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Abstract

Atherosclerosis (AS) is the common pathological underpinning of numerous 
cardiovascular illnesses (CVDs), and it is the leading cause of death worldwide. In 
recent years, researchers have begun to recognize the importance of gut microbiota 
in AS. Gut microbial dysbiosis has been reported to be connected with various CVDs. 
Moreover, dietary choline, betaine, and L-carnitine produce trimethylamine N-oxide 
(TMAO), a key gut microbe-dependent metabolite. Multiple studies have found a link 
between plasma TMAO levels and the likelihood of developing AS. The mechanism 
underlying this link, however, is still unknown. In this chapter, we discuss the TMAO-
mediated mechanisms of atherosclerotic CVD from the perspectives of dietary 
patterns and gut microbial metabolism. Finally, we explain how TMAO has emerged 
as a novel therapeutic target for CVDs, as well as many treatment options for lower-
ing TMAO levels that are currently being investigated, such as medications, dietary 
changes, probiotics, and so on.
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1. Introduction

Cardiovascular disease or CVD is a term for disorders affecting the heart or blood 
vessels. Except in Africa, cardiovascular illnesses are the main cause of mortality 
globally, resulting in 17.9 million deaths (32.1%) in 2015, an increase from 12.3 million 
(25.8%) in 1990 [1]. CVD deaths are more widespread and have been growing in most 
developing countries, whereas rates in most developed countries have declined since 
the 1970s [2]. Coronary artery disease and stroke account for 80% of CVD deaths in 
males and 75% in females. The majority of cardiovascular disease affects older people. 
In the United States, 11% of adults between the ages of 20 y and 40 y have CVD, 37% 
between the ages of 40 y and 60 y, 71% between the ages of 60 y and 80 y, and 85% 
above the age of 80 y have CVD. In developed countries, the average age of death from 
coronary artery disease is over 80 y, while it is roughly 68 y in the developing world [2]. 
Diagnosis of diseases typically occurs seven to ten years earlier in men than in women.
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The underlying processes differ according to the illness. Dietary risk factors are 
responsible for 53% of CVD fatalities [3]. Atherosclerosis is a common factor in 
coronary artery disease, stroke, and peripheral artery disease [4]. High blood pres-
sure, smoking, diabetes mellitus, lack of exercise, obesity, high blood cholesterol, 
poor food, excessive alcohol consumption, and poor sleep, among other factors, may 
contribute to this [5]. High blood pressure contributes around 13% of CVD fatali-
ties, whereas tobacco accounts for 9%, diabetes accounts for 6%, lack of exercise 
factors for 6%, and obesity accounts for 5%. Untreated strep throat can potentially 
cause rheumatic heart disease. Up to 90% of cardiovascular disease is thought to be 
preventable [6]. Lowering risk factors through good food, exercise, avoiding cigarette 
smoke, and limiting alcohol use are all part of CVD prevention. It also treats risk 
factors such as high blood pressure, lipids, and diabetes. In those with strep throat, 
antibiotics can lower the risk of rheumatic heart disease [7].

The microbiome plays a beneficial role in the homeostatic regulation of differ-
ent body tissues of the host [8]. The overall relationship between humans and their 
microbiota can be described as a mutualistic symbiosis, also known as eubiosis 
[9]. This healthy balance of gut bacteria can be disrupted, leading to the onset of a 
variety of chronic diseases with an underlying inflammatory condition [10]. A large 
population of microbiota, predominantly bacteria, that populate the human gut have 
a symbiotic connection with the host, and imbalances in host-microbial interac-
tion (dysbiosis) hamper these homeostatic systems that govern health and activate 
numerous pathways that contribute to advancing CVD risk factors [11]. Dysbiosis is 
related to intestinal inflammation and decreased gut barrier integrity, which raises 
circulating levels of bacterial structural components and microbial metabolites such 
as trimethylamine-N-oxide and short-chain fatty acids, which may aid in the develop-
ment of CVDs [11].

