
Chapter 6

Parallel Genetic Algorithms with GPU Computing

John Runwei Cheng and Mitsuo Gen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.89152

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

John Runwei Cheng and Mitsuo Gen

Additional information is available at the end of the chapter

Abstract

Genetic algorithms (GAs) are powerful solutions to optimization problems arising
from manufacturing and logistic fields. It helps to find better solutions for complex
and difficult cases, which are hard to be solved by using strict optimization methods.
Accelerating parallel GAs with GPU computing have received significant attention from
both practitioners and researchers, ever since the emergence of GPU-CPU heterogeneous
architectures. Designing a parallel algorithm on GPU is different fundamentally from
designing one on CPU. On CPU architecture, typically data or tasks are distributed
across tens of threads or processes, while on GPU architecture, more than hundreds of
thousands of threads run. In order to fully utilize the computing power of GPUs, the
design approaches and implementation strategies of parallel GAs should be re-probed.
In the chapter, a concise overview of parallel GAs on GPU is given from the perspective
of GPU architecture. The concept of parallelism granularity is redefined, the aspect of
data layout is discussed on how it will affect the kernel performance, and the hierarchy
of threads is examined on how threads are organized in the grid and blocks to expose
sufficient parallelism to GPU. Some future research is discussed. A hybrid parallel model,
based on the feature of GPU architecture, is suggested to build up efficient parallel GAs
for hyper-scale problems.

Keywords: GPU acceleration, parallel genetic algorithms, granularity of parallelism of
parallel genetic algorithms on GPU, GPU-CPU heterogeneous systems

1. Introduction

GAs are stochastic and global stochastic search methods, which combine two major search
strategies: exploiting better solutions and exploring the global search space. GAs have been
successfully applied to many optimization problems in different disciplines that are difficult
to solve by conventional mathematical programming methods [1]. GAs, as a population-based

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

search method, present great potential in performance improvement by parallel computation.
The earliest attempt to parallelize GAs can be traced back to nearly 30 years ago. The research
on parallel GAs can be divided into two major stages as the computing architectures evolve:
the stage of parallel GAs on CPU architecture versus on GPU architecture.

On CPU architecture, you may run a parallel program over tens of threads or processes, while
on GPU architecture, you can run it with more than hundreds of thousands of massive threads
simultaneously, which leads to a fundamental paradigm shift in parallel programming. The
basic idea to parallel GAs on CPU is to distribute computations among either multiple proces-
sors or multiple computers. Each instance of parallel processes on a processor is essentially a
sequential GA, viewing from the perspective of algorithm implementation. The approach of
parallel GAs on CPU is not suitable for massive GPU thread computing architecture.

Since the emergence of CPU + GPU heterogeneous architecture, how to accelerate GAs on the
architectures has received significant attentions from both practitioners and researchers. GPU
computing makes the research of parallel GAs truly enter into the world of high-performance
computing (HPC) and demonstrates a great potential to many research disciplines and indus-
trial worlds that can benefit from the power of GPU-accelerated stochastic and global search
to explore large and complex search spaces for better solutions.

Most works on parallel GAs on GPU are published before 2013 on very earlier generation of
GPU architectures, and most researches adopt a naive approach: let each GPU thread do a
sequential GA, exactly the same way parallel GAs do on CPU. Even with the naive approach,
you can still speed up GA computation greatly. Since massive threads are available on GPU,
the way of designing a parallel program on GPU is quite different with the way of designing
one on CPU. The distinguishing features of parallel programming on GPU over CPU are that
CUDA platform exposes GPU memory model and execution model to us to enable us to have
more control over massive threads in order to exert the computing power of GPUs.

The intention of the chapter is to give a concise review on accelerating GAs on GPU: how
to organize the massive threads to access memories and how to harmonize massive threads
to work efficiently. Fermi architecture, the world’s first complete GPU computing architec-
ture released in 2010, makes GPU computing truly applicable in industrial worlds. This is
the reason why the review on the selected works after 2010. The performance issue is not
touched, because since then, both GPU hardware architectures and CUDA platform have had
significant progress.

This chapter is organized as follows. Section 2 briefly describes the basic concept of GA and
parallel models on CPU. Section 3 discusses major issues on how to accelerate parallel GAs
on GPU: the granularity of parallelism is redefined for parallel GAs on GPU, the aspect of
data layout is examined to show how it will affect the kernel design to maximize memory
bandwidth, and the hierarchy of thread execution is investigated to explain how to organize
threads in grid and blocks to expose sufficient parallelism to GPU. A concise overview is
given in Section 4 on selective works of parallel GAs on GPU. How to implement three paral-
lel models of GAs on GPUs is explained through several famous combinatorial optimiza-
tion problems to show that the efficient implementations of parallel GAs on GPUs share the
common principles of kernel optimization. A case study of railway scheduling problem is

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing70

described in Section 5 to demonstrate how to accelerate multiple objective parallel GAs with
GPU. A brief discussion of future research is given in Section 6, focusing on how to build
up efficient parallel GAs on GPUs for hyper-scale computing. The chapter ends with a brief
conclusion in Section 7.

2. Parallel GAs on CPU

This section introduces briefly the basic concepts of GAs and basic models of parallel GAs
on CPU.

2.1. General structure of genetic algorithms

GAs are efficient and stochastic search methods based on principles of natural selection and
genetics. Many optimization problems from the scientific and industrial research are very
complex in nature and quite hard to solve by conventional optimization techniques. Since the
1960s, there has been an increasing interest in imitating living beings to solve such kinds of
hard optimization problems. Simulating the natural evolutionary process of human beings
results in stochastic optimization techniques called genetic algorithms or evolutionary algo-
rithms, which can often outperform conventional optimization methods when applied to dif-
ficult real-world problems [2].

