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Abstract

Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive
all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the
PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream
of search results aligned to their query within a few seconds. This instant feedback cycle enables a new ‘‘designability’’-
inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments
from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions,
and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.
degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license),
https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-
search (search engine server, GPLv2 license).
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Introduction

Protein structural bioinformatics rapidly approaches a big data

crisis as the last decade has witnessed a dramatic increase in

protein structure depositions. In 1993 researchers had just over

28,000 searchable structures at their disposal in the Protein Data

Bank (PDB), while today we have over 101,000. This rapid

structural expansion could inform protein design, structure

determination, and structure prediction by providing numerous

examples of native-like structural interactions in exquisite detail,

but researchers lack high-powered computational tools to intelli-

gently search and explore large structural data sets in detail.

One of the first popular protein structural search tools developed

for this purpose was Dali by Holm and Sander [1]. Dali uses

distance maps formed by calculating pairwise a-carbon distances to

form a two-dimensional representation of a three-dimensional

protein. Regions of similarity between two distance maps

correspond to similar substructures in their respective proteins.

Holm and Sander used Dali to create the Families of Structurally

Similar Proteins (FSSP) database [2], which aligns substructures

across entries in the Protein Data Bank (PDB) to form families and

subfamilies of common folds. Researchers commonly use Dali to

compare protein folds and infer homology [3–5] and similar

algorithms specialized to structural comparison and similarity

detection include combinatorial extension (CE) [6], sequential

structure alignment program (SSAP) [7], and TM-align [8].

The more recent MaDCaT search program [9] also uses a-

carbon distance maps to search for similar protein backbone

arrangements. However, where Dali uses a heuristic approach to

detect structural similarity, MaDCaT takes a query backbone

structure or motif and finds globally optimal structural matches

within an entire structural database. This approach makes

MaDCaT ideal for finding the best matches to frequently

occurring motifs. These ‘‘designable’’ motifs promise to be

excellent design scaffolds, and MaDCaT applied this approach

to design a viral-like protein coat for carbon nanotubes from

designable interactions [10].

Both Dali and MaDCaT return results after several minutes of

searching. For greater speed, Shyu et. al. developed ProteinDBS

[11] in order to provide the first real-time protein backbone

search. They use image processing techniques to extract a set of

features from a-carbon distance maps and organize their structural

database into a tree, allowing quick traversal and parallelism

during searches. These optimizations allow them to return search

results nearly instantly, but they limit themselves to searching for

backbone a-carbons.

We required an all-atom search engine to guide the protein

design process, so that we could search for proteins with similar

active sites or binding motifs, explore protein scaffolds that can

host a specific motif, and discover atomic-scale supporting

interactions.

The state of the art for all-atom search is Erebus [12], which

permits all-atom rigid substructure searches and has been used to

identify ligand interaction motifs for drugs and metal ions.

However, Erebus is not ideal for design purposes where an
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interactive search process is desired. Several bottle-necks in the

Erebus search workflow impede a fluid design process, including

time-consuming assembly of search queries, long search delays,

and a non-programmatic web interface for retrieving results.

A truly interactive search tool must remove every single one of

these bottlenecks to bring the feedback loop down from minutes to

seconds and permit users to rapidly explore multiple design

alternatives iteratively in atomic detail. Improved speed and faster

feedback lets researchers ask more sophisticated questions, explore

structures more intelligently, and use limited collaboration time

more efficiently.

The Suns protein search engine makes it easy to search and

browse a database of protein structures at the atomic level. To our

knowledge, Suns is the first real-time all-atom structural search

engine and is also the first to integrate seamlessly into the popular

molecular visualization program PyMOL [13], so that researchers

can easily click on motifs of interest, click search, and view aligned

results within a fraction of a second. We expect Suns to inform and

guide protein design, modeling, and structure determination by

lowering the entry barrier to structural search so that it becomes a

staple of every structural biologist’s toolbox rather than a tool

limited to programmers.

Design and Implementation

Overview
Protein substructure search is a special case of sub-graph

isomorphism, which is NP-complete in the general case [14].

Therefore, substructure search tools will usually reduce this

combinatorial complexity by either restricting permitted search

queries or taking advantage of properties specific to graphs of

protein atoms.