Trimethylamine-N- oxide (TMAO) is a type of osmolyte found in the tissues of 
marine crustaceans and fish, where it prevents protein distortion and, therefore, the 
animal’s death [12]. The concentration of TMAO increases as the animal’s depth in 
the seas increases [13]. It is a protein stabilizer that counteracts the protein-destabi-
lizing effects of pressure. In general, the bodies of animals living at great depths are 
adapted to high-pressure environments by having pressure-resistant biomolecules 
and small organic molecules present in their cells, known as piezolytes, of which 
TMAO is the most abundant. These piezolytes give the proteins the flexibility to 
function properly under great pressure [13–15]. However, more importantly, TMAO 
has emerged not only as an important metabolite in the human diet but also as a 
major cardiometabolic risk factor. It has been associated with many cardiovascular 
complications including foam cell formation [16], endothelial dysfunction [17], 
acute heart failure [18], infracted coronary artery [19], inflammation [20] and 
vascular aging [21].

2. Role of gut microbes in regulating cardiovascular health and disease

The gut microbiome has emerged as a critical factor in human health and disease 
[22, 23] and cardio-metabolic diseases are no exception. Obesity and insulin resis-
tance are serious cardiometabolic risk factors [24–27], and gut microbial composi-
tion is a major regulator of these conditions. Changes in fecal microbial community 
composition have been linked to the development of obesity and insulin resistance, 
and microbial transplantation has been shown to transmit increased adiposity in 
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the host [28–30]. Disruptions to the microbiota early in life have since been identi-
fied to induce increased obesity [31]. Koren et al. [32] argued that microbiota could 
be associated with atherosclerosis since human atherosclerotic plaques were found 
to contain bacterial DNA, albeit it was unclear if the DNA came from live bacteria 
within the arterial wall. The initial research into a possible link between the gut 
microbiome and cardiovascular disease (CVD) focused on trimethylamine N-oxide 
(TMAO), a metaorganismal metabolite generated after ingestion of food substances 
plentiful in a Western diet (eg, carnitine, lecithin, choline) [16, 33, 34]. TMAO has 
swiftly established itself as a biomarker for human CVD risk as well as a promoter of 
atherothrombotic disease [35, 36]. In fact, a Western-style diet deficient in microbi-
ota-accessible carbohydrates (MACs) may cause irreversible microbial diversity loss 
and the extinction of particular bacterial species in the digestive system [37]. As a 
result, the low intake of dietary fiber and increased levels of fat and sugar in our food, 
which are typical of a westernized lifestyle and diet, may contribute to the depletion 
of specific bacterial taxa, at least in part [38]. Fiber, fruit, legume and vegetable 
consumption is linked to an increased microbial richness in the gut microbiota [39, 
40], and several recent epidemiological studies have found an inverse relationship 
between dietary fiber consumption and CVD risk variables [41–45]. Non -digestible 
carbohydrates present in dietary fiber are converted by intestinal bacteria into Short-
Chain fatty acids(SCFAs) like acetate, propionate and butyrate [46, 47]. SCFAs have 
been shown to have a direct effect on renin release and vasomotor function, resulting 
in lower blood pressure [48–50]. Butyrate has been shown to have a potential adjuvant 
effect in the lowering of diastolic blood pressure by reducing inflammation in a recent 
controlled experiment [51]. Moreover, in early pregnancy, the presence of butyrate-
producing bacteria was found to be inversely related to blood pressure and plasmino-
gen activator inhibitor-1 levels [52].

