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Wireless sensor networks (WSNs) have seen rapid research and industrial development in
recent years. Both the costs and size of individual nodes have been constantly decreasing,
opening new opportunities for a wide range of applications. Nevertheless, designing software
to achieve energy-efficient, robust and flexible data dissemination remains an open problem
with many competing solutions.
In parallel, researchers have effectively exploited machine learning techniques to achieve ef-
ficient solutions in environments with distribution and rapidly fluctuating properties, analo-
gous to WSN domains. Applying machine learning techniques to WSNs inherently has the
potential to improve the robustness and flexibility of communications and data processing,
while simultaneously optimizing energy expenditure.
This chapter concentrates on applications of machine learning at all layers in the WSN net-
work stack. First, it provides a brief background and summary of three of the most com-
monly used machine learning techniques: reinforcement learning, neural networks and deci-
sion trees. Then, it uses example research from the literature to describe current efforts at each
level of the stack, and outlines future opportunities.

1. Wireless Sensor Networks

Extensive research effort has been invested in recent years to optimize communications in
wireless sensor networks (WSNs). Researchers and application developers typically use a
communication stack model such as that depicted in Figure 1 to structure the communications
of WSNs and to better manage its challenges. In particular, the following properties of WSNs
should be considered while designing innovative and efficient solutions (Akyildiz et al., 2002;
Römer & Mattern, 2004).

• Wireless ad-hoc nature. No fixed communication infrastructure exists. The shared wire-
less medium places restrictions on the communication between nodes and poses new
problems such as asymmetric links. However, it offers the broadcast advantage: a trans-
mitted packet, even if sent in unicast to another node, can be overhead and thus re-
ceived by all neighbors of the transmitter.

• Mobility and topology changes. WSNs may support dynamic application scenarios. New
nodes may be added to the network, and existing nodes may move either within or out
of the network. Nodes may cease to function, and connectivity among surviving nodes
changes over time. WSN applications must be robust against such topology dynamics.

• Energy limitations. The basic WSN scenario includes a large number of sensor nodes,
and a limited number of more powerful base stations. As such, most WSN nodes have

9

www.intechopen.com



Emerging Communications for Wireless Sensor Networks166

Neighborhood management

Medium Access

Physical layer

Clustering

Routing

Application

Fig. 1. The WSN communication stack

limited energy supplies and maintenance or battery recharging is often impossible after
deployment. Communication tasks consume a large proportion of the energy available
on the nodes, and thus to ensure sustained long-term operation, radio communication
must be frugally managed.

• Physical distribution. Each node in a WSN is an autonomous computational unit that
communicates with its neighbors via messages. Data is collected throughout the net-
work and can be gathered at a central station only with high communication costs. Con-
sequently, algorithms that require global information from the entire network become
very expensive. Thus, distributed algorithms are highly desirable.

The next section proceeds with a brief introduction to machine learning approaches that have
been successfully applied to one or more layers of the communication stack. We then provide
concrete examples of how machine learning has been exploited to minimize communication
overhead at all layers from neighborhood management up to the application.

2. Machine Learning Techniques

Machine learning (ML) is a sub-field of artificial intelligence that ”is concerned with the question
of how to construct computer programs that automatically improve from experience“ (Mitchell, 1997).
Precisely this property makes the family of ML algorithms and techniques appealing for ef-
ficient communications in WSNs. This section presents some widely applied ML approaches
that form the basis for the exemplary applications in the following sections. Alternate ML
techniques include, among many others, genetic algorithms (Mitchell, 1997) and swarm in-
telligence algorithms such as ant colony optimization (Dorigo & Stuetzle, 2004). While these
are powerful machine learning techniques for solving various challenging problems, they are
less suitable for communications in wireless sensor networks (Kulkarni et al., 2009) because
of their high communication overhead.