Our structural search engine greatly resembles a web search

engine, even though these two types of engines index different

types of data: web search engines commonly index linear text

strings whereas our search engine indexes three-dimensional

protein structures. Despite these differences, we still borrow many

principles from web search engines [15] to improve search speed:

1. Divide structures into structural ‘‘pages’’ (3-D volumes)

analogous to web pages

2. Divide these ‘‘pages’’ into structural ‘‘words’’ (chemical motifs)

analogous to textual words

3. Create a forward index that matches sets of structural words to

structural pages

4. Perform slower and more accurate filters after the fast forward

index lookup

5. Return only as many results as requested to avoid unnecessary

computation

The search engine is organized using a client-server architecture

(Figure 1). The search engine and storage are written in Haskell,

taking PDB files to index as input and writing a custom binary

format to disk. We provide two clients, one of which is a PyMOL

search plugin written in Python and the other of which is a

command line program written in Haskell. The search engine

communicates using JSON queries through a custom request/

response format mediated by a RabbitMQ-based message queue.

Forward index
Web search engines derive much of their speed by preprocess-

ing the data set using a forward index that matches words to web

pages [15]. The search engine can then tokenize each query into

words and consult the forward index to rapidly return all pages

that contain every word in the user’s search query. Protein search

engines can copy this trick, but they must first decide what volume

size corresponds to a ‘‘page’’ and what chemical motifs correspond

to ‘‘words’’.

Two opposing considerations constrain the choice of page and

word size. The forward index resolves pages solely by their word

counts, so larger words and smaller pages lead to more unique

word counts per page and improves the selectivity of the forward

index. However, users prefer the exact opposite: smaller words

and larger page sizes increase the power and flexibility of user

search queries. Therefore, optimizing a structural search engine

requires balancing user needs against the efficiency of the forward

index.

We select a compromise suitable for atomic-level search queries:

we restrict structural pages to cubes 15 Å wide and we define

structural words to be connected chemical substructures ranging

from 2 atoms (a hydroxyl) to 9 atoms (an indole ring) (Figure 2).

Our choice of page size assumes that larger structural patterns of

interest can be reduced to a network of bridging local interactions

below the 15 Å length scale. Similarly, our choice of word size

assumes that users will accept a modest restriction on search

queries to groups of chemical motifs instead of groups of atoms.

Like web search engines, we permit searches for multiple

disconnected words, allowing users to assemble complex queries

from these simple chemical building blocks.

Figure 1. Overview of Suns algorithm and architecture. (Inputs)
The search index is built from two inputs: a set of words to recognize
and a set of protein structures to search subdivided into pages. (Index)
The two underlying data structures are a forward index that translates
words to matching pages and a database of every page which
translates matched words to atoms within each page. (Server) Each
request to the server is broken into three steps: consult the forward
index to find potentially matching pages, filter matching pages by
RMSD to the query, and aligning successful matches to the query.
(Queue) A message queue forwards requests from clients to servers,
and forwards responses from servers to clients. (Clients) Suns provides
two client interfaces: a PyMOL search plugin and the suns-cmd

command line interface.
doi:10.1371/journal.pcbi.1003750.g001
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Protein structures are divided into non-overlapping pages,

meaning that search queries will not return results spanning

multiple pages. While this necessarily means that queries will miss

some potential matches, we have found that in practice most

queries still find more matches than requested by the user.

Moreover, by simplifying the database in this way, we avoid

having to add an additional post-processing step to eliminate

duplicate results.

Structural words
We specify structural words using PDB files, which contain the

specific residue and atom types to match. For example, one

structural word consists of a single PDB file containing the Ca-Cb-
Cc that links the phenyl group of phenylalanine to its backbone

atoms. When users search for the three carbon atoms in

phenylalanine’s linker, their searches will not match tyrosine’s

linker, nor will they match three connected ring carbons within a

phenylalanine. This allows the search index to optionally resolve

motifs that are otherwise chemically identical [16]. The index

identifies words solely by their connectivity graph and not their

geometric similarity - thus cis/trans isomers cannot be resolved at

this level of representation.

Structural words may also match more than one protein

element, and in those cases we use multiple PDB files to specify the

structural word: one PDB file per matching chemical motif. For

example, one motif we index is a carboxylate, specified using two

PDB files we created: one for glutamate’s carboxylate and another

for aspartate’s carboxylate. User search queries for carboxylates

will match either of these two groups.