2.1 Gut microbiota dysbiosis and implications in CVD risk

Most microbiome-related diseases have skyrocketed in the last century, implying 
that a change in lifestyle could disturb gut microbiota symbiosis by removing 
helpful, protective bacteria [53]. Patients with a variety of CVD risk factors, such 
as hypertension, dyslipidemia, insulin resistance, and other metabolic abnor-
malities, have been found to have variations in microbial composition [36, 37]. 
Dysbiosis of the gut microbiota can lead to chronic inflammation, which is a major 
contributor to obesity, cardiovascular disease, and notably atherosclerosis [38, 39]. 
In symptomatic atherosclerosis patients, metagenome research indicated a higher 
concentration of triglycerides and a lower level of high-density lipoprotein in 
the circulation, as well as an increased abundance of Collinsella and a decreased 
abundance of Roseburia and Eubacterium [54]. Jie et al. [55] discovered an elevated 
relative abundance of Enterobacteriaceae and Streptococcus spp. taxa in atheroscle-
rotic CVD patients. In coronary artery disease patients, Emoto et al. discovered a 
distinct alteration in microbial composition, with a large increase in Lactobacillales 
(Firmicutes) and a decrease in Bacteroidetes [56]. In another study, patients with 
type 2 diabetes had a lower number of Firmicutes and a non-significant rise in 
Bacteroidetes and Proteobacteria [57]. Some cross-sectional studies have found evi-
dence that high-protein and high-fat diets (associated with Western lifestyles) are 
linked to gut microbial populations characterized by the Bacteroides enterotype, 
while diets heavy in carbohydrates and simple sugars are linked to the Prevotella 
enterotype [58].
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The metabolism-independent pathway and the metabolism-dependent pathway 
are two key pathways via which gut dysbiosis can contribute to the development 
and progression of atherosclerosis [59]. In the metabolism -independent path-
ways, bacterial components located on the outer membrane of Gram-negative 
bacteria, such as lipopolysaccharides (LPS), can encourage the production of foam 
cells, which are a primary component of atherosclerotic plaque [60]. To prevent 
the accumulation of excess cholesterol in peripheral tissues, the body has internal 
homeostatic systems in place, such as reverse cholesterol transport (RCT). Excess 
cholesterol is transported to the liver and transformed into bile acids through the 
RCT process [61–63]. By producing metabolic endotoxemia, gut dysbiosis can 
overload systems like RCT and encourage the development of foam cells [64–66]. 
Metabolic endotoxemia is a condition marked by a high level of LPS in the blood-
stream [67]. The presence of Bifidobacteria, which typically enhance intestinal 
barrier function and inhibit bacterial translocation, is reduced in high-fat (HF) 
diet-induced dysbiosis [60].

3. Synthesis and metabolism of gut microbial metabolite TMA and TMAO

3.1 Production of trimethylamine by gut bacteria

Trimethylamine (TMA) is the source of TMAO in humans. TMA is derived 
either directly from meals high in TMA, such seafood, [68, 69] or indirectly from 
the bacterial metabolism of dietary choline and choline-containing substances in 
the colon, such as phosphatidylcholine [16], betaine [70], and dietary L-carnitine 
[33, 71]. The ability of different gut microbes to produce TMA from food precur-
sors varies. This is because it is produced in the gut via a variety of microbial 
mechanisms (Figure 1). As a result, the composition of an individual’s microbiota 
influences the magnitude of TMA production. It’s worth noting that the genes 
essential for TMA formation are found in just a small percentage of the microorgan-
isms in the intestine (less than 1%) [72]. TMA formation appears to be possible 
even at extremely low concentrations of these microorganisms, highlighting the 
importance of the gut microbiota in this context [73]. TMA and TMAO levels have 
been linked to increased activity in bacteria belonging to the phylum Firmicutes 
and Proteobacteria, which are known producers of this metabolite. Furthermore, 
because Bacteroidetes are unable to make TMA [74], TMA and TMAO levels have 
been connected to an enhanced Firmicutes/Bacteroidetes ratio, with higher levels 
of Firmicutes and lower levels of Bacteroidetes [57, 58]. The genes coding for the 
glycyl radical enzyme choline TMA-lyase (CutC) and its related radical S-adenosyl-
L-methionine (SAM)(CutD) activating protein were discovered in the Choline 
Utilization (cut) gene cluster in gut bacteria, which is responsible for the anaerobic 
breakdown of choline into TMA [75]. A two-component CntA/CntB oxygenase/
reductase system capable of cleaving L-carnitine into TMA and malic semialdehyde 
is another microbial metabolic route that generates TMA from L-carnitine [76]. The 
yeaW/X gene products (YeaW/X TMA lyase) are a closely similar bacterial lyase. 
Choline, betaine, L-carnitine, and -butyrobetaine can all be converted to TMA by 
this promiscuous lyase [74, 77]. Aside from these TMA-generating processes from 
dietary trimethylamines, some gut microbes like E.coli have also been found to have 
another pathway that converts TMAO to TMA via the activity of a torA-like gene 
product which acts as a reductase [78, 79].
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3.2 Conversion of TMA into TMAO and its regulation

