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Abstract

Bladder cancer is the fourth most common cancer in men, and the lifetime risk of getting 
bladder cancer is 2.4%. Approximately 75% of newly diagnosed cases of bladder cancer 
are non-muscle-invasive bladder cancer (NMIBC), and half of them will show recurrence 
and/or progression after transurethral resection. Therefore, after transurethral resection, 
in high-risk patients, intravesical therapy is mandatory. However, bacillus Calmette-
Guérin (BCG) is associated with important side effects such as systemic tuberculosis 
and bladder retraction. Chemohyperthermia (CHT) has shown a 60% lower recurrence 
rate than standard mitomycin C (MMC). However, its effectiveness in high-risk patients, 
especially CIS and BCG refractory patients, is even more important. CHT will probably 
be an option for patients unsuitable for radical cystectomy or those on whom BCG can’t 
be used. Two main technologies are currently available for intravesical CHT: microwaves 
and recirculating heated fluids. Both of them have pros and cons that should be known 
and evaluated by a urologist. In this chapter, we will speak about rationale, technical 
options, clinical results, ongoing studies, and future perspective for this interesting treat-
ment option for intermediate and high-risk patients with NMIBC.
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1. Background

In 2002, the world-adjusted incidence rate of bladder cancer was 33 new cases/100,000 inhab-

itants/year. That makes it the fourth tumor with the highest incidence in men, after lung, 

prostate, and colorectal cancers [1].
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Each body tumor has unique characteristics in terms of its presentation, histological types, 

surgical approaches, and sensitivity to different types of treatment (surgery, chemotherapy, 
radiotherapy).

Approximately, 95% of bladder neoplasms are urothelial carcinomas, and 75% of them will be 

diagnosed as non-muscle-invasive tumors. However, they have a high tendency to recur, and 

one-third of them will reappear during the first 5 years after transurethral resection. Incidence 
of recurrence and progression is directly related to the tumoral grade and stage, being higher 

in carcinoma in situ and T1G3 tumors.

Most recidives have similar grade and stage to the original tumor. However, a significant 
number of bladder cancers progress to invasive tumors whose prognosis and treatment are 

completely different. Therefore, intravesical postoperative therapy is mandatory, especially 
in those with medium and high-risk tumors.

The urethra allows ease of access from the outside, which generally allows a resection of the 

tumor and the application of chemo- and/or immunotherapy locally with minimal systemic 

toxicity.

Intravesical chemotherapy, with single postoperative or with maintenance protocols, is the usual 

treatment for patients with low and intermediate risk of non-muscle-invasive bladder cancers 

(NMIBCs). Their side effects are well tolerated, but there is general consensus that chemo-

therapy is effective in reducing short-term risk for recurrence, but its efficacy is only marginal 
in the long term [2].

On the other hand, immunotherapy with bacillus Calmette-Guérin (BCG) is the gold stan-

dard treatment for high-risk patients. However, BCG is associated with important side effects 
such as systemic tuberculosis and bladder retraction [3]. Moreover, in the recent past, there 

has been a limited availability of BCG, which has made us change our old protocols for 

new ones using a lower dose or reducing the number of instillations. Clearly, there is a scope 

to optimize and improve current intravesical chemotherapy.

Many new treatment approaches are being researched to increase the effectiveness of 
adjuvant intravesical therapy. One of the developing treatments for high-risk NMIBC is 

the combination of intravesical chemotherapy and hyperthermia, called chemohyperther-

mia (CHT).

Chemotherapy combined with thermal energy has proven higher anticancer activity than che-

motherapeutic instillation alone at diminishing recurrence rates. It also appears to improve 

the bladder preservation rate. Moreover, in the future, CHT may become a standard therapy 

for high-risk patients with recurrent tumors, for patients who are unsuitable for radical cys-

tectomy, and in cases for which BCG is contraindicated [4].