The choice of structural words is customizable and for our

public-facing server we select a default set of 28 substructures

appropriate for general-purpose searches (Table S1). The most

important searchable substructure matches the four backbone

atoms for any protein residue, which permits geometrically precise

backbone searches that specify the positions of all backbone atoms

and their torsion angles. We partition flexible residues such as

lysine and methionine into two separate words, and also isolate

important chemical moieties into their own words, such as

imidazole and guanidinium groups. Some chemical moieties are

shared between residues, such as the hydroxyl group, which

matches serine, threonine, and tyrosine. However, every residue

except glycine possesses at least one unique structural word so that

users can restrict searches to a specific residue.

Database
Our forward index is formally a record level inverted index that

converts sets of words to matching pages. We supplement the

forward index with a custom in-memory database that stores two

pieces of information necessary to complete the search. First, the

database stores correspondences between words in the forward

index and atoms in each structural page. Second, the database also

keeps compact representations of every structural page suitable for

returning as search results

When the forward index produces a matched page, the

database remembers which atoms in that page correspond to the

words advertised in the forward index. Sometimes the page

contains more instances of a given word than the user required,

such as when the user searches for two peptide bonds, and the

page contains five. The page must try out every valid permutation

of words that match the user’s query, and the forward index

minimizes the number of permutations by prioritizing pages that

closely match the minimum required word count.

Alignment and RMSD
Suns uses the Kabsch algorithm [17] to rapidly align each

permutation to the user’s search query. The Kabsch algorithm

requires an exact atom-for-atom correspondence between the

user’s search query and a candidate motif, and Suns compiles this

correspondence from precomputed atomic correspondences for

each stored motif in the custom database. After alignment, the

search engine only returns search results that match the search

query within a specified root-mean-square deviation (RMSD)

cutoff.

For each result below the RMSD cutoff, Suns aligns the

matching page to the search query and returns the page as the

search result. If a page contains multiple matches Suns aligns each

match separately and returns them as separate results. This

superimposes every search result and context on the original query

for ease of visual comparison and downstream post-processing.

Streaming results
The user may dial in the stringency of desired matches by

tuning the RMSD cutoff. The search engine will immediately

stream any result within this cutoff, which allows the user to begin

visualizing results before the search has completed, improving

interactivity.

Additionally, the search protocol requires the user to specify the

number of desired results up front. While the user may request an

unlimited number of results in theory, in practice the search clients

default to 100 search results, similar to how a web search engine

will default to 10 search results. This allows the search engine to

stop processing the request after supplying the specified number of

results, which reduces server load. The search engine may also

optionally specify a search timeout to further reduce server load

for users that request a large number of search results.

Data set
The public search engine uses the most stringent precompiled

dataset from the PISCES [18] non-redundant protein structure

datasets, selecting a 20% sequence identity, 1.6 Å resolution, and

0.25 R-factor cutoff, which currently comprises 2058 chains. The

search engine’s available memory limits how many structures it

can index, and our stress tests on the largest precompiled PISCES

data set (90% identity, 3.0 Å, 1.0 R-factor cutoff, 24,218 chains)

required 89 GB of memory or an average of 1 GB of memory per

272 protein chains.

During informal testing, we found the larger data set was unable

to discover novel motifs absent from the more stringent database.

Consequently, we selected the smaller data set in order to

maximize the diversity of search results (by reducing sequence

identity) and minimize memory consumption. One thing to note is

Figure 2. Subdivision of protein structures. (A) An interior page
highlighted in red from a protein of unknown function (PDB ID =
2FSQ), illustrating the maximum scale of search queries. (B) Example
words (chemical motifs) within the same page highlighted in yellow.
Pages are 15 Å615 Å615 Å cubes.
doi:10.1371/journal.pcbi.1003750.g002
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that as the PISCES dataset is comprised of single chains, our

default database does not index motifs from inter-chain interac-

tions. Therefore, users searching for protein-protein interactions

may wish to customize the search engine to index PDB files

specially curated for interaction motifs.

Results

Building motifs: Incremental salt bridge assembly
Suns lets users explore the ‘‘designable’’ space of protein motifs,

defined as naturally reoccurring substructures, by expanding on

small initial fragments, such as building a helix N-terminal capping

motif beginning from a single guanidinium group. One might

begin by searching on the guanidinium fragment from an arginine,

which recruits a cluster of nearby carboxylates forming a salt

bridge with the arginine (Figure 3A). Adding one of these

carboxylates to the search query refines the motif further,

revealing a preferred rotamer for the arginine when interacting

with a carboxylic acid (Figure 3B), and adding a preferred rotamer

to the search query crystallizes a complete N-terminal capping

motif (Figure 3C).