2.1 Decision Tree Learning

In many classification problems the items to be classified exhibit a number of clearly defined
features, represented as attribute-value pairs. For example, if we want to classify all possible
fruits, we can use features such as size, shape, color, taste, etc. with corresponding attribute-
value pairs such as color = orange. We could define the possible classification clusters by their
features and attribute-value pairs. Then, for some unclassified object, we check all of its fea-
tures to match it with one of the clusters. However, a so called classification tree is more
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Application efficient, since it offers structure the classification approach and usually classifies a sample
based only on a few features. In such a tree the leaves represent classification clusters and the
branches represent conjunctions of features. Continuing with our fruit example, a classifica-
tion tree will ask at the very first branch what is the color of the sample. If there is only one
cluster with the color blue (e.g., blueberry), then the branch leads directly to the classification
leaf of blueberries without asking for any other features. It is clear from this example that the
most important question when constructing such trees is “which attribute to check at the root of
the tree, which next?”
Decision tree learning is a machine learning technique that uses a set of already classified
training samples for constructing the optimal tree. Optimal in this case refers to the number
of feature checks before classification. Of course, the classification problem might exhibit noise
samples, which also need to be accommodated. For example, strawberries are usually red, but
sometimes we observe also green ones. Thus, the decision tree will either wrongly classify the
green strawberry as something else or it needs to use all of the other features (size, shape, etc.)
and ignore the color. The final decision depends on the samples in the training set and on the
importance of different features. As we have seen above, some of the features may become
irrelevant, while others become highly important.
There are two main algorithms for constructing decision trees: ID3 and the its successor
C4.5 (Mitchell, 1997). Each sample si from the training set S consists of a vector of feature
values fi and is already classified as belonging to cluster cj. C4.5 computes for each feature
the information gain when splitting on this feature. In other words, which feature separates
the clusters best? In our fruit example from above, checking for the shape in the root of the tree
is probably a bad decision, since many if not all fruits are round. However, checking for the
size might separate watermelons and melons from all the rest very well. Thus, the informa-
tion gain of the feature size is higher than for any other feature. C4.5 takes the feature with the
highest information gain and puts it in the root of the tree. Then it recursively computes the
information gain for the resulting subclasses until all or nearly all samples from the training
set are classified. Clearly, not all of the samples will be classified successfully, as exemplified
in the discussion above. However, this is not possible even with the brute-force method of
checking all possible features and their values, because the training set also includes noisy
data. A formal description of decision tree learning can be found in (Mitchell, 1997).
In the context of wireless sensor networks, classification problems like this arise when classi-
fying links as good or bad based on data such as signal strength or delivery rate, or classifying
sensory data as important or not. We show an application of decision trees to link quality
estimation in Section 3. Decision tree learning is suited for such classification problems since
it is fast to both train and execute. Additionally, implementing a decision tree on a resource-
restricted sensor node is simple. On the other hand, training should be performed offline to
save node energy, requiring the classification problem to be relatively stable.

2.2 Neural Networks

An artificial neural network (or simply neural network, NN) is a mathematical models of
a function F : X → Y. The initial inspiration comes from biological networks of neurons.
NNs consist of simple nodes or neurons, interconnected as in Figure 2. Simple functions are
usually associated with each node (e.g., addition) and weights are assigned to the connections
between the nodes. Data flows from the input (left column of neurons in Figure 2) through the
whole network, using the connections between the nodes and arriving at the output neurons
(right column of neurons). The most important property of neural networks is their ability to
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Fig. 2. A generic architecture of an artificial neural network with input and output layers.

learn — to adjust the weights between the input and the output to exactly reflect the learned
function.
For learning or training a neural network, a set of training data is needed, where possible
inputs have already been mapped to the needed output. For example, for classification of
hand-written numbers, different pictures (input) are classified as numbers (output). However,
in contrast to decision trees, the input cannot be described with features and attribute-value
pairs. Instead, it is represented as a point in an N-dimensional space. For example, a hand
written picture of the size 32 × 32 pixels is represented as a point in the 32 × 32 = 1024
dimensional space. There will also be 1024 input neurons in the neural network and exactly 10
output neurons, one for each digit. The weights connecting the input neurons with the output
ones need to be set such that the correct output neuron “fires” — only the output neuron
has a value of 1 and all others a value of 0. This is done by presenting the network with
examples, consisting of input and output. With every sample, the weights are corrected such
that the correct neuron fires. Thus, in our 1024-dimensional space, the hand-written samples
will cluster around some points in this space, representing the different digits from 0 to 9.
Incoming input samples can be then classified according to their distance to the clusters and
the closest cluster is taken.
The above described neural network is a so called supervised offline learning algorithm. Su-
pervised refers to the training set, which has already been classified. Offline refers to the nec-
essary training of the network before using it for classification. However, there also exist
unsupervised and online learning neural networks. An example of such a network is used for
learning the data model for incoming sensor readings in Section 6. More information about
neural networks and how to train them can be found in (Mitchell, 1997).
Neural networks are well suited for complex classification problems where features or
attribute-values pairs are not available. However, they have larger memory and processing
requirements than, for example, decision tree learning. On the other hand, as we will show
in Section 6, these techniques are applicable in WSNs for static classification problems such as
data models or link quality estimation. In addition, they can be efficiently implemented even
on standard sensor nodes because of their relatively low memory requirements.
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Fig. 3. General reinforcement learning model. The agent selects one action according to its
current internal state (current view of the environment and previous knowledge), fulfills this
action and observes a reward.