In this chapter, we will speak about rationale, technical options, clinical results, ongoing stud-

ies, and future perspective for this interesting option of treatment for intermediate and high-

risk patients with NMIBC.
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2. Intravesical therapies for the treatment of NMIBC

2.1. Historical review

The first intravesical treatments can probably be traced to the eleventh century. In the third 
book of his treatise Canon of Medicine, Avicenna described how to inject a list of drugs into the 

bladder through a hollow cylindrical instrument [5].

The first description of specific intravesical treatment for bladder cancer was carried out in 
the 1950s by Walton and Sinclair [6]. In the following years, radioactive solutions of sodium 

bromide and colloidal gold were used with relative success but also important complications.

Jones and Swinney [7] described in 1961 the use of intravesical thiotepa which was later the 

first intravesical drug FDA approved for NMIBC; however, its side effect rates were high, so 
it was not commonly used.

Mitomycin C (MMC) is a cross-linking agent that inhibits DNA synthesis, which was discov-

ered by Wataki et al. [8] in 1962. Seven years later, Ogawa [9] instillated MMC simultaneously 

with radioactive phosphorus, but its toxicity was high. In the following year, Shida et al. 

[10] published the first results by using intravesical MMC. Almost a decade went by before 
Kaufman et al. [11] began using it in the USA who was followed a few years later by German 

urologists. Due to its high molecular weight (329 kDa), there is reduced risk of transurothelial 
absorption, and side effects are minimal [2].

In 1976, Morales et al. [12] demonstrated the power of immunotherapy to treat bladder cancer 

by showing BCG effectiveness in patients with carcinoma in situ. Both treatments, chemo-

therapy with MMC and immunotherapy with BCG, became the gold standard of intravesical 

therapy for low-medium and high-risk patients, respectively.

Many other drugs and immunotherapeutic agents have been tried against NMIBC in the last 

half century, but intravesical chemotherapy with MMC remains the most widely used world-

wide. However, the reduction of tumoral recurrences is not very high, and even this small 

difference is lost after 2 years of follow-up, and tumoral progression is not reduced [2].

2.2. What limits the effectiveness of intravesical chemotherapy?

From the evolutionary point of view, the urinary bladder appeared in amphibians as a reser-

voir to store urine with intention of using it for osmotic regulation of the body by reabsorb-

ing water and sodium in the case of dehydration. However, mammals have an impermeable 

bladder used as a simple urine reservoir which allows them to eliminate it only a few times a 

day. Thus, the animal would seek a convenient time to expel it, rather than eliminate it con-

tinuously, thereby avoiding the creation of an odorous trail that could be traced by possible 

predators [13].

Urine contains urea and other toxic substances which have been removed from the blood-

stream by the kidney. If they were newly reabsorbed by the bladder, it would be a serious 
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problem to the body. For this reason, the bladder of higher animals has evolved as an almost 
completely waterproof bag which is also resistant to toxic chemicals present in it.

This is achieved through four fundamental mechanisms [14, 15]. First, the turnover of the 
urothelium is the slowest of all epithelia in the body. After the division of basal cells, the uro-

thelial cells need 200 days to progress before flaking into the bladder. Due to this slowness 
in cell division, urothelial cells rarely enter mitosis, and therefore its DNA is less exposed to 
intravesical toxins. Second, there are some specialized cells called “umbrella” on the endo-

luminal surface, which have lateral interdigitations and proteins called “uroplakins.” Both 

structures keep umbrella cells intimately connected to their neighbors in an almost com-

pletely waterproof way. Third, urothelial cells possess surface structures called “asymmetric 

unit membrane” (AUM) in both lumen and intraepithelial cells. AUM works as membrane-

binding sites for cytoplasmic microfilaments. Its intraepithelial location and association with 
microfilaments support the hypothesis that AUM has a mechanical function and modulates 
the surface area of the cell during the relaxation-contraction cycle of the urinary bladder 

maintaining tightness even at the time of maximum dilatation [16]. And fourth, to help 

strengthen the sealing, the endoluminal surface of the bladder is covered by a thick layer of 

negatively charged glycosaminoglycans. This charge is responsible for the electrical rejec-

tion of many compounds present in urine and whose resorption would be toxic to the body.