The large number of close geometric matches to the final

search query suggests that this is a highly ‘‘designable’’ motif.

Incremental searching allows users to rapidly explore and

prototype designable native-like interactions like these with very

little prior knowledge in protein folding or biophysics. Moreover,

a user can discover the motif by gradually refining a specification

rather than specifying all the necessary interactions up front. This

benefits people who may not even know what designable

interactions look like and simply wish to explore what options

they have available. We recorded an example of this iterative

search and discover process as Video S1.

The salt bridge we built this way also matches one of many

newly discovered salt bridges by Donald et. al (Figure 8 of [19]).

However, we identified this without requiring a curated database

of salt bridges and without using a specialized algorithm built to

detect electrostatic pairs. We also obtain detailed information

from the superimposition of results, which allows us to visualize

the structural variability of this salt bridge motif on a per-atom

basis.

Assembling larger fragments: A designable beta sheet
built from 9 isolated residues
Users can build tertiary interactions for proteins as well. To

demonstrate this, we search for a valine from glucose binding

protein and grow that into three small b strands with three

residues per strand.

Beginning from an interior valine from glucose-binding protein,

we seed the two adjacent b strands with highly populated residue

clusters on each side corresponding to a valine and tyrosine

(Figure 4A). To grow the three b strands in both directions, we

search for pairs of residues at a time to identify new clusters of

residues within the search results that we can insert into the sheet

(Figure 4B). The PyMOL search client permits a qualitative

inspection of residue preference at selected positions by cycling

through visualizing each residue type. This process not only

provides a rough measure of residue preference, but also reveals

rotameric preference, the kind of detailed information that a

sequence logo would not reveal.

We repeat this process of iteratively searching for pairs of

residues at a time and incorporating clusters from the search

results until we assemble a native-like fragment of a sheet where

almost every residue originates from a unique protein structure

(two disconnected threonines were inadvertently drawn from the

same structure). This then provides a-carbon coordinates that we

feed into the backbone search engine MaDCaT [10], which finds

suitable scaffolds to incorporate this fragment. One MaDCaT

search result greatly resembles the b sheet built using Suns

(Figure 4C).

Connecting hot spot residues: Recapitulating a
hemagglutinin binding motif
Suns can also be used to find scaffolds compatible with specified

residues to provide an alternative implementation of the hotspot

residue approach to design [20]. The user can select the hotspot of

interest within PyMOL, search, and find several protein structures

in the PDB that position the given hot spot residues in the specified

geometry.

For example, Suns recapitulates the local backbone of a

designed hemagglutinin binder [20]. Figure 5A illustrates how

searching for fragments of the original hotspot residues reveals a

prominent cluster of a helices matching the designed protein

Figure 3. Incremental assembly of a motif. (A) An initial search for
a guanidinium fragment reveals a cluster of nearby carboxylates. (B)
Refining the search with one carboxylate from the results reveals a
specific linker preference for both the aspartate and arginine involved
in the salt bridge. (C) Adding the most common linker for arginine and
repeating the search reveals that this salt bridge is part of an N-terminal
capping motif. Search queries are represented as thick sticks and search
results are shown as thin lines. Grey dashed lines highlight search
queries and black dashed lines highlight clusters in the search results,
which are filtered to show the specific residue fragments of interest and
neighboring water molecules within 3.0 Å as red spheres. Search
parameters and fragments listed in Table S2.
doi:10.1371/journal.pcbi.1003750.g003

Figure 4. Building a tertiary interaction. (A) Three strands are
seeded by searching on a valine, which reveals two nearby clusters of
valine and tyrosine. (B) Strands are extended one residue in each
direction by searching for pairs of residues (colored yellow) in the
context of an insertion site, yielding clusters of potential inserts (colored
green). (C) The final backbone fragment (green) is fed to MadCaT, which
identifies multiple compatible scaffolds. One such scaffold (PDB
ID = 1E54, colored light grey) possesses many exact residue/rotamer
matches to the assembled fragment (blue highlights) and many close
matches (yellow highlights) that differ by a related residue (threonine to
serine or valine to isoleucine) or by varying the rotamer.
doi:10.1371/journal.pcbi.1003750.g004
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structure, indicating that the secondary structure of the interface

could have been predicted solely from designability.