The canonical form of GAs is described by Goldberg [3]. The calculation of GAs begins
with a set of individuals, called a population. Each individual represents a solution to the
problem you want to solve, which is also called chromosome. GAs perform the stochastic

search through a loop of iterations, and each iteration is called a generation. New solutions
are created at each generation by either merging two solutions using a crossover operator or

modifying a solution using a mutation operator. The new solution is called offspring and the

solutions used to create them called parents. During each generation, each solution in the
population is evaluated, using some measures of fitness. A set of new population for the next
generation is then formed by a selection operator. The solutions with better fitness values
have much higher possibilities of being selected to enter the next generation. The popula-
tion evolves over several generations, converging to the better solutions which are hopefully
close to the optimal solution. The pseudo code of the general structure of GA is described as
follows (Figure 1).

GAs, as a metaheuristic, have many advantages over the conventional single-point search
methods. Requiring not good mathematical properties about the problem as the conventional
method does, GAs can handle much complex problems with any kind of objective functions
and constraints, linear or nonlinear, on discrete, continuous, or mixed search spaces, and
provide us a great flexibility to hybridize with domain-dependent heuristics to make the ran-
dom search more powerful and effective. The ergodicity of genetic operators makes GAs very
effective at performing global search. GAs often outperform over conventional methods on
most types of combinatorial optimization problems because they do not make any assump-
tion about the underlying fitness landscape [4].

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

71

2.2. Multi-objective genetic algorithms

Multi-objective optimization deals with problems of seeking solutions over a set of possible
choices to optimize multiple criteria. Almost every important real-world decision problem
involves multiple and conflicting objectives that need to be tackled while respecting various
constraints, leading to overwhelming complexity for conventional optimization algorithms.
Genetic algorithms have been receiving considerable attention as a novel approach to multi-
objective optimizations since the early 1980s, resulting in a fresh body of research and applica-
tions, called multi-objective GAs.

The primary difference of multi-objective GAs from single-objective GAs is how to determine
the fitness value of individuals according to multiple objectives. For multi-objective problems,
we cannot find a point superior than all other points in the criterion space, as illustrated in
Figure 2, such points called non-dominated, or non-inferior, or Pareto point, named after an
Italian economist, who introduced the concept of Pareto efficiency in the field of microeco-
nomics. A point is called Pareto optimal if none of the objectives can be improved in value
without degrading some of the other objectives’ values.

How to maintain a set of non-dominated individuals during evolutionary processes is a spe-
cial issue for multi-objective GAs. Pareto points are identified at each generation and used to
calculate fitness values of all points or rank all other points. No mechanism in canonical GAs
is provided to guarantee Pareto points in current generation be selected into next generation.
In other words, some Pareto points may get lost during the evolutionary process. To avoid
such sampling errors, a special mechanism for preserving Pareto solutions is added to the
basic structure of genetic algorithms. In each generation, a set of Pareto points, kept in a
separate pool, is updated by deleting all dominated solutions and adding all newly generated
Pareto solutions [2].

Figure 1. The general structure of GA.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing72

2.3. Parallel genetic algorithms

Because GAs conduct the stochastic search over a set of solutions, there is a great potential
for speeding up the evolutionary process of GAs: distributing the computational load among
multiple processors through a data parallel approach. The motivation to parallelize GAs is
twofold: to speed up the computation of GAs when solving large and complex problems and
to improve the quality of solutions by exploiting distributed populations. There are three
basic approaches of parallel GAs on CPU as shown in Figure 3:

1. Master-slave model

2. Island model

3. Cellular model

Figure 2. The Pareto frontier.

Figure 3. Models of parallel GAs. (a) Master-Slave model, (b) Island model, and (c) Cellular model.

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

73

The basic idea behind all above algorithms is a divide-and-conquer approach: dividing the
task into chunks and solving the chunks simultaneously using multiple processors [5]. In the
master-slave model, there is a single population, and the evaluation of fitness is distributed
among several processors. In the cellular model, there is a spatially structured population,
and selection and mating are restricted to a small neighborhood, but neighborhoods overlap,
permitting some interaction among all the individuals. This model is suited for massively par-
allel computers. In the island model, the population is divided into multiple sets, each called
an island. In an island, individuals mate freely, while mating is prohibited across islands. A
new operator is then introduced into the island model, the migration operator, exchanging a
small portion of population among islands periodically in a predefined way in order to bring
new genetic materials into each island.

From the perspective of mating mechanisms, these models can be classified into two major
categories: mating globally and mating locally. In the master-slave model, individuals are
permitted to mate freely within the entire population. In the cellular model, the population
is imposed with geographical structure, and individuals are permitted to mate only with its
close neighbors. The island model is in between the master-slave and cellular model: free
within a given island but restricted among islands.

From the perspective of population, these models can be classified into two categories: the
single population and the multiple populations. The master-slave and cellular models belong
to the single population, and the island model belongs to the multiple populations.

Conceptually, all above models keep multiple instances of GAs, and each instance on a pro-
cessor or a computer is a sequential program in nature. A communication mechanism among
processors or computers is required in order to evolve a better solution from the overall popu-
lations, implemented either in a synchronizing way or in an asynchronizing way.

3. Major issues of parallel GAs on GPU

Many of early works of parallel GAs on GPUs take a naive approach: let each GPU thread run
a sequential GA for a given portion of task, the same way used in parallel GAs on CPU to do
a sequential GA over one processor. This approach, by ignoring the architectural feature of
GPUs, cannot fully exploit the computing power of GPUs [6].

Because more than tens of thousands of threads run on GPUs, we cannot simply follow the
old path of parallel GAs on CPU. Several issues need to be carefully examined according
to the architectural feature of GPUs, such as how to arrange data access to maximize GPU
memory bandwidth and how to organize threads to expose sufficient parallelism to GPUs in
order to harness the power of GPUs [7].