2.3 Reinforcement Learning

Reinforcement learning (RL) (Mitchell, 1997; Sutton & Barto, 1998) is a biologically inspired
machine learning technique, where the learning agent acquires its knowledge from direct in-
teraction with its environment. A simple example is a mouse in a maze, trying to find the path
to a piece of cheese (see Figure 3). At any moment, it must select a direction to move. The re-
sult of each action is either finding cheese or not. This maps to the reinforcement learning
technique in which agents (e.g., the mouse) select actions (e.g., direction to move) and receive
rewards (e.g., cheese) from the environment for each action. A well-known and widely used
RL algorithm is Q-Learning, which model consists of:

Agent states. The learning agent has a finite set of possible states S and st represents the
agent’s state at time step t. In our example from Figure 3, the state of the mouse is its current
position in the maze.

Actions. Q-Learning associates a different set of actions AS to each of the states in S. In
our maze environment, the actions are represented by the movement steps of the mouse —
forward, backward, left, right.

Immediate rewards. There is an associated immediate reward r(st, at) with each of the state
transitions. In our example, all of the state transitions that do not lead to the goal state have
immediate rewards of 0 (no cheese) and the ones leading to the goal state have an immediate
reward of 1 (cheese reached). The agent can see only the actions with their associated rewards
from its current state. It does not have any global knowledge about the environment, its states
and their rewards.
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Action costs. In addition to rewards, there is also a cost c(st, at) associated with each action in
each state. This is again a scalar value, representing how costly this action is. In our example,
it costs one unit of energy (one bite of cheese) for the mouse to make any movement. Costs
are often considered negative rewards, thus they are subtracted directly from the immediate
reward.

Value function. In contrast to immediate rewards, which are associated to each action in each
state and are easily observable, the value function represents the expected total accumulated
reward. The goal of the agent is to learn a sequence of actions with a maximum value function,
that is, the reward on the taken path is maximized.

Q-Values. To represent the currently expected total future reward at any state, a Q-Value
is associated to each action and state Q(st, at). The Q-Value represents the memory of the
learning agent in terms of the quality of the action in this particular state. In the beginning Q-
Values are usually initialized with zeros, representing the fact that the agent knows nothing.
Through trial and experience the agent learns how good some action was. The Q-Values of
the actions change through learning and finally represent the absolute value function. After
convergence, taking the actions with the greatest Q-Values in each state guarantees taking the
optimal decision (path).

Updating a Q-Value. A simple rule exists to update a Q-Value after each step of the agent:

Q(st+1, at) = Q(st, at) + γ(R(st, at)− Q(st, at)) (1)

The new Q-Value of the pair {st+1, at} in state st+1 after taking action at in state st is computed
as the sum of the old Q-Value and a correction term. This term consists of the received reward
and the old Q-Value. γ is the learning constant. It prevents the Q-Values from changing too
fast and thus oscillating. The total received reward is computed as:

R(st, at) = r(st, at) + c(st, at) (2)

Where r(st, at) is the immediate reward as defined above and c(st, at) is the cost of taking the
action at in state st.

Exploration strategy (action selection policy). Learning is performed in episodes, e.g., the
mouse takes actions in its environment and updates the associated Q-Values until reaching
the cheese. After completion, a new episode begins, repeating until the Q-Values no longer
change. The question is how to select the next action. Always taking the actions with max-
imum Q-Value (greedy policy) will result in finding locally minimal solutions. On the other
hand, selecting always random (random policy) will mean ignoring prior experience and
spending too much energy to learn the complete environment.
These two extreme strategies are called exploitation and exploration of routes. The problem
of combining and weigthing both so that optimal results are achieved as fast as possible has
been extensively studied in machine learning (Sutton & Barto, 1998). The most commonly
used strategy is called ǫ-greedy: with probability ǫ the agent takes a random action and with
probability (1 − ǫ) it takes the best available action.
RL is well suited for distributed problems such as routing. It has medium requirements for
memory and rather low computation needs at the individual nodes. This arises from the need
to keep many different possible actions and their values. It needs some time to converge, but
it is easy to implement, highly flexible to topology changes and learns the optimal solution
(e.g., shortest paths).
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3. Neighborhood Management Layer