Not every hotspot search will return a single solution for the

backbone. Sometimes searching for disembodied residues will

reveal multiple distinct ways to thread the backbone between them

(Figure 5B).

Metal binding sites: Searching for a subset of the EF-hand
motif
Suns can complete metal binding sites when provided with a

small subset of the original motif. We begin from an EF-hand from

calmodulin (PDB ID = 1CLL) and search for only two aspartate

side-chains from the motif, each of which coordinates the calcium

ion once. Note: this search does not include the metal ion.

Searching for these two aspartate side chains at an RMSD

cutoff of 0.7 Å returns seven search results (Figure 6). Each one of

these results is an EF-hand motif that aligns closely to the original

search query. Even though the search query did not include the

metal ion, every result coordinates a calcium ion at the same

location as calmodulin, with the exception of one result which

coordinates a sodium ion.

Benchmarks: Latency
Suns is optimized to minimize latency to support an interactive

workflow, so we benchmark the turnaround time for queries under

increasingly optimal scenarios. The suns-cmd source code

includes a benchmark suite that tests the speed of searches taken

from the above example sections. We begin by benchmarking

against the public search engine over a network connection, then

benchmark successive improvements to query speed by (A) testing

against a server deployed on the same machine as the client

followed by additionally (B) loosening the RMSD cutoff to 1.0 Å,

our default cutoff. For each of these scenarios, we record the total

time from the start of the query until the final result is returned,

but for an interactive tool like Suns, the amount of time between

the start of the query to the first result is also of great interest, so we

also record (C) the time-to-first-result (Figure 7). The networked

server runs on a single Intel Xeon E5-2420 1.90 GHz core, while

the local server runs on a single Intel i5-3230M 2.60 GHz core.

The slowest queries are performed over the network and use

stringent RMSD cutoffs (,0.6 Å), yet they still produce 100 results

between 1 to 10 seconds. Loosening the RMSD to the default

RMSD cutoff of 1.0 Å and improving the network connection to

the best-case scenario of a local server improves speed approxi-

mately 10-fold, reducing search time to between 100 ms and

1 second. However, Suns often ‘‘feels’’ even faster than that

because of its rapid time-to-first-result (TTFR), which ranges from

10 ms to 100 ms, allowing the user to begin browsing aligned

results immediately while they continue to concurrently stream

into PyMOL.

We do not formally compare Suns latency to Erebus because

Erebus does not yet provide a programmatic interface for result

submission or retrieval and all results must be downloaded

individually by hand. Therefore the overhead of submitting an

Erebus query and retrieving search results is minimally on the

order of several minutes for tens of results, without including

search time. Additionally, Erebus is not optimized for rapid

subsequent searches since Erebus exhaustively scans the entire

PDB for every search.

Benchmarks: Throughput
An accurate comparison between Suns and Erebus is difficult

due to differing design tradeoffs between the two servers. One of

Erebus’s strengths is its comprehensiveness: Erebus searches can

span the entire protein data bank. In contrast, Suns chooses to

search a non-redundant set of structures from the PDB so that the

Figure 5. Finding backbones compatible with hot spot
residues. (A) A Suns search at 0.7 Å RMSD cutoff for two hotspot
residues previously identified by RosettaDock [22] for a hemagglutinin
binder [20]. The majority of search results are helices that closely match
the final designed protein. The search query is shown in thick green
sticks, the search result matches are shown as grey a-carbon traces, and
the designed hemagglutinin binder is shown as a purple a-carbon trace
against a blue hemagglutinin surface. (B) Searching for two threonine
side chains at 0.6 Å RMSD cutoff reveals two backbone clusters that can
connect them, one corresponding to an a helix (green) and the other
corresponding to a b sheet (yellow). Black dashed lines surround the
original search query, which is represented as thick yellow sticks.
doi:10.1371/journal.pcbi.1003750.g005

Figure 6. Searching for calcium binding sites. (A) Two side chains
of the EF-hand of calmodulin suffice to find matching motifs. The search
query (black dashes) consists exclusively of two aspartate side chains
(D20 and D24) and does not include the calcium ligand. (B) Searching
for these two side chains at 0.7 Å resolution returns seven results, all of
which are EF-hand motifs. Six of these motifs coordinate a matching
calcium ion (green sphere), and the seventh motif coordinates a sodium
ion (purple sphere).
doi:10.1371/journal.pcbi.1003750.g006