This section first introduces briefly the basic concept of CUDA platform and then focuses
on the issues of data layout, execution configuration, and memory access, which are the key
enablers for parallel computing on GPU.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing74

3.1. The CUDA platform

CUDA is a parallel computing platform and programming model developed by NVIDIA for
general-purpose parallel computing on GPUs [8]. With CUDA, compute-intensive applica-
tions can be dramatically speeded up by harnessing the power of GPUs. CUDA is also a
scalable programming model that enables programs to transparently scale their parallelism
to GPUs.

In CPU-GPU heterogeneous system, conceptually, the sequential part of the workload runs
on the CPU, while the compute-intensive portion of the application runs on thousands of
GPU threads in parallel, as shown in Figure 4.

CUDA C is an extension of standard ANSI C with a handful of language extensions to enable
parallel programming with a shallow learning curve for ones familiar with the C program-
ming language. The CUDA Toolkit, provided in CUDA platform, includes GPU-accelerated
libraries, a compiler, development tools, and the CUDA runtime, everything you need to
develop GPU-accelerated applications.

The distinguishing features of CUDA C programming, compared with C programming on
CPU, are that the CUDA platform exposes the memory model and execution model of GPUs
to programmers to enable programmers to have more control over massive threads in order
to optimize GPU implementation. The top three principles of CUDA C program optimization,
listed in order of importance, are the following:

1. Exposing sufficient parallelism

2. Optimizing memory access

3. Optimizing instruction execution

Figure 4. Acceleration on CPU-GPU heterogeneous system.

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

75

These principles are applicable almost to all kinds of computing architectures. The implemen-
tation of GPU kernels is architecture-dependent while applying these principles to harness
the power of GPUs; therefore, it is necessary for a programmer to have some basic knowledge
of the underlying architecture when parallelizing GAs on GPUs.

3.2. Granularity of parallel GAs on GPU

In parallel computing, the granularity of computations of an algorithm is a measure of the
amount of computation which is conducted by that task [9]. Typically, the parallelism of a
program can be classified into two categories: fine-grained and coarse-grained. In a fine-
grained parallel algorithm, a program is broken down to a large number of small tasks, while
in a coarse-grained parallel algorithm, a program is split into several large tasks. Both coarse-
grained parallel GAs and fine-grained parallel GAs have been proposed for CPU architecture,
but these parallel algorithms are too “coarse” to GPU architecture. Therefore, a new definition
of granularity is necessary to describe parallelism for programs on GPU architectures [10].

The granularity for parallel GAs on GPU can be defined by how many GPU threads are work-
ing together to handle one chromosome during genetic operations. Basically, the parallelism
can be classified into two categories:

1. The granularity in the chromosome level

2. The granularity in the gene level

If a solution in GAs’ population is handled by one GPU thread independently, the granularity
of the parallel GAs is in the chromosome level. If a solution is handled by a group of GPU
threads cooperatively, the granularity of the parallel GAs is in the gene level. Another type of
granularity of parallel GAs is a mixed form: some genetic operators in the chromosome level
and some in the gene level. The granularity in the gene level also can be divided into several
types: cooperative threads in block size or in warp size. In the former, a block of threads
handles one solution, while in the latter, a warp of threads handles one solution.

GPUs take a partitioning approach to allocate compute resources among blocks and threads.
The more a kernel requires the resources, the less the parallelism is exposed to GPUs.
Therefore, the compute resource used in a kernel is a vital factor for the performance of a
GPU kernel function, since more resource requirement will limit a kernel to expose sufficient
parallelism to GPU.

Generally speaking, if a kernel of genetic operator is designed in the granularity of chromo-
some level, it will require more shared memory and local registers than a kernel designed in
the granularity of gene level. For a large-scale application, it will become a major issue that
hinders the performance. GPUs execute groups of threads in a unit known as warps in single

instruction, multiple thread (SIMT) fashion; the kernel implemented in a granularity in the gene
level will have more efficient access to global memory.

In most of the early works of parallel GAs on GPUs, the granularity of kernels belongs to the
category of the chromosome level, because it is a nature extension of CPU program to GPU.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing76

It is also an easy way to migrate programs to GPU for the beginners of CUDA C programmers
without knowing much in-depth knowledge of GPU architecture. This naive approach cannot
fully utilize the computing power of GPU to accelerate GAs.

3.3. Data layout on global memory

Memory bandwidth and latency are key considerations in GPU applications. Bandwidth
refers to the amount of data that can be moved to or from a given destination. Latency refers
to the time the operation takes to complete. In designing a GPU kernel, we are primarily con-
cerned about the global memory bandwidth. Most GPU kernels’ performance is likely limited
by memory accesses. To maximize global memory bandwidth, a vital step in kernel design is
to make the kernel access global memory aligned and coalesced. How data are organized in
the global memory will affect the way kernels access memory.

The population of GAs can be viewed logically as a 2D matrix with two dimensions: the index
of chromosomes in the whole population and the index of gene within each chromosome.
Physically GPUs store all data linearly in global memory. Therefore, there are two basic ways
to layout the population in global memory:

1. The chromosome-based layout

2. The genotype-based layout

Let pop _ size denote the population size and nvar the total number of genes in one chromosome,
the chromosome-based layout is shown in Figure 5, and the genotype-based layout is shown
in Figure 6.

In the chromosome-based layout, the fast dimension is the index of gene, that is, one chromo-
some is allocated in a contiguous memory space. A kernel designed with the granularity of
gene level can take the benefit of the coalesced access of global memory. In the genotype-
based layout, the fast dimension is the index of chromosome in the population, and all i th

genes of all chromosomes are allocated to a contiguous range. Therefore, the stride between
two consecutive genes in one chromosome is the number of pop _ size . A kernel designed with
the granularity of chromosome level may take the benefit of coalesced memory access.
But this layout will be not good for genetic operations, such as evaluation and migration
operation.