Low absorption of the MMC is not due solely to the waterproof properties of the bladder 

wall but also to the characteristics of the drug. The MMC is a high molecular weight molecule 

(334 Dalton), with a weak negative charge and a relatively hydrophobic behavior. These fea-

tures make absorption through the urothelium less than 3% of the amount instilled which 

severely limits its effectiveness [2].

Pharmacokinetic studies [17–19] have shown that systemic absorption of the MMC does not 

reach significant plasma levels. Average of MMC plasma concentration on patients treated 

after urothelium recovery was 5.24 ng/mL. Conversely, absorption of MMC instilled immedi-

ately after TUR reaches an average of 50 ng/mL, which varies significantly with the resected 
surface of the bladder mucosa (p < 0.026). However, even given immediately after TUR, the 

MMC fails to achieve the minimum accepted as myelotoxic dose of around 400 ng/mL.

2.3. Why does NMIBC recur so often?

Urothelial bladder carcinoma appears in the form of two main phenotypic variants. The most 

frequent (80%) is papillary tumors of medium or low grade. Of these, 33–70% will reappear 

in the first 5 years and 4–9% progress to invasive disease. By contrast, 20% of urothelial carci-
nomas are high grade (T1-GIII or carcinoma in situ). Of these, one 68–80% will relapse in the 

first 3 years and, 13–23% will progress to invasive disease [20].

It is important to know what are the mechanisms of recurrence are to try to reduce them. It is 

thought that there are a total of four mechanisms potentially involved.

The first and clearest is incomplete tumor resection (evidence level 1). Its incidence is clearly 

related to the quality of TURB performed. According to the guidelines of the European 

Association of Urology, when performing a re-TUR in patients with T1 tumors, 33–53% have 

residual tumor, and 10% presented infiltrative tumors (T2) after the second TUR-B [20].
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In some publications, the numbers of residual tumor reach a high of 78%, and 25–40% of cases 

will be restaged to more advanced tumors [21]; the surgical methodology of these centers 
must be reviewed.

In 2006, Divrik et al. [22] compared the efficacy of TUR-B + 8 weeks of MMC (Group 1:68 
pts) vs the second TUR-B + 8 weeks of MMC (Group 2:74 pts) in patients with T1 bladder 
carcinoma achieving significant differences. Disease-free survival at 1 and 3 years was 47 and 
37% for Group 1 vs 86 and 68% for Group 2. Recurrences of GII and GIII were 64 and 90% for 

Group 1 vs 25 and 60% for Group 2. Finally, they observed progression in 11.7% of Group 1 
vs 4% in Group 2.

Based on recurrence-free survival as well as the grade and stage of the tumors relapsed, they 

concluded that recurrences are due to residual tumor and that intravesical chemotherapy 

post-TUR-B does not compensate inadequate tumor resection.

The second mechanism is the reimplantation of circulating tumor cells that are released during 

the TUR-B. This process was demonstrated by Soloway et al. [23] by introducing transplant-

able tumor cells (1 × 106) in the bladder of 50 mice of which half had part of the urothelium 

electrocoagulated, while the other half did not. Tumoral implants occurred in 54% of mice 

with burned bladder mucosa, while it appeared in only 12% of those with an intact bladder 

(p < 0.005). They further showed that immediate intravesical MMC, thiotepa, and cisplatin 

significantly reduced the occurrence of tumoral implants.

The first clinical use of this principle was made by Solsona et al. [24, 25] who administered 

a dose of MMC within the first 24 hours post-TUR-B and found a decrease in the number of 
relapses at 2 years in patients with low-risk tumors.