Figure 7. Latency benchmarks. We benchmark completion times of
searches for: (Remote) low (,0.6 Å) RMSD cutoff queries against our
public server, (Local) low RMSD cutoff queries against a local server, and
(Loose) queries with a default RMSD cutoff (1.0 Å) against a local server.
We also measure the time to first result (TTFR) under the same
conditions as (Loose) queries. Each query corresponds to a specific
search illustrated in the Results section and the query PDB files are
included as part of the benchmark suite of suns-cmd (Software S2).
doi:10.1371/journal.pcbi.1003750.g007

A Structural Search Engine for Proteins

PLOS Computational Biology | www.ploscompbiol.org 5 July 2014 | Volume 10 | Issue 7 | e1003750



entire database can fit in the server’s working memory (currently

96 GB) minimizing performance issues involved in disk I/O.

Therefore, we estimate database throughput for both search

engines by normalizing query times using the size of the data set

that each search engine indexes. For these throughput benchmarks

we test against a locally hosted Suns server which indexes a data

set of approximately 2,000 models, whereas the self-reported

throughput of Erebus [12] is based on a data set of approximately

200,000 models (100-fold larger). Also note that the original

Erebus benchmark uses 16 2.10 GHz cores whereas Suns runs on

a single 2.60 GHz core for this benchmark.

For both Suns and Erebus, the worst-case throughput for the

example search queries is 9–10 structures/second, meaning that

every 10 structures in the database extends the search time by

1 second. However, every other Suns query outperforms Erebus in

throughput by one or two orders of magnitude, and many of them

process over 1000 structures per second and return hundreds of

matches (Figure 8).

Most of these efficiency gains for Suns can be attributed to how

well search queries take advantage of the forward index. The best

performing search #11 includes a methionine, a residue of low

natural abundance, alongside a phenylalanine, so we expect this

search to utilize the forward index well and eliminate most pages

quickly. In contrast, the worst performing search #5 comprises a

highly degenerate query: two backbone motifs. This query

performs poorly because it combines two motifs of extremely high

abundance, forcing Suns to inspect nearly the entire data set in

detail. Normally, high abundance queries also perform well for

Suns because they saturate the requested number of results

rapidly, but this benchmark explicitly instructs Suns to continue to

produce as many results as possible to measure dataset through-

put.

Conclusions
Our primary contribution is an entire graphical design workflow

designed from the ground up to allow rapid and interactive

exploration of large structural design spaces. We accomplish this

by reducing performance and interface bottlenecks in order to

encourage users to issue multiple search queries in rapid

succession. Consequently, people can easily tailor Suns to their

specific needs by composing multiple small searches instead of

constructing a single monolithic search query with a large

configuration space. Additionally, the first-class support for

graphical search and feedback provides greater opportunities to

inject human intelligence into the search process.

We initially built Suns to guide the protein design process, but

we are releasing it as a general-purpose search engine so that

others may reuse it for applications we did not previously

anticipate. Drug discovery researchers may benefit from general-

izing Suns to index ligand substructures to discover favorable

protein-drug interactions. Also, modelers may use Suns as a

generalized PROCHECK [21] to independently validate small

structural regions that are insufficiently constrained by the data.

Compared to the Erebus atomic substructure search engine,

Suns primarily innovates on latency, throughput, search volume,

and interactivity, but at the price of data set coverage and

restricted queries. Suns originated as a rapid prototyping tool and

many of the design tradeoffs reflect an emphasis on performance

rather than completeness. However, Suns may be able to scale to

cover the entire Protein Data Bank by layering an additional

distributed apparatus on top of the search engine. The search

algorithm is ‘‘embarrassingly parallel’’ so memory limitations can

be circumvented by distributing the search workload across several

machines, each of which indexes a subset of the Protein Data Bank

that fits within memory. Additionally, the current page partition-

ing scheme could be modified to include staggered and

overlapping pages to guarantee complete motif coverage.

We place a high importance on ease of integration and

distribution to encourage other projects to build upon and

customize Suns. Suns provides programmatic access through

libraries and command line clients for ease of incorporation into

derived, automated workflows. Suns is also fully open source and

allows users to host their own local search engine to improve

performance or tailor the search engine to their needs. Locally

deployed search engines will particularly benefit commercial

enterprises which cannot afford to transmit sensitive proprietary

data outside of their intranet.