The discussion above is for the real-coded or integer-coded GAs. Conceptually, the data
layout for the binary GA belongs to the chromosome-based layout. There are two kinds of
implementation for the binary GAs:

1. Byte-wise binary method

2. Bitwise binary method

In the byte-wise encoding, 8 bits is used to represent 0 or 1, while in the bitwise method, only
1 bit is used to represent 0 or 1. A nature way to implement the binary GA is to pack multiple

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

77

bits into a non-Boolean data type, typically packing 32 bits into one unit for processing [11].
This bitwise approach can save global memory usage and also accelerate computation due to
the less memory access.

Figure 5. 2D view of the chromosome-based layout in global memory.

Figure 6. 2D view of the genotype-based layout in global memory.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing78

3.4. Kernel execution configuration

The main difference between GPU and CPU programming is the level of programmer expo-
sure to architectural features [7]. CUDA exposes the concepts of memory and thread hierarchy
to grant the ability to control thread execution to a greater degree. GPU thread execution can
be organized in a hierarchy structure: grid and block; therefore, programmers can configure
the execution of a kernel function by specifying:

1. The number of threads per block and the dimension of the block

2. The number of thread blocks of a grid and the dimension of the grid

Grids and blocks represent a logical view of the thread hierarchy when executing a kernel
function. Both block and grid can be arranged as 1D, 2D, and 3D layouts. How to configure
a kernel execution heavily depends on the layout of data in the global memory in order to
expose sufficient parallelism to GPU to saturate both instruction bandwidth and memory
bandwidth. Exposing sufficient parallelism is the number one principle to optimize kernels,
and grid and block heuristics play a vital role in kernel performance optimization.

3.5. Shared memory: the programmable cache

Shared memory can be viewed as a programmable cache and is a key enabler for kernel per-
formance. By utilizing the shared memory, threads within the same block can easily cooper-
ate with each other, facilitating the reuse of on-chip data and reducing greatly global memory
traffic by caching data on-chip manually.

A programmer has the complete control over when data is moved into the shared memory
and when data is evicted. CUDA makes it easier for you to optimize your application code by
providing more fine control over data placement and on-chip data movement.

Sometimes, the non-coalesced accesses may not be easily avoided due to the nature of an
algorithm. Shared memory provides a means to avoid non-coalesced memory accesses by
staging data movement through the shared memory.

4. Parallel GAs on GPU

In this section, a concise review on selective works of parallel GAs on GPU is presented from
the perspective of GPU computing. Several examples of combinatorial optimization problems
are used to demonstrate on how to implement the master-slave model, island model, and
cellular model on GPUs.

Although most published works are conducted on an early generation of GPU architecture,
the basic idea on how to design parallel GAs on GPU is on the right track, and efficient imple-
mentations for different models share the common principles to optimize GPU performance,
which is the focus of the chapter.

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

79

4.1. The master-slave model on GPU

The model of master-slave describes the relationship among multiple concurrent processes:
one master process and many slave processes. The master process has the control over all
other slave processes, distributing tasks among them and synchronizing them to work
together. Each slave process does its own assigned task.

The earliest attempt at parallelizing GA on CPU is to let all slave processes calculate fitness
values, the most time-consuming part of GA computation, while the master processes all
other tasks. Lately, more tasks are moved into slave processes to accelerate the computation,
as shown in Figure 7.

Because the relationship between GPU and CPU is the typical pattern of slave to master in
nature, it is straightforward to implement the master-slave model on a GPU-CPU heteroge-
neous system. Earlier works take a very simple way to implement the model: GPU calculates
the evaluation of the population only, while CPU does all other jobs, because evaluation takes
major time comparing with other genetic operators. It is not an efficient implementation
because it needs frequent data transfer between CPU and GPU at each generation of GAs,
and the data movement between CPU and GPU dominates the execution time. Because most
workloads are on CPU, it still is a bottleneck of performance, while GPU stays idle most time.
Later works try to move more genetic operators onto GPU to speed up parallel implementa-
tions on GPU.

4.1.1. Binary GA for one max problem

One-Max problem is a toy problem in GA community just as the “Hello World” for C pro-
grammer. The problem is to produce a string of all 1 s, starting from a set of random binary
strings. It has been widely used to test GA programs since it can well illustrate the potential
of genetic algorithms.

Figure 7. The master-slave model.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing80

Debattisti et al. implemented a master-slave model of a fixed-length binary GA on GPU to
solve the problem [12]. A byte-wise method is used to encode a solution: one byte is used to
represent one bit of the genome, and a set of the unsigned char type data is used to encode a
solution, that is, a string of binary value of 0 or 1. As mentioned in the last section, the bitwise
encoding method is a better way to implement a binary GA on GPUs. Bitwise operations are
available since CUDA 10.1 [13].

Except for initialization of the population, all other genetic operations, such as selection,
crossover, mutation, and evaluation, are implemented on GPU. The crossover kernel imple-
ments the two-cut point method. Each thread block is responsible for dealing with two
individuals to produce offspring, and each thread is responsible for handling 4 bytes each
time. The mutation kernel implements the bitwise exclusive OR operations. Each thread
block is responsible for dealing with one individual, and each thread is responsible for
handling 4 bytes. All kernels are launched with 1D grid and 1D block configuration. Since
multiple threads cooperatively deal with one individual, the granularity belongs to the
gene level.