TMA generated from a choline -rich diet through various metabolic pathways is 
absorbed from the gut into the hepatic portal circulation and oxidized by the enzymes 
flavin-dependent monooxygenase isoforms 1 and 3 (FMO1 and FMO3) in the liver 
to create Trimethylamine-N-oxide(TMAO) (Figure 2) [80]. TMAO is excreted out 
of the body, usually through urine [81]. Sweat, feces (4%), exhaled air (less than 
1%), and other body secretions are some of the other ways TMAO is excreted [82]. 
TMAO can be metabolized to DMA(Dimehtylamine), formaldehyde, ammonia, 
and methane by methanogenic bacteria that carry the TMAO demethylase enzyme 
[83]. Furthermore, it has been demonstrated that TMAO derived from food can be 
absorbed directly in the gut [84]. As a result, plasma TMAO levels are regulated by 
TMA synthesis and degradation, as well as the rate at which TMA, and TMAO are 
secreted [85].

3.3  Dietary precursors of TMAO and the relationship between TMAO levels and 
dietary habits

As discussed in Section 3.1, seafood is a rich source of dietary TMA/TMAO and 
various dietary precursors like L-carnitine, choline, ergothioneine and betaine 
(Figure 1) equally contribute to the generation of TMAO in the body. Free TMAO 
present in seafood is not metabolized by gut microbiota and is directly absorbed into 
the systemic circulation [86]. L-carnitine is present in high concentrations in meals 
derived from animals (meat and dairy products), and in smaller amounts in grains 

Figure 1. 
Chemical formulae of TMA and TMAO’s principal dietary precursors. The key metabolic pathways for the 
synthesis of TMA by the gut microbiota and endogenous enzymes, as well as the conversion of TMA to TMAO by 
hepatic FMOs, are depicted in this diagram.
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and vegetables [87]. The most common sources of choline in the diet are eggs and 
liver, followed by meats and fish, whole grain, cereal, vegetables, fruits, milk, fats, 
and oils [88]. One of the most important sources of betaine is cereal-based foods [89]. 
Betaine can also be found in spinach, beets, crabs, and finfish [90]. Dietary sources 
are the only way to get ergothioneine. Ergothioneine is found in only a few foods, with 
the largest quantities found in boletus and oyster mushrooms, as well as to a lesser 
level in chicken and pork liver and kidney, oat bran, and black and red beans [91]. 
As discussed in Section 2, a westernized lifestyle and diet full of junk fatty foods and 
refined sugar, devoid of fiber and important nutrients, predisposes one to increased 
CVD risk and other chronic diseases. Plasma TMAO levels have been observed to 
rise when people eat Western-style or high-fat diets [92–94]. However, conversely, 
epidemiological studies have linked the Mediterranean diet to a lower risk of cardio-
vascular disease (CVD) [95]. A typical Mediterranean diet is defined by plant based 
foods (vegetables, fruits, nuts,), olive oil based fats and moderate to low amounts of 
seafood, eggs and meats [96, 97]. This makes this type of diet high in fiber and low in 
choline -rich food. The importance of fiber- rich foods has already been mentioned 
in Section 2. High dietary fiber consumption, followed by gut microbiota-mediated 
fermentation, appears to reduce TMAO levels in experiments on animal models and 
clinical medicine [98].