One major problem of communications in wireless sensor networks is the unreliability of the
links. At any time, a previously reliable link may disappear, while others might become more
reliable than before. This is influenced by the environmental conditions (weather, moving
people, etc.) and cannot be controlled or predicted. Unreliable links are a great challenge for
routing protocols, since selecting reliable routes is crucial for saving energy in the network as
a whole. Thus, a special layer is needed between the medium access and the routing layers
to provide the routing layer with up-to-date information of the reliability of connections to
neighbors. The resulting protocols are called link or neighborhood management protocols.
The most important properties of a good neighborhood management protocol are (Karl &
Willig, 2005):

• Precision. The links should be precisely evaluated in their quality and reliability.

• Agility. The link manager should react quickly to changes.

• Stability. The link manager should not be influenced by short aberrations.

• Energy efficiency. The link manager should spend as little communication and pro-
cessing power for its operation as possible.

Many researchers have put extensive effort in searching for good link estimators. Two main
classes exist: passive and active estimators. Passive estimators use readily available informa-
tion on the nodes for their estimations, such as RSSI of received packets, number of received
packets, etc. Active estimators pro-actively send probe packets to discover the link quality to
their neighbors. Of course combinations of passive and active estimators also exist that use
readily available information as much as possible and send additional probe packets when
needed.
Traditional approaches use rules of thumb to estimate the quality of links given some local
information on the nodes. Typically they use rules such as "if RSSI > 80 then quality =
good", implement them on a hardware testbed, test it and fine-tune the parameters of the
approach. However, this design phase is long and inefficient, based mainly on experience
and intuition. Nevertheless, some of these approaches have been extensively evaluated and
widely used for real applications, e.g., through integration with existing routing protocols
such as MintRoute (Woo et al., 2003) or Arbutus (Puccinelli & Haenggi, 2008).

3.1 MetricMap: Supervised Learning for Link Quality Estimation.

A more sophisticated approach is to try to automatically gather relevant features and proper-
ties readily available at the nodes, and to learn to estimate the quality of the links from them. A
simple, yet powerful algorithm is MetricMap (Wang et al., 2006), developed at Princeton Uni-
versity in 2006. MetricMap uses decision tree learning to offline learn to estimate link quality
based on previously gathered link samples. The decision trees uses locally available data and
learns to classify links as good or bad. The acquired rules are integrated with a routing proto-
col (in this case MintRoute (Woo et al., 2003)) and are used online to predict link quality based
only on locally available information such as delivery rate or RSSI levels of incoming packets.
The authors of MetricMap designed their algorithm in two main steps: sample collection and
offline training. First, they used the MistLab 1 sensor network testbed at MIT to gather link
samples together with all available features, shown in Table 1. Each link sample was labeled
“good” or “bad”, according to its Link Quality Indication (LQI) value.

1 http://mistlab.csail.mit.edu
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Table 1. Link sample features used in MetricMap.

Feature Description Locality

RSSI received signal strength indication local
sendBuf send buffer size local
fwdBuf forward buffer size local
depth node depth from base station non-local
CLA channel load assessment local
pSend forward probability local
pRecv backward probability local
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Fig. 4. Part of the decision tree for estimating link quality, computed by MetricMap.

LQI is an indicator of the strength and quality of a received packet, introduced in the 802.15.4
standard and provided by the CC2420 radios of the MicaZ nodes in MistLab. Measurement
studies with LQI have shown it is a reliable metric when estimating link quality. However,
LQI is available only after sending the packet. It is not available for estimating the future
quality of some link before any packets are sent.
The training set, consisting of labeled link samples, was used to compute offline a decision
tree, which classifies the links as good or bad, based on the features from Table 1. The output
of the decision tree learner is presented in Figure 4 (a), together with classification results from
the training phase in the format: (total samples in category / false positive classifications).
The authors used the Weka workbench (Witten & Frank, 2005), which contains many different
implementations of machine learning techniques, including the C4.5 algorithm for decision
tree learning (see Section 2.1).
The acquired rules are used to instrument the original implementation of MintRoute. In a
comparative experimental evaluation on a testbed the authors showed that MetricMap out-
performs MintRoute significantly in terms of delivery rate and fairness, see Figure 4 (b) and
(c). MetricMap also does not incur any additional processing overhead, since the evaluation
of the decision tree is straightforward.