Numerous studies to date have demonstrated its usefulness in significantly reducing tumor 
recurrence in the first year, regardless of maintenance treatment during this time whether 
preformed [26] or not [27] (p < 0.02). One-year recurrences with immediate instillation ranged 

from 3.2 to 11.3%, while in the control group ranged between 18.7 and 29%. Although dif-

ferences persist within 2–3 years, they are not significant statistically [25–27]. A recent meta-

analysis quantified the effect on a 1.35 absolute reduction of relapses and the need to treat 7.2 
patients to prevent recurrence [28]. However, the main problem with the immediate postop-

erative instillation is the severe side effects, which may appear if MMC reaches the bladder fat 
and surrounding organs, which would have devastating consequences [29].

The third cause of relapse is the possible growth of small preexisting microscopic lesions 

(which cannot be considered insufficient resections) originating around the initial tumor and 

which share genetic characteristics with the original tumor; this area is called preneoplastic 

urothelial plate (PUP). The first recurrence seen on patients treated with immediate MMC post-
TUR-B appears at 40 months and does so four times more frequently in the area of the previ-

ous tumor, in other words, arising from the same PUP [30].

Finally, recurrences may appear years later, by gradual malignization of other dysplastic 
areas. In fact, first tumoral recidives are four times more frequent in a neighboring area of the 
original tumor, while only 13% are multifocal. However, from the sixth recurrence, 100% of 

tumors are multifocal [30]. Once this point is achieved, there are significant clinical implica-

tions, which have to be taken into account when choosing patient treatment [31].
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PUP theory is based on studies of different vesical urothelial clones by inactivation of chromo-

some X. This investigation showed that the bladder is lined with a mosaic made up of numer-

ous clones, which are derived from a single stem cell. Each bladder contains about 200–300 

patches of 1–2 cm2. There are usually preexisting genetic alterations in most urothelial tumors, 

usually located in chromosome 9. Some toxins act by inducing additional genetic changes in 

the carcinogenesis step process until you get to a point where abnormal cell proliferation is 

initiated then a hyperplastic epithelium that can develop into cancer in one or more PUP [32].

MMC instillation with extended maintenance has been shown to reduce the number of tumor 

recurrence in intermediate-risk patients. However, this treatment has no effect on tumoral 
progression and global survival [33, 34]. Moreover, comparative studies between MMC and 

BCG have shown that BCG is clearly superior in intermediate and high-risk tumors [33, 34]. 

To explain this data, we must understand the pathophysiology and pharmacokinetics of 

MMC applied within the bladder.

3. What is antineoplastic hyperthermia?

Also called thermotherapy, it is a type of therapy for tumors in which the whole body, 

or part thereof, is subjected to high temperatures (up to 45°C). Numerous studies have 

shown that high temperatures damage and kill cancer cells by denaturation of their pro-

teins and by preventing DNA repair. However, hyperthermia causes little damage to nor-

mal tissue [35, 36].

The first clinical experiences in the use of hyperthermia as a treatment for cancer were per-

formed by Coley [37] more than a century ago. He injected bacterial toxins of Streptococcus 

erysipelas and Bacillus prodigiosus with the intention of producing fever. He supposed that 

fever would activate the immune system and heal a patient with an inoperable sarcoma.

Hyperthermia is almost always used with other forms of treatment for cancer [35, 38]. 

Numerous studies have shown that hyperthermia makes cancer cells more sensitive to radia-

tion and chemotherapy. These studies have been conducted on different cancers such as sar-

coma, melanoma, and cancers of the bladder, brain, breast, cervix, esophagus, lung, rectum, 

and peritoneal metastases [35, 38–43].

Hyperthermia may be applied in different ways such as to the entire body (whole body), 

regional, intracavitary, local, and interstitial. Similarly, sources of heat are varied and include 

microwaves, ultrasound, radio frequency, and recirculating liquid systems.

In the case of bladder tumors, there are two types. The first, used in infiltrating cancers, 
involves the application of external heat on the entire pelvis associating radio- or chemo-

therapy [42].

The second, used in NMIBC, consists of the intravesical application of heat through micro-

waves or recirculation of heated liquids. In this type of treatment, a chemotherapeutic agent is 

associated to the heat in order to achieve a synergistic effect by using both treatments together, 
which is known as CHT [40, 42].
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3.1. Mechanism of action of antineoplastic hyperthermia

The human body has several independent mechanisms to regulate its temperature within 

appropriate ranges for an adequate function of all its organs. They include vasodilation plus 

sweating against heat and by body tremors plus vasoconstriction against cold [44]. The body’s 

metabolic processes serve as the main sources of internal heat generation.