4. Role of TMAO in increasing cardiovascular disease risk

A choline-rich diet puts a person at risk of increased TMAO levels [16], which is 
directly correlated to an increased CVD risk [99]. Angiographic markers of coronary 
artery atherosclerotic burden and cardiac risks have strong relationships with sys-
temic TMAO levels, and higher levels of TMAO in the blood are linked to an increased 
risk of incident cardiovascular events such as myocardial infarction, recurrent stroke, 

Figure 2. 
Gut flora mediated synthesis of TMA and hepatic conversion to TMAO.
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and even cardiovascular death [55, 100]. Gut microbes play a role in modifying plate-
let reactivity and generating a pro-thrombotic phenotype in vivo by producing TMAO 
(Figure 3) [101]. Zhu et al., has shown that direct exposure of platelets to TMAO, 
caused activation of the platelets by the release of intracellular calcium. This modu-
lates the platelet hyper-responsiveness and the potential of thrombosis and causes 
thrombosis and atherosclerosis [101]. Rebecca et al., states that knockdown of FMOs 
can protect mice from obesity, which is a major cause for cardiovascular diseases 
[102, 103]. Increased amount of TMAO, obtained from the diet, causes monocytes 
to enter the subendothelial space and differentiate into colony -stimulating factors 
when they encounter the growth factors. These form large cells known as dendritic 
cells and macrophages which possess high expression of SR-A1 and CD36 [104]. 
These cells take up oxidized, low- density lipid particles to create foam cells that are 
irregular in the uptake of cholesterol with fatty acids and ester bonds, thus stimulat-
ing atherosclerosis [105]. It is suggested that CD36/MAPK/JNK pathways play a vital 
role in the formation of foam cells [106]. Research studies show that apoe−/− mice 
fed with choline diet for 8 weeks, gradually exhibited an increase in TMAO, which 
further recruited macrophages and pro – inflammatory cytokines [107]. Another 
study by Boini et al. indicates the link between TMAO and inflammation, where 
TMAO induces NLRP3 inflammasome formation and causes other immune responses 
[108]. An imbalance of cholesterol transport is observed in individuals with high 
TMAO, and studies show that mice with administered TMAO inhibited the synthesis 
of hepatic bile acid by downregulating the expression of Cyp7a1, which promoted ath-
erosclerosis [109]. The activation of oxidative stress pathways following exposure to 
TMAO, which triggers inflammatory cytokines, is the molecular basis for increasing 
cardiovascular illnesses. It can also activate the p38 MAPK and NF-kappa beta signal-
ing pathways, which enhances NLRP3 production in the inflammasome and promotes 
vascular calcification and endothelial cell damage [110]. High administration of 
TMAO causes oxidative stress, inflammation and suppressed cellular functions, while 
low levels exhibit a contrary response [111]. A recent study proved that patients with 
aortic stenosis, had their TMAO levels as 5.5 μM, when the control was 3.6 μM. TMA 
is also associated with cardiovascular diseases as the levels of TMA in these patients 
were 59.5 μM and the control was 23.2 μM [112]. Thus, TMAO is considered to be an 
independent risk factor for cardiovascular diseases.

Figure 3. 
TMAO- mediated platelet hyper-responsiveness and increased thrombosis risk.
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5.  Targeting the TMA/TMAO pathway as a therapeutic strategy to combat 
CVD risk-current research and future directions