4.1.2. Real-coded GA for unconstrained optimization problems

Unconstrained optimization problems seek to maximize or minimize an objective function
that depends on real variables without restrictions on these variables. For complex cases with
many local optima, it highly depends on the initial point for conventional procedures to find
the global optimum. Since GA is a population-based global search method, GAs can easily
escape from local optimum during search process. That is why the unconstrained optimiza-
tion problems are well tested in the GA community.

There are two typical ways to encode population of GAs: the binary-coded method and the
real-coded method. For optimization problems, the real-coded approach outperforms the
binary-coded approach [14].

Arora et al. implemented a master-slave model of the real-coded GAs on GPU to solve the
unconstrained optimization problems [15]. The genotype-based layout is used to store the
population in global memory, as shown in Figure 6.

The crossover kernel implements the simulated binary crossover (SBX) method, executing
in the configuration of 1D block and 2D grid. Conceptually, each GPU thread works on a
variable (or a gene) of two mates. Because thread blocks work independently with each other
and one chromosome is operated by several different blocks, it will cause an issue that one
chromosome may be selected to reproduce offspring many times.

The mutation kernel implements the one-variable change method using the execution con-
figure of 1D block and 2D grid. Since one chromosome may be operated by multiple blocks
independently, it has the same issue as what the crossover kernel has: one chromosome
may be selected to reproduce offspring many times. The granularity of the implementation
belongs to the gene level since multiple threads cooperatively deal with one or two individu-
als. Ellipsoidal function and Rosenbrock function are tested, which are well-used functions
in GA literature.

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

81

4.2. Island model on GPU

In the island model, the population is divided into several subpopulations. By introducing
geographical distribution of the whole population, the genetic diversity is hopefully pre-
served during the evolutionary process of different subsets. Each subset of population is
an isolated breeding environment to evolve species locally. A new operator is introduced:
the migration operator exchanges small portion of individuals among subsets to bring new
genetic traits into each subset.

The island model is characterized by several factors: the number of islands, the topology of
the migration, the interval of the migration, and the policy for selection and replacement dur-
ing migration. The common migration topologies are given in Figure 8.

4.2.1. Binary GA for 0/1 knapsack problem

The 0-1 knapsack problem is a famous problem in combinatorial optimization: given sets
of items, each with a weight and a value. The problem is which items should be put into a
knapsack in order to maximize the total value without exceeding the capacity of the bag.
Knapsack problems have been studied intensively, attracting both theorists and practitioners.
The theoretical interest arises mainly from its simple structure, which allows exploitation of a
number of combinatorial properties and permits more complex optimization problems to be
solved through a series of knapsack-type subproblems. From a practical point of view, many
industrial situations can be modeled as a knapsack problem. Since it is a well-known NP-hard
problem, it has been well studied in GA community to test different implementations of GAs.

Jaros described implemented an island model of binary GA on multi-GPUs to solve the 0-1
knapsack problem [17]. The binary-coded method is used, since it is a nature representation
for 0-1 binary knapsack problem. Each of the 32 items is packed into an integer data type;
therefore, it is a kind of bitwise representation. The population is organized as a structure
of arrays: the first array contains all chromosomes, and the second array contains the fit-
ness values associated with each chromosome. The whole population is evenly distributed
among multiple GPUs, and one GPU simulates one island to evolve a local population by
using a steady-state method with elitism, the uniform crossover, the bit flip mutation, the
tournament selection, and replacement. The unidirectional ring (1-way ring) is adopted as the
migration topology where only adjacent nodes can exchange individuals. Migration among
islands occurs after certain generations by exchanging the best individual and a number of
randomly selected individuals. The tournament selection is used to pick emigrants. All the
data exchanges among GPUs were implemented by means of MPI [18].

The chromosome-based layout is adopted to store the data in the global memory. The execu-
tion of all kernels is configured as 2D block and 2D grid. In the block layout, the fast dimen-
sion corresponds to the genes within a chromosome, while the slow dimension corresponds
to different chromosomes, as shown in Figure 9.

The size of the fast dimension of 2D grid is fixed to 1, and the size of the slow dimension is
set to the size of offspring divided by twice the slow dimension of 2D block, because two
offspring were produced at once. Since each individual is processed by a warp, therefore, it
belongs to the category of the granularity in the gene level.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing82

A knapsack instance with 10,000 items is used as a test case to simulate the real-world prob-
lem with a reasonable large data set. The tests are conducted on a two-node cluster, each
equipped with seven GPUs, connected with InfiniBand.

4.2.2. Real-coded GA for unconstrained optimization problems

Luong et al. implemented an island model of real-coded GA for the unconstrained opti-
mization problems [19]. The basic idea of their implementation is that each thread block
is treated as an island, and each chromosome is handled by one thread for all operations
of selection, crossover, mutation, and evaluation. Therefore, its granularity belongs to the
chromosome level.

How data is organized in global memory was not described in the paper. If data is organized
in the genotype-based layout, all kernels may take the merits of the coalesced memory access;
if data is organized in the chromosome-based layout, all kernels will violate the principle of
the coalesced memory access.

Figure 8. Common migration topologies (from [16]). (a) Chain, (b) I-way ring, (c) Ring, (d) +1+2 ring, (e) +1+2+3 ring, (f)
Tours, (g) Cartwheel, (h) Lattice, (i) Hypercube, (j) Broadcast, (k) Fully-connected, and (l) Barabasi-Albert (3.2).

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

83

The shared memory is used to staging data during the computation: all local subpopulations
of each island stay in the shared memory. One major limitation of this way is the size of the
memory, which makes only the cases with a very small population possible.

4.3. Cellular model on GPU

The cellular model imposes a geographic restriction on genetic search: individuals can only
mate with its neighbors. The whole population is constricted with a spatial structure, defined
as a connected graph. The common topology of the structure is a 2D toroidal mesh as shown
in Figure 10, which limits the interactions between individuals. The use of cellular structure in
populations helps for a better exploration over the search space with respect to the equivalent
one with panmictic and decentralized populations.