The normal thermoregulatory response begins when sensory receptors on the surface of the 

skin or organs of the core body are activated depending on their temperature thresholds. The 

information is integrated along their way to the hypothalamus, the main thermoregulatory 

center. The efferent thermoregulatory answer of the hypothalamus is sent to effector organs 
of the body to trigger a response able to recover thermic homeostasis [44, 45]. Clinical effects 
produced by antitumoral hyperthermia are summarized in Table 1.

3.1.1. Direct cytotoxic effects of hyperthermia

Hyperthermia has cytotoxic effects on tumor cells by means of several mechanisms, including 
improved antitumoral immunity by direct cytotoxic effects.

 

Temperature range Direct cytotoxic effects Immune effects Vascular effects Others

39–41°C Slight growth arrest Initial increase 

intracellular HSP 

followed by increase 

of extracellular HSP

 - Signals to immune 

cells

 - Cross priming of 

CD8+ T cells

 - Dendritic cell 
activation

 - Natural killer 

activation

 - Increase cytocine 

release (IL-6, IL-10)

Vasodilatation which 

means:

Improved tumor 

blood flow

 - Improved tissular 

O2

 - Reduced acidosis

 - Improved drug 

absorption

Increased drug 

delivery

Increased drug 

solubility

Increased 

efficacy of many 
chemotherapeutic 

drugs

 - MMC

 - Gemcitabine

 - Cisplatin

 - Cyclophosphamide

 - Doxorubicin

41–43°C Reversible growth 

arrest

 - Mainly in phases M 

and S

 - Brief RNA synthesis 

impaired

 - Prolonged DNA 
synthesis impaired

43–45°C Irreversible growth 

arrest

 - Permanent protein 

denaturalization

 - DNA repair 
impaired

 - Activation of both 

apoptotic routes

Altered cytocine 

production

Inactivation of 

immune cells

Reduced expression 

of extracellular HSP

Reduced tumor blood 

flow due to vascular 
collapse

 - Microthrombosis

 - Endothelial cell 

damage

 - Vessel permeation

 - Increased acidosis 

and reduced tis-

sular O2

Table 1. Action mechanism of chemohyperthermia in NMIBC.
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The first phase of direct death is characterized by stopping the linear growth, characterized 
by decreased synthesis of RNA (short) and DNA (prolonged) specifically in the S phase but 
also slowing the M phase of the cellular cycle [36, 45–47]. The G1 and G2 phases are relatively 

protected due to the temperature-dependent expression of heat shock proteins (HSPs) [48]. 

Tumoral cells reached a state of rapid division circumventing the apoptotic pathways and 

avoiding the normal detention mechanisms of the cell cycle. If the cell division speed is turned 

down, this would allow apoptotic mechanisms to kill tumoral cells. During this phase direct 
cytotoxicity occurs between 41 and 43°C and is reversible after heat removal.

In addition, heat interferes with the ability of the cell to repair damaged proteins produced 

as a result of chemotherapy or radiotherapy. It is believed that these proteins play a key role 

in the activation of apoptotic pathways. Deficiencies in DNA repair mechanisms become evi-
dent only at 40°C and continue to worsen when temperatures are higher [49]. Above 43°C, an 

exponential and irreversible growth arrest occurs, and its intensity is dose and time depen-

dant [50]. This phase is characterized by disruption of the cell membrane and denaturation 

of cellular and transmembrane proteins, distortion of cellular architecture, and ultimately 

activation of apoptotic and necrotic pathways.

3.1.2. Antitumoral immune response to hyperthermia

The body’s ability to use temperatures within the range of fever (39–41°C) to enhance immune 

system function against infection is well documented [51]. Activation state of the immune 

system depends on degree and duration of the applied heat [52]. However, we can only sub-

ject the patient to temperatures achievable with fever, those which are achievable in vivo. 

