obtain the estimators of the hyperparameters, that is, the
moment method and the MLE method. Numerical simulations show that the MLEs
are better than the moment estimators when estimating the hyperparameters in
terms of the goodness of fit of the model to the simulated data. However, the MLEs
are very sensitive to the initial estimators, and the moment estimators are usually
proved to be good initial estimators.
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