The neighborhood of a given point in the mesh is defined in terms of Manhattan distance
from it to its neighbor points. The two commonly used neighborhoods are L5, also called Von
Neumann, and C9, also known as Moore neighborhood (Here, L stands for linear, while C
stands for compact), as shown in Figure 10.

The neighborhood of all points is defined with the identical shapes. The neighborhood of each
point of the mesh overlaps the neighborhoods of nearby points. The overlapping provides an

Figure 9. The configuration of kernel execution (from [17]).

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing84

implicit mechanism of migration to the cellular model: the genetic traits can spread smoothly
through the overlapping neighborhoods. The mechanism helps the preservation of genetic
diversity in the population longer than in a non-structured population and, therefore, pro-
vides a good trade-off between exploration and exploitation during the evolutionary process.
The trade-off could be tuned by modifying the size of the neighborhood.

4.3.1. Integer-coded GA for quadratic assignment problem

The quadratic assignment problem is one of the fundamental combinatorial optimization
problems in operations research. Conceptually, the problem is trying to find the optimal
assignment of n facilities to n locations, knowing the distances between facilities and the flow
between locations. Many combinatorial optimization problems can be written in this form. It
has been a subject of extensive research in combinatorial optimization because of its importance
in theoretical and practical domain. The problem is NP-hard, so there is no known algorithm
for solving this problem in the polynomial time. Therefore, it becomes a target for GA com-
munity to show its stochastic and global search power for the complex optimization problems.

Cárdenas et al. implemented a cellular model of the integer-coded GAs for solving this prob-
lem [20]. Four types of neighborhoods, L5, C9, D17, and C25 (where L is linear, D is diamond,
and C is compact), are mentioned, as shown in Figure 11.

All kernels are executed in a way that each GPU block corresponds to a chromosome and each
GPU thread corresponds to a gene of the chromosome. Therefore, its granularity belongs to
the gene level.

The crossover kernel implements the modified order crossover (MOX) method [21]. The first
parent to MOX operator is decided by the block index, and the second parent is selected
according to C9 neighborhood. The mutation kernel implements the random exchange
method: selects two genes (two GPU threads) and exchanges their values.

Figure 10. The toroidal mesh and neighborhoods.

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

85

Additional two nonstandard genetic operators are proposed: the transposition kernel and
2-opt kernel. In the transposition kernel, a portion of genes between two points is randomly
generated in a chromosome and then reversed to obtain a new offspring. The 2-opt kernel mim-
ics the 2-opt heuristic, a simple local search method to produce one offspring, both operators
much like the mutation operator. It is a common practice to incorporate a kind of local search
into genetic search to empower GAs when solving combinatorial optimization problems.

4.3.2. Integer-coded GA for independent task scheduling problem

Independent task scheduling problem is a kind of machine scheduling problem: assigning a
set of independent computational tasks onto the different processors in a heterogeneous clus-
ter. Finding a schedule that minimizes makespan to the problem is known to be NP-complete.
The background of the problem is how to assign independent tasks onto the different proces-
sors in a cluster; therefore, time constraint is vital to this problem; usually, a limited amount
of time is available for calculating the task schedule.

Pinel et al. implemented a cellular model of the integer-coded GA to solve the problem [22].
The population is arranged into a 2D toroidal mesh. The solution to GAs is encoded as a string
of integer: the index of the string corresponds to a task, and the integer for a given index in
the string corresponds to the machine to which this task is assigned. Uniform proportional
recombination (UPR) is implemented as the crossover kernel, as shown in Figure 12.

The circled task in the middle string is the task being updated. Its neighborhood is defined by
L5, the tasks in above, below, right, and left strings. The offspring is generated by the winner
among the possible solutions according to its neighborhood. Two different criteria are defined
for choosing the winner. The crossover operator is implemented with two kernels: one kernel
is used to compute the probability for each solution in the neighborhood, and the other kernel
is used to update tasks to generate offspring.

The crossover operator runs in a way that one thread handles with one task of a solution.
Therefore, its granularity belongs to gene level. The other genetic operators of mutation,
fitness, and replacement kernels, are launched in a way of one thread per solution, which
belongs to the chromosome level.

Several instances are tested ranging from 512 tasks over 16 machines to 65,536 tasks over 2048
machines.

Figure 11. Neighborhood topologies.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing86

5. A case study: multi-objective GAs for railway scheduling

The railway scheduling problem consists of building the timetable of trains, moving on a
railway network under certain constraints. Nitisiri et al. reported their works of parallel and
multi-objective GA implementation on GPU to generate train schedule for the Bangkok mass
transit system (BTS) [23].

Bangkok BTS is a double-track railway system, and each track is operated in a single direc-
tion, as shown in Figure 13.

The BTS Silom Line consists of 13 stations, starting at National Stadium (W1) in central
Bangkok and traveling southward to the last station S12 at Bang Wa station with the total
length of 13 kilometers. The average number of passengers during the peak time in 2015 is
above 2000 peoples. The BTS system operates daily from 05:00 am to 24:00 pm. The regular
timetable is shown in Figure 14; the headways during normal operation are 15 mins. The total
number of operating cycle is 91 cycles.

The train scheduling problem can be mathematically formulated as multi-objective integer
programming problem with complex constraints. Two objectives are involved in this schedul-
ing: (1) minimize average waiting time for the passenger, and (2) minimize a total number of
the operating cycles during the operating period. These objectives are in conflict with each
other: the more trains operating during the day, the less waiting time for the passenger but
increasing the operational cost for the company.

A schedule is encoded as a C × 2S-length matrix G, where C is the number of train operating

cycles and S is the number of the stations, as shown in Figure 15.