Suns can piece together designable fragments such as beta

sheets that can in turn be fed to coarse-grained search engines such

as ProteinDBS or MaDCaT. Unifying these complementary tools

might allow users to seamlessly transition between diverse length

scales as designed protein fragments grow in size.

Availability and Future Directions

The Suns plugin for PyMOL is available at www.degradolab.

org/suns, which also includes a tutorial on how to install and use

the library (Manual S1). The source code for the client is available

separately at https://github.com/godotgildor/Suns under a BSD

license (Software S1).

Users can also automate searches using a command line tool,

available at https://github.com/Gabriel439/suns-cmd under a

BSD license (Software S2). Users who wish to incorporate Suns

within an automated workflow should use this client instead.

The source code for the search engine is located at https://

github.com/Gabriel439/suns-search under a GPLv2 license

(Software S3). Users should report bugs or request new features

using the issue tracker at https://github.com/Gabriel439/suns-

search/issues or by contacting the Suns mailing list at suns-

search@googlegroups.com.

Currently the public search engine only indexes protein

structures. We also plan to add support for ligand search queries

so that Suns can be used for drug design. While this paper

describes a protein-specific application of the search engine, the

underlying algorithm can be readily generalized to ligands and

other macromolecules.

Figure 8. Throughput benchmarks. We compare throughput of
search queries for both Suns and Erebus, defined as query time divided
by number of models in the data set. Suns throughput is measured
against a locally hosted server and the Erebus throughput data is taken
from [12]. Detailed query information, including the query size in atoms
and the number of matches, is provided in Table S3 and the specific
query PDB files are included in the benchmark suite of suns-cmd

(Software S2).
doi:10.1371/journal.pcbi.1003750.g008
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Supporting Information

Table S1 Default motif set. Default motifs indexed by the

public server hosted at suns.degradolab.org. (Motif Name): The

common name for the motif. (Residue and Atom Names): The

atom names used to define the motif. Some motifs may match

multiple residue types, in which case all matching residues are

listed with their corresponding atom names.

(DOCX)

Table S2 Search parameters for all figures. (Figure): The

figure and sub-figure the selections and searches correspond to.

(Selection/{Search}): No braces indicates a saved selection

referenced by searches. Braces indicate a search based in terms

of previous selections of the form {sel1, sel2, …}. ‘‘sc’’ indicates

only the side-chain was taken from the previously saved selection

and ‘‘bb’’ indicates only the backbone atoms were used.

(Structure): The PDB ID the selection originated from. (Result

ID): The search result serial ID number to disambiguate selections

where there are multiple results from the same PDB ID. (Chain):

Chain the selection originated from. (Residue): Residue selected.

(Atoms): Selected atoms. (RMSD Cutoff): Root-mean-squared

deviation cutoff used for a given search. With the exception of

initial selections for each figure, all selections are derived from

results returned from the preceding search query in the table. {:

Structure provided by the David Baker laboratory for their hot

spot motif for the hemagglutinin binder [20].

(DOCX)

Table S3 Results for throughput benchmarks. (Search)

The matching column from Figure 8. (Figure #) The figure the

search corresponds to. (Search #) The order of searches used to

build the structure depicted in the figure (See Table S2). (# of

atoms) The number of atoms in the search query. (Time) The

elapsed time from query submission to final result retrieval.

(Matches) The number of matched results returned by the search

engine. (Structures/second) The throughput of the search engine,

defined as (Time/Models indexed).

(DOCX)

Manual S1 User instructions. These instructions provide

detailed guidance on how to use all three software packages

(Software S1, S2, S3).

(PDF)

Software S1 PyMOL search plugin. This software package

contains the source code for building the search plugin, released

under a BSD license. This package builds both a plugin suited for

PyMOL’s plugin manager as well as an alternative Debian

package for installation on systems using Debian-like package

managers (such as Ubuntu).

(ZIP)

Software S2 Command line search client. This software

package contains the source code for the command line search

client, released under a BSD license. This package also contains

the original search queries and results used for this manuscript

(Table S2) saved as PyMOL sessions. The test suite for this

package uses the command line client to automate these searches

and verify that they match the original output we obtained. The

benchmark suite for this package automates the benchmarks

provided in this paper. The README.md file contains instructions

for how to install and test the software.