3.2 Discussion of MetricMap

The authors of MetricMap have clearly shown that supervised learning approaches are easy
to implement and use in a wireless sensor network environment and significantly improve
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the routing performance of a real system. Similar approaches can be applied to other testbeds
and real deployments. The only requirement is that the general communication properties of
the network do not change over time. This could be particularly challenging in outdoor envi-
ronments, where weather, temperature, sunlight, etc., influence the wireless communications.
Detailed and long-running experiments under changing climate conditions are necessary to
demonstrate the applicability of MetricMap-like routing optimizations. However, the expec-
tation is that the offline learning procedure needs to be re-run in order to adapt to the changing
environment, which could be very costly. In case this hypothesis proves to be true, distributed
methods for automatic link quality estimation need to be developed. On the other hand, im-
plementing decision tree or rule-based learning on sensor nodes seems to be practical, since
these techniques do not have high memory or processing requirements.

4. Routing Layer

The routing challenge refers to the general problem of transferring a data packet from one node
in the network to another one, where direct communication between the nodes is impossible.
The problem is also known as multi-hop routing, referring to the fact that typically multiple
intermediate nodes are used to relay the data packet to its destination. A routing protocol
identifies the sequence of intermediate nodes to ensure delivery of the packet. A differentia-
tion between unicast and multicast routing protocols exists in which unicast protocols route
the data packet from a single source to a single destination, while multicast routing protocols
route the data packet to multiple destinations simultaneously.
There is a huge body of research on routing for WSNs and in general for wireless ad hoc
networks. The main challenges are managing unreliable communication links, node fail-
ures and node mobility, and, most importantly, using energy efficiently. Well-known uni-
cast routing paradigms for WSNs are for example Directed Diffusion (Silva et al., 2003) and
MintRoute (Woo et al., 2003), which select shortest paths based on hop counts, latency and link
reliability. Geographic routing protocols such as GPSR (Karp & Kung, 2000) use geographic
progress to the destination as a cost metric to greedily select the next hop.
Next we present an effort to achieve good routing performance and long network lifetimes
with Q-Learning, a reinforcement learning algorithm presented in Section 2.3. It uses a
latency-based cost metric to minimize delay to the destination and is one of the fundamental
works on applying machine learning to communication problems.

4.1 Q-Routing: Applying Q-Learning to Packet Routing

Q-Routing (Boyan & Littman, 1994) is one of the first applications of Q-Learning, as outlined
in Section 2.3 and (Watkins, 1989), to communications in dynamically changing networks.
Originally it was developed for wired packet-switched networks, but it is also easily adaptable
to the wireless domain.
The learning agents are the nodes in the network, which learn independently from one an-
other the minimum-delay route to the sink. At each node, the available actions are the node’s
neighbors. A value Qx,t(d, y) is associated with each neighbor, reflecting the delay estimate d
at time t of node x to reach the sink through neighbor y. The update rule for the Q-Values is:

Qx,t+1(d, y) = Qx,t(d, y) + γ (q + s + R − Qx,t(d, y)) (3)

where γ is the learning rate, fixed to 0.5 in the original Q-Routing paper (Boyan & Littman,
1994), q is the time the last packet spent in the queue of the node, s is the transmission time to
reach neighbor y and R is the reward received from neighbor y, calculated as:
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Ry = min
z∈(neighbors of y)

Qy,t(d, z) (4)

The authors applied their algorithm to three different fixed topologies with varying numbers
of nodes. They measured the network performance of Q-Routing against a shortest-path rout-
ing algorithm under multiple network loads. Under high network loads (the paper does not
specify the exact load) Q-Routing performs significantly better than shortest-path because it
takes into account the waiting time in the queue. Thus, it spreads the traffic more uniformly,
achieves lower end-to-end delivery rates and avoids queue overflows. Importantly, the net-
work load can change during its lifetime and Q-Routing quickly and non intrusively re-learns
the optimal paths.