A master-slave model is implemented on GPU for multi-objective GA with hybrid sampling
strategy and learning-based mutation to solve the railway train scheduling problem. Data
layout in the global memory belongs to the chromosome-based layout. Two-point cut cross-
over and learning-based mutation are used to perform genetic search. For evaluating each
individual with respect to two objectives, a method called Pareto dominating and dominated

Figure 12. Illustration of crossover operator (from [22]).

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

87

Figure 14. Regular timetabling scheme for Bangkok BTS transit line.

Figure 15. Genetic representation of a schedule.

Figure 13. The Bangkok BTS transit line.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing88

relationship-based fitness function (PDDR-FF) is implemented as the evaluation kernel, which
prefers the solutions in the edge area of the Pareto front [24]. A hybrid sampling strategy is
adopted to select next generation, which has a tendency to converge toward the central area
of the Pareto front [25].

Kernels are launched with 2D grid and 3D blocks and one GPU thread healing with one
chromosome; therefore, its granularity belongs to the type of the chromosome level.

6. Discussion

Most published works on parallel GAs on GPU are conducted before 2013 on the earlier
generations of GPU architecture. Since 2008, six generations of Tesla architectures for high-
performance computation are released: Tesla, Fermi, Kepler, Maxwell, Pascal, and Volta. The
average life span of one generation is about 2 years. The latest versions of GPU are Tesla V100
and Tesla P100, delivering a unified platform for accelerating both HPC and AI works.

Most published works tackle relatively small-scale problems. In handling large-scale problems,
an efficient implementation of parallel GAs on multiple GPUs becomes imperative. A promis-
ing approach to do this is the hybrid model of island and cellular model on modern GPUs.

The earliest effort to combine these two models is given by Gruau in 1194, implemented
in CPU to evolve and train a neural network [26]. Dorronsoro et al. reported their research
works to use the hybrid model to solve a very large scale of vehicle routing problem in 2007,
executed on a grid composed of 125 heterogeneous CPU nodes [27].

It is worthy to make further investigation on this hybrid model over multiple GPUs: imple-
ment a cellular mode in each GPU and treat each GPU as an island, as shown in Figure 16,
where a 2D torus migration topology is defined among GPUs.

The hybrid model possesses both merits of island and cellular model: keeping the genetic
diversity of population among islands and empowering local search ability on a structured
population within each island. Implementing parallel GAs on multiple GPUs enables us to
tackle larger-scale problems.

One of the promising areas to apply this hybrid model is to evolve better deep neural net-
work. The notorious issue with deep net is what is called hyper-parameters, the very values
of the deep net that cannot be learned and must be predetermined subjectively. Ever since
the late 1990s, researchers have tried to evolve the best structure for network with GAs to
solve the hyper-parameter issue [28]. There is a special term for this research that combines
two powerful AI algorithms of genetic algorithms and neural networks: neuroevolution.
Since 2016, the idea of architecture search through neuroevolution is attracting a number of
researchers. Gaier and Ha reported their interesting results on using evolutionary algorithms
to find minimal neural network architectures that can perform several reinforcement learning
tasks without weight training [29]. For a large-scale application, weight training will be a
painful and time-consuming process for most deep learning network methods.

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

89

7. Conclusion

This chapter provides a concise yet comprehensive overview of selective works of parallel
GAs on GPU from the perspective of GPU computing architecture.

Nowadays, the CPU-GPU heterogeneous architecture has become the mainstream comput-
ing platform that accelerates applications, which has led to a fundamental paradigm shift in
parallel programming. The difference between the parallel GAs on CPU and the parallel GAs
on GPU is clearly distinguished in the chapter. Conceptually, a parallel GA on CPU runs
multiple instances of a sequential GA over several processors, while a parallel GA on GPU
organizes massive threads of hundreds of thousands to work truly in parallel to exert the
power of GPU computing.

Early tries to accelerate GAs with GPU computing takes a naive approach: let each GPU
thread run a sequential GA, which is not the way we should take to design a parallel program
over such massive threads of GPU computing architecture. In the chapter, the parallel model,

Figure 16. An example of a hybrid model over multiple GPUs: each GPU is an island, a cellular model is implemented
within each GPU, and a 2D torus migration topology is defined among GPUs.

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing90

the design approaches, and implementation strategies of parallel GAs are examined from the
perspective of GPU computing architecture. Although designing a parallel GAs on GPU is
both problem-dependent and architecture-dependent, the efficient implementations of paral-
lel GAs on GPUs share the common principles of kernel optimization: (1) exposing sufficient
parallelism, (2) optimizing memory access, and (3) optimizing instruction execution. CUDA
platform exposes GPU architectural features directly to programmers that enables us having
more control over the massively GPU threads in order to fully exploit the computing power
of GPUs.

Most research works on parallel GAs on GPU are published around 2013 on the earlier gen-
erations of GPU architecture. Since then, several generations of Tesla architectures for high-
performance computation are released. The latest versions are Tesla V100 and P100. It would
be a very promising research area to probe all these parallel models on the latest generations
of GPU architectures to find out how can we accelerate parallel GAs on them.

The research on hybridizing island and cellular model on GPU clusters would be a very
promising area that enables us to tackle hyper-scale computing applications. The hybrid
model have both merits of island and cellular models: keeping the diversity of solutions
among islands and empowering the ability of local search onto the global and stochastic
search within each island. It is worthy to try this model for neuroevolution in deep learning
applications. Now neuroevolution is making a comeback, and GPU-accelerated parallel GAs
will make this happen certainly.