(ZIP)

Software S3 Search engine. This software package contains

the source code for the search engine, released under a GPLv2

license. Installation instructions are contained within the READ-

ME.md file.

(ZIP)

Video S1 Example use of the PyMOL Suns plugin. The

search process mirrors Figure 3, with the exception of the final

search, which is performed at an RMSD cutoff of 0.4 Å. The

process begins by selecting a guanidium group and performing a

search to visualize neighboring motifs, followed by selection of a

nearby carboxylic acid (see: Figure 3A). Repeating the search

reveals several matching salt bridges. Search results are reoriented

to show the distribution of linker preferences for arginine and one

such linker is selected (see: Figure 3B). The final search includes

the linker and the matching results are reoriented to center on

several backbone motifs that complete the salt bridge. The video

has not been sped up, cut, or edited in any way.

(MP4)

Author Contributions

Conceived and designed the experiments: GG BH WFD. Performed the

experiments: GG BH. Analyzed the data: GG BH WFD. Contributed

reagents/materials/analysis tools: GG BH WFD. Wrote the paper: GG

BH WFD.

References

1. Holm L, Sander C (1993) Protein structure comparison by alignment of distance

matrices. J Mol Biol 233: 123–138.

2. Holm L, Sander C (1994) The FSSP database of structurally aligned protein fold

families. Nucleic Acids Res 22: 3600–3609.

3. Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, et al. (1999) X-ray

crystallographic structure of the Norwalk virus capsid. Science 286: 287–290.

4. Doolittle JM, Gomez SM (2011) Mapping protein interactions between Dengue

virus and its human and insect hosts. PLoS Negl Trop Dis 5: e954.

5. Roy S, Aravind P, Madhurantakam C, Ghosh AK, Sankaranarayanan R, et al.

(2009) Crystal structure of a fungal protease inhibitor from Antheraea mylitta.

J Struct Biol 166: 79–87.

6. Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental

combinatorial extension (CE) of the optimal path. Protein engineering 11: 739–

747.

7. Taylor WR, Flores TP, Orengo CA (1994) Multiple protein structure alignment.

Protein Science 3: 1858–1870.

8. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm

based on the TM-score. Nucleic acids research 33: 2302–2309.

9. Zhang J, Grigoryan G (2013) Mining tertiary structural motifs for assessment of

designability. Methods Enzymol 523: 21–40.

10. Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain RM, et al. (2011)

Computational design of virus-like protein assemblies on carbon nanotube

surfaces. Science 332: 1071–1076.

11. Shyu CR, Chi PH, Scott G, Xu D (2004) ProteinDBS: a real-time retrieval

system for protein structure comparison. Nucleic Acids Res 32: W572–575.

12. Shirvanyants D, Alexandrova AN, Dokholyan NV (2011) Rigid substructure

search. Bioinformatics 27: 1327–1329.

13. Schrödinger LLC (2010) The PyMOL Molecular Graphics System. 1.6 ed.

http://www.pymol.org/

14. Cook SA. (1971) The complexity of theorem-proving procedures. ACM. pp.

151–158.

15. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search

engine. Computer networks and ISDN systems 30: 107–117.

16. Chen WW, Shakhnovich EI (2005) Lessons from the design of a novel atomic

potential for protein folding. Protein science 14: 1741–1752.

17. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors.

Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and

General Crystallography 32: 922–923.

18. Wang G, Dunbrack RL, Jr. (2003) PISCES: a protein sequence culling server.

Bioinformatics 19: 1589–1591.

A Structural Search Engine for Proteins

PLOS Computational Biology | www.ploscompbiol.org 7 July 2014 | Volume 10 | Issue 7 | e1003750

http://www.pymol.org/


19. Donald JE, Kulp DW, DeGrado WF (2011) Salt bridges: Geometrically specific,
designable interactions. Proteins: Structure, Function, and Bioinformatics 79:
898–915.

20. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, et al. (2011)
Computational design of proteins targeting the conserved stem region of
influenza hemagglutinin. Science 332: 816–821.

21. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK:
a program to check the stereochemical quality of protein structures. Journal of
applied crystallography 26: 283–291.

22. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, et al. (2003)
Protein–protein docking with simultaneous optimization of rigid-body displace-
ment and side-chain conformations. Journal of molecular biology 331: 281–299.

A Structural Search Engine for Proteins

PLOS Computational Biology | www.ploscompbiol.org 8 July 2014 | Volume 10 | Issue 7 | e1003750