4.2 Discussion of Q-Routing

While the original paper contains no explanation for the selected learning rate, nor details
about initialization and action selection policy, and the reward delivery implementation is not
given, the experience of other researchers offer answers to these questions. They show that a
simple ǫ-greedy action policy is energy-efficient and easy to implement. Initialization of Q-
Values can be random, zero or with some a priori available routing information on the nodes,
such as estimation of the delay to the sinks. The main goal of the learning rate is to avoid
initial oscillations of the Q-Values. We have shown in our analysis of the multicast routing
protocol FROMS (Förster & Murphy, 2007) that it can be fixed to 1 if the Q-Values are initial-
ized with good estimates of the real costs. In such a case, a learning rate of 1 speeds up the
learning process significantly without the risk of oscillating values. We have also shown an
efficiently mechanism to implement the reward mechanism in WSNs, specifically by piggy-
backing rewards on usual data packets. Due to the inherent broadcast nature of the wireless
communication,all the neighboring nodes hear the data packets together with the rewards.
Additionally, not only will the preceding node update its Q-Values, but all overhearing nodes
can as well, further speeding up the learning process.
The authors of Q-Routing have clearly shown how to efficiently apply reinforcement learn-
ing techniques to challenging communication problems and to significantly improve network
performance. Although the work is rather preliminary as the experiments are limited to only
a few topologies and evaluation metrics, Q-Routing has inspired a number of other routing
protocols, especially in WSNs.

5. Clustering and Aggregation Layer

Clustering and data aggregation are powerful techniques that inherently reduce energy ex-
penditure in wireless sensor networks while at the same time maintaining sufficient quality
of the delivered data. Clustering is defined as the process of dividing the sensor network into
groups. Often a single cluster head is then identified within each group and made responsible
for collecting and processing data from all group members, then sending it to one or more
base stations.
While this approach is seemingly simple and straightforward, efficiently achieving it involves
solving four challenging problems. First, the clusters themselves must be identified. Second,
cluster heads must be chosen. Third, routes from all nodes to their cluster head must be
discovered. And finally, the cluster heads must efficiently route data to the sink(s).
Traditional clustering schemes can be coarsely divided into two main classes: random-
and agreement-based approaches. The first class are mostly variations or modifications of
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LEACH (Rabiner-Heinzelman et al., 2000), in which nodes choose to be cluster heads with an
a-priori probability. Subsequently, cluster heads flood a cluster head role assignment message
to their neighbors, which in turn identify the nearest cluster head as their own. In contrast,
agreement-based protocols first gather information about their k-hop neighborhood and then
decide on the cluster heads (Bandyopadhyay & Coyle, 2003; Demirbas et al., 2004; Younis &
Fahmy, 2004). Again, the cluster heads announce themselves to the network. The main dif-
ference between these two classes are the properties of the resulting clusters: their shape, size,
number of nodes per cluster, and spreading of remaining energy among the nodes in a cluster.
Random-based protocols produce non-uniformly sized clusters with varying remaining ener-
gies on the nodes. However, they do not require a lot of communication overhead for select-
ing the cluster heads. On the other hand, agreement-based protocols produce well-balanced
clusters, but require extensive communication overhead for gathering the neighborhood in-
formation and for agreeing on the cluster head role.

5.1 CLIQUE: Role-Free Clustering Protocol with Q-Learning

One of the challenges facing state of the art clustering is handling node and cluster head fail-
ures without losing a substantial part of the data during the recovery process. Here we present
a protocol that explicitly addresses recovery after such failures, while at same time avoiding
completely the cluster head agreement process. CLIQUE (Förster & Murphy, 2009) is our own
role-free clustering protocol based on Q-Learning (Section 2.3). First, it assumes that cluster
membership is known a priori, for example based on a geographic grid or room location infor-
mation on the sensor nodes. It further assumes that the possibly multiple sinks in the network
announce themselves through network-wide data requests. During the propagation of these
requests all network nodes are able to gather 1-hop neighborhood information including the
remaining energy, hops to individual sinks and cluster membership. When data to transmit
becomes available, nodes start routing it directly to the sinks. At each intermediate node they
take localized decisions whether to route it further to some neighbor or to act as a cluster head
and aggregate data from multiple sources.
The learning agents are the nodes in the network. The available actions are ani = (ni, D) with
ni ∈ {N, self}, in other words either routing to some neighbor in the same cluster or serving
as cluster head and aggregating data arriving from other nodes. After aggregation, CLIQUE

hands over the control of the data packet to the routing protocol, which sends it directly and
without further aggregation to the sinks. In contrast to the original Q-Learning, we initialize
the Q-Values not randomly or with zeros, but with a initial estimation of the real costs of the
corresponding routes, based on the hop counts to all sinks and the remaining batteries on the
next hops.
The update rule for the Q-Values is:

Qnew(ani ) = Qold(ani ) + α(R(ani )− Qold(ani )) (5)

where R(ani ) is the reward value and α is the learning rate of the algorithm. We use α = 1 to
speed up learning and because we initialize the Q-values with non-random values. Therefore,
with α = 1, the formula becomes Qnew(ani ) = R(ani ), directly updating the Q-value with the
reward. The reward is calculated as:

R(nself ) = cni + min
ni∈N

Q(ani ) (6)
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Fig. 5. Learned cluster head in a disconnected scenario (a), recovery after node failure (c) and
some experimental results with CLIQUE for delivery rate and network lifetime.

where cni is the cost of reaching node ni and is always 1 (hop) in our model. This propagation
of Q-values upstream is piggybacked on usual DATA packets and allows all nodes to eventu-
ally learn the actual costs. We use traditional ǫ-greedy action selection policy with low ǫ for
exploring the routes and learning the optimal cluster head.

5.2 Discussion of CLIQUE

The most important property of CLIQUE is its role-free nature. In contrast to most cluster head
selection algorithms, it does not try to find the optimal cluster head (in terms of cost), but
incrementally learns the best without knowing either where or who the real cluster heads are.
As a result, at the beginning of the protocol, multiple nodes in the cluster may act as cluster
heads. While this temporarily increases the overhead, it is a short-term tradeoff in comparison
to the overhead required to agree on a single cluster head. Later in the protocol operation, after
the real costs have been learned, multiple cluster heads occur only in disconnected clusters,
where a single cluster head cannot serve all cluster members.
A particularly interesting cluster head learning scenario is presented in Figure 5 (left), where
the cluster is disconnected. Such a scenario is challenging for traditional clustering approaches
as they need a complicated recovery mechanism, typically with large control overhead. On the
contrary, CLIQUE automatically identifies two cluster heads, as shown in the figure. Figure 5
(right) shows a recovery scenario in which node 13 fails. Node 11 is no longer able to send its
data to the cluster head and needs to find a new solution. Instead of searching for a new route
to the cluster head it simply becomes a cluster head itself. Because of its learning properties
and network status awareness, this requires no control overhead.
We believe that CLIQUE represents the beginning of a new family of role-free clustering pro-
tocols, with low communication overhead and very robust against node failures. Various cost
metrics can be easily incorporated. Nevertheless, one drawback is the use of the geographic
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grid for cluster membership, which requires location information on the nodes. Further re-
search in this area is desirable to improve the protocol.

6. Data Integrity

One of the major problems of in-network processing and aggregation in WSNs is the recog-
nition and filtering of faulty data readings before they are sent to the base stations. This is
often referred to as the data integrity problem. A typical example is a large climate monitor-
ing sensor network, delivering information about temperature, humidity or light conditions.
Multiple sensors are usually deployed to monitor the same area for redundancy. While in the
previous sections we have broadly discussed how to manage communication failures, data in-
tegrity refers to the problem of sensing failures. For example, some light sensing nodes could
be covered by debris and deliver faulty readings. It is desirable to recognize these readings
as fast as possible in a distributed way before they are sent to the base station to minimize
communication.

6.1 CLNN-Integrity: Using Neural Networks to Recognize Faulty Sensor Data

Neural networks are very often used to learn to classify data readings. Here we present a
semi-distributed approach to learn the data characteristics of incoming sensory data and to
classify it as valid or faulty. The learning neural network is implemented on cluster heads,
where they use the data coming from their cluster members. The application uses competitive
learning neural networks (CLNN), therefore we refer to it here as CLNN-Integrity (Bokareva
et al., 2006). Their NN consists of eight input and eight output neurons, which are connected
with weights, represented as the weight matrix W. Each row of it wi represents a connec-
tion between all input neurons x0, ..., x7 and the one output neuron yi. Every time an input
is presented to the network, the Euclidean distances between the input and each of the out-
puts is calculated and the winning output neuron is the one with the smallest distance. The
corresponding weights row wi of the winning neuron is updated according to the following
rule:

wi(t + 1) = wi(t) + λ × (x(t)− wi(t)) (7)

where λ is a constant learning rate and wi(t + 1) is the updated weight vector of the winning
neuron. Thus, when the network is next presented with a similar input, the probability that
the same output neuron will win is higher. After the network has been trained with many
input samples, it learns to differentiate between valid and false data. Of course, one of the
main requirements is that during training most samples are valid. A further requirement is
the intelligent initialization of the weights of the neural network. It is important that in the
beginning the output neurons are spread throughout the whole possible output space. For
example, the authors use light measurements, which are between 0 and 1200 units. Thus, the
output neurons need to classify data into 8 different classes spread from 0 to 1200 units.
The neural network of CLNN-Integrity is deployed at dedicated cluster heads in the network.
They gather data from all cluster members, use it for training the network first and then to
classify data readings and to filter faulty ones. The authors have implemented the approach
on a real hardware testbed consisting of 30 MicaZ motes and have tested the neural network
with light measurements. The authors have simulated faulty data readings by placing paper
cups on top of the light sensors of some of the nodes.
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Fig. 6. Summary of machine learning applications to various layers of the WSN communica-
tion stack. The protocols used in this chapter as examples are emphasized.