Author details

John Runwei Cheng1* and Mitsuo Gen2

*Address all correspondence to: runweicheng@gmail.com

1 Broad Geophysical Technology, Inc., Houston, TX, United States

2 Research Institute of Science and Technology, Tokyo University of Science and Fuzzy
Logic Systems Institute, Japan

References

[1] Gen M, Cheng R. Genetic Algorithms and Engineering Design. New York: John Wiley
& Sons; 1997. p. 427

[2] Gen M, Cheng R. Genetic Algorithms and Engineering Optimization. New York: John
Wiley & Sons; 2000. p. 511

[3] Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning.
Reading: Addison-Wesley; 1989. p. 432

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

91

[4] Gen M, Cheng R, Lin L. Network Models and Optimization: Multi-Objective Genetic
Algorithms Approach. New York: Springer; 2008. p. 692

[5] Luque G, Alba E. Parallel Genetic Algorithms: Theory and Real-World Applications.
Berlin: Springer; 2011. p. 95

[6] Zheng L, Lu Y, Ding M, Shen Y, Guo M, Guo S. Architecture-based performance evalu-
ation of genetic algorithms on multi/many-core systems. In: Proceedings of 14th IEEE
International Conference on Computational Science and Engineering (CSE 2011). 24-26
August 2011. Dalian, China: IEEE Computer Society; 2011. pp. 321-334

[7] Cheng J, Grossman M, McKercher T. Professional CUDA C Programming. New Jersey:
John Wiley & Sons; 2014. p. 497

[8] CUDA Zone. Available from: http://developer.nvidia.com/cuda-zone [Accessed on:
18-06-2019]

[9] Hwang K. Advanced Computer Architecture: Parallelism, Scalability, Programmability.
New York: McGraw-Hill Higher Education; 1992. p. 771

[10] Cheng JR, Gen M. Accelerating genetic algorithms with GPU computing: A selective
overview. Computers and Industrial Engineering. 2019;128:514-525. DOI: 10.1016/j.
cie.2018.12.067

[11] Pedemonte M, Alba E, Luna F. Bitwise operations for GPU implementation of genetic
algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO-2011). Ireland: Dublin; 2011. pp. 439-446

[12] Debattisti S, Marlat N, Mussi L, Cagnoni S. Implementation of a simple genetic algo-
rithm within the CUDA architecture. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO-2009). Montreal, Canada; 2009

[13] CUDA Toolkit Documentation v10.1.168. Available from: https://docs.nvidia.com/cuda/
index.html [Accessed on: 20-06-2019]

[14] Michalewicz Z. Genetic Algorithm + Data Structure=Evolution Programs. 3rd rev ed.
New York: Springer; 1996. p. 387

[15] Arora R, Tulshyan R, Deb K. Parallelization of binary and real-coded genetic algorithms
on GPU using CUDA. In: Proceedings of IEEE Congress on Evolutionary Computation
(CEC 2010). Spain: Barcelona; 2010. pp. 1-8

[16] Izzo D, Ruciński M, Biscani F. The generalized Island model. In: de Vega FF et al., edi-
tors. Parallel Architectures & Bioinspired Algorithms. Berlin: Springer-Verlag; 2012.
pp. 151-169

[17] Jaros J. Multi-GPU Island-based genetic algorithm for solving the knapsack problem. In:
IEEE Congress on Computational Computation (CEC 2012). Brisbane, Australia; 2012.
pp. 1-8

Industry 4.0 - Impact on Intelligent Logistics and Manufacturing92

[18] OpenMPI. Open source high performance computing. Available from: http://www.
open-mpi.org/ [Accessed on: 18-06-2019]

[19] Luong TV, Melab N, Talbi E. GPU-Based Island model for evolutionary algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2010).
Portland, Oregon; 2010. pp. 7-11

[20] Cárdenas GE, Poveda Ch R, García HO. A solution for the quadratic assignment problem
(QAP) through a parallel genetic algorithm based grid on GPU. Applied Mathematical
Sciences. 2017;11(57):2843-2854

[21] Wroblewski J. Theoretical foundations of order-based genetic algorithms. Fundamenta
Informaticae. 1996;28(3-4):423-430

[22] Pinel F, Dorronsor B, Bouvry P. Solving very large instances of the scheduling of inde-
pendent tasks problem on the GPU. Journal of Parallel and Distributed Computing.
2013;73(1):101-110

[23] Nitisiri K, Gen M, Ohwada H. A parallel multi-objective genetic algorithm with learn-
ing based mutation for railway scheduling. Computers and Industrial Engineering.
2019;130:381-394. DOI: 10.1016/j.cie.2019.02.035

[24] Gen M, Cheng JR, Nitisiri K. Advances in hybrid genetic algorithms with learning and
GPU for scheduling problems. In: The International Conference for High Performance
Computing (SC19). Denver, Colorado; 2019. pp. 17-22

[25] Gen M, Lin L. Genetic algorithms. In: Wah B, editor. Wiley Encyclopedia of Computer
Science and Engineering. Hoboken, N.J.: John Wiley & Sons; 2009. pp. 1367-1381

[26] Gruau F. Neural network synthesis using cellular encoding and the genetic algorithm
[Unpublished doctoral dissertation]. L’Universite Claude Bernard-Lyon I. 1994

[27] Dorronsoro B, Arias D, Luna F, Nebro A, Alba E. A grid-based hybrid cellular genetic
algorithm for very large scale instances of the CVRP. In: High Performance Computing
& Simulation Conference (HPCS 2007). 2007. pp. 759-765

[28] Yao X. Evolving artificial neural networks. Proceedings of the IEEE. 1999;87(9):1423-1447

[29] Gaier A, Ha D. Weight agnostic neural networks. Available from: https://arxiv.org/abs/
1906.04358

Parallel Genetic Algorithms with GPU Computing
http://dx.doi.org/10.5772/intechopen.89152

93

	Chapter 6
Parallel Genetic Algorithms with GPU Computing