The gut microbiome is a growing area of research in metabolic health and its link 
to CVD risk. The development of high-throughput metagenomic tools has aided a 
new understanding of the gut microbiome’s role in CVD risk [113]. The gut microbi-
ome can be targeted to modify TMAO synthesis, according to recent fecal microbial 
transplant research [114] and as a result TMA/TMAO levels can be regulated. Based 
on research by Maisto et al., in healthy subjects, grape pomace polyphenolic extract 
has been found to lower serum levels of TMAO [115]. Resveratrol (RSV) reduces 
TMAO- induced atherosclerosis by lowering TMAO levels and enhancing hepatic bile 
acid synthesis through gut microbiota remodeling [116]. Antimicrobial phytochemi-
cals, such as allicin, a dietary dosage derived from garlic, effectively neutralize the 
metabolic ability of gut microbiota to produce TMAO- induced by L-carnitine intake 
[117]. Luhong granules, a complex blend of herbs, flowers, animal parts, seeds, and 
roots, prolong ventricular remodeling after myocardial infarction by lowering TMAO 
and LPS levels in the bloodstream by increasing the gut microflora and intestinal bar-
rier function [118]. A single oral dosage of a cutC/D inhibitor lowers plasma TMAO 
levels for up to three days and reverses diet-induced platelet reactivity and thrombus 
formation as studied in animal models, with no toxicity or increased bleeding risk 
[119]. In experiments with mice models, Lactobacillus plantarum ZDY04 significantly 
reduced serum TMAO and cecal TMA levels in mice by modulating the relative 
abundance of specific bacterial species, including Bacteroids and significantly inhibit-
ing the development of TMAO-induced atherosclerosis in choline fed mice [120]. In 
high-fat diet-induced obese mice, capsanthin extract prevents obesity, lowers serum 
TMAO levels, and modifies the gut microbiota composition by decreasing serum 
triglycerides, total cholesterol, and TMAO levels and markedly increasing microbial 
diversity [121]. The ability of several oral probiotics to modify circulating TMAO 
levels in different cohorts, including healthy participants and patients with a CVD-
related disease, has been investigated [122–125]. None of them, however, appeared to 
have a significant effect on TMAO levels in the treatment groups as compared to the 
placebo groups. In another study, TMA-degrading microorganisms were used by Qiu 
et al. (2017) to investigate another promising technique for lowering TMA levels in 
the gut where oral administration of a TMA-metabolizing strain (Enterobacter aero-
genes ZDY01) reduced TMA in the cecum and TMAO in the serum, as well as changing 
the microbial community composition in mice, according to their findings [126]. In 
human studies, changes in urine TMAO levels have been discovered in untargeted 
metabolomics investigations following supplementation with Origanum dictamus tea 
and Curcuma longa extract [127, 128].

6. Conclusions

Diet has been shown to have an important role in the formation of TMAO because 
it offers the nutritional precursors needed to create TMA and TMAO. There is a posi-
tive correlation between circulating TMAO levels and the consumption of food rich in 
dietary precursors of TMAO like seafood, meat, eggs etc. Targeting the TMA/TMAO 
metabolism has emerged as a promising tool for cardiovascular disease prevention 
and treatment in recent years. Targeting the microbiota and host metabolic systems 
implicated in TMA and TMAO production shows potential for future intervention. 
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Animal models have largely established the capacity of specific diets, food ingredi-
ents, and phytochemicals found in herbs to reduce circulation of TMAO levels. The 
link between changes in TMAO levels and gut microbiota has only been shown in 
a few cases, and the exact processes behind the impacts of the dietary items under 
investigation are yet unknown. More importantly, there are few studies that suggest 
that lowering circulating TMAO levels has a favorable effect in humans. Because the 
majority of the studies have been conducted on animal models, the results are dif-
ficult to apply to humans. Future research in this area should address conventional 
microbial research obstacles as well as those more specific to the study of TMA/
TMAO metabolism, such as the substantial intra-individual variability of plasma 
TMAO levels observed in some humans. With the advancement and availability of 
next-generation sequencing and other omics technologies, a change from studies 
focusing on defining microbial community composition to more function-oriented 
research on the gut microbiota is envisaged. Bioinformatic approaches, shotgun 
metagenomics, meta-transcriptomics, meta-proteomics, and metabolomics, are all 
expected to be crucial in unraveling the intricate relationships between nutrition, 
microbial metabolism, and host health.
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