6.2 Discussion of CLNN-Integrity

The authors of CLNN-Integrity have shown that implementing neural networks for WSNs is
possible, even with online learning and on typical sensor nodes (the cluster heads, on which
the CLNN was implemented, are normal sensor nodes, not special, dedicated hardware).
Neural networks are very well suited for solving complex classification problems, such as
recognizing faulty data readings or detecting various events based on sensor readings.

7. Conclusions and Further Reading

As demonstrated with several examples in this chapter, machine learning is a powerful tool
for optimizing the performance of wireless sensor networks at all layers of the communica-
tion stack. Additional protocols and algorithms are summarized in Figure 6, where we also
address the general applicability of various ML approaches to networking concerns (Kulkarni
et al., 2009).
Neural networks have been successfully applied to data model learning, as in the CLNN-
Integrity example described in Section 6. They are also relatively well suited for link quality
estimation, since for many networks and environments the training of the neural network can
be performed offline. However, neural networks are not suited for problems in distributed
and fast changing environments such as at the medium access control layer. For example,
(Shen & Wang, 2008) uses a NN to centrally compute the optimal TDMA schedule for a WSN.
The optimality of the schedule, however, depends on the current network traffic and is thus a
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distributed problem, making a distributed technique such as reinforcement learning a better
option. Further applications of neural networks in WSNs and their high-level descriptions
can be found in (Di & Joo, 2007; Kulkarni et al., 2009).
Section 3 showed MetricMap, an application of decision tree learning to neighborhood man-
agement. This approach is well suited for nearly all layers of the communication stack due to
its low memory and processing requirements and easy applicability. However, the decision
tree is usually formed offline and only the rules are applied online. On the other side, this is
not an issue with many classification problems, where learning samples can be easily gath-
ered and future samples for classification are not expected to change their features. These and
other benefits strongly support the investment of additional research in this direction.
Based on our survey, reinforcement learning seems to be the most widely used technique,
due to its distributed nature and flexible behavior in quickly changing environments. As dis-
cussed in Section 4, Q-Routing has inspired multiple WSN routing protocols. Q-Probabilistic
Routing (Arroyo-Valles et al., 2007) uses geographic progress and ETX as a cost metric for
optimizing unicast routing. FROMS (Förster & Murphy, 2007) is our own multicast routing
protocol, able to accommodate various cost functions, including number of hops, remaining
energy at nodes, latency, etc. Additional routing protocols based on reinforcement learning,
together with their properties are discussed in (Di & Joo, 2007; Kulkarni et al., 2009; Predd
et al., 2006). Examples of applying reinforcement learning to medium access are available
in (Liu & Elahanany, 2006; Pandana & Liu, 2005).
Another candidate for improving routing performance in WSNs is swarm intelligence. This
technique, especially Ant Colony Optimization (Dorigo & Stuetzle, 2004), has been success-
fully applied to routing in Mobile Ad Hoc Networks (MANETs), as in AntHocNet (Di Caro
et al., 2005). However, all attempts to apply it to the highly energy-restricted domain of
WSNs (Kulkarni et al., 2009) have been rather unsatisfying, achieving good routes with low
delay, but introducing a large amount of communication overhead for the traveling ants. One
possibility to counter this communication overhead is to attach the ants to standard data pack-
ets. This will lengthen the paths taken by data packets and will increase the overall delivery
delay, but at the same time will decrease total communication overhead. Further research is
required to test this hypothesis.
In contrast to the widely held belief that machine learning techniques are too heavy for the re-
source constraints of WSN nodes, this chapter clearly demonstrates the opposite, namely that
the domains of machine learning and WSNs can be effectively combined to achieve low cost
solutions throughout the communication stack on wireless sensing nodes. This has been suc-
cessfully shown through multiple examples, evaluated in both simulation to show scalability
and in real testbeds, to concretely demonstrate feasibility.
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