Dendritic cells, natural killer (NK) cells, and phagocytes that play a key role in antitumoral 
immune mechanisms are directly activated by hyperthermia. HSPs are chaperone tumor-

related antigens that can be released or become apparent on the tumoral surface as a result of 

chemotherapy, radiation, or heat [53].

These HSPs act as stimulating antigens for dendritic cells [54, 55]. Then, these dendritic cells 

present tumoral antigens to macrophages and T cytotoxic cells CD8+ leading to the release of 
pro-inflammatory and proapoptotic cytokines that increase tumoral cell destruction [54–56].

When in the extracellular space, HSPs bind to cancer cells’ surface to help identify them for 

cells of the immune system [52]. Increased expression of intercellular adhesion molecules 

(ICAM) resulting from hyperthermia also leads to increased lymphocyte trafficking to sites 
where tumoral antigens are present, helping adaptive response against cancer cells [57]. 

Furthermore, hyperthermia activates the innate immune system by improving the ability of 
NK cells to destroy tumoral cells [58].

In vitro temperatures above 43°C may cause paradoxical immune responses to the aforemen-

tioned, but these responses are less interesting biologically since such high temperatures are 

difficult to reach and maintain in vivo [54]. While hyperthermia has been shown to enhance 

the efficacy of immunotherapy in a murine model of pulmonar metastasis [59], this combina-

tion has not yet been studied in bladder cancer.
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3.1.3. Vascular effects of hyperthermia

These effects are variable depending on the intensity of heat and the characteristics of the sup-

plying vascularization. One of the first demonstrations of hyperthermia is vasodilation, which 
leads to an increase in blood supply to the tumor [60]. This effect enhances the tumor micro-

environment for the action of the immune system by improving oxygenation and reducing 

acidosis [61]. The vasodilation effect is produced with temperature up until about 43°C, above 
which perfusion will decrease because of vascular collapse; this affects reoxygenation and 
drug delivery, complicating the empirical formulation of a thermal dose.

In renal tumors, vasodilation has shown an effect of “washing” of the chemotherapeutic and 
temperature reduction by increasing blood flow at 37°C. However, at the bladder urothelium, 
the caliber of the blood vessels is small, and its effects by washing the chemotherapeutic or 
reducing applied heat are very small.

With sustained high temperatures, the opposite effect occurs due to direct endothelial cell 
damage to the tumoral supplying vessels [62]. These vessels begin to present microvascular 

thrombosis with consequent decrease in blood flow that leads to the death of tumor cells by 
hypoxia.

Animal studies performed by Haas et al. [63] showed that hyperthermia alone reduced growth 

of implanted tumors. However, when administered simultaneously with chemotherapeutic 

agents its treatment effect increases in a significant way.

Similarly, Van der Heijden et al. [64] showed that chemotherapy and hyperthermia show a syn-

ergistic effect increasing the cytotoxicity of epirubicin, EO9, gemcitabine, and MMC. Also, they 
showed a significant synergy of heat and MMC against four bladder tumoral cell lines [64, 65].

3.1.4. Increased absorption of MMC by heat

Dalton et al. [18] studied that the pharmacokinetics of intravesical MMC observing the 

absorption thereof is significantly affected by dilution, urinary pH, and exposure time. They 
observed that, with passive instillations, the absorption of the administered dose is less than 

30%.

In 2001, Paroni et al. [66] showed that microwave-induced hyperthermia increased MMC 

absorption, at 30, 45, and 60 min, significantly (p < 0.008). However, even higher plasma con-

centrations achieved with CHT (67 ng/mL), were six times lower than those needed to be 

myelosuppressive (approx. 400 ng/mL). Similar results were seen by Milla et al. [67] when 

causing hyperthermia by using recirculating heat liquids.

It is important to understand that increased MMC absorption is not only due to increased 

permeability of the bladder urothelium but also due to a significant increase in solubility. At 
25°C the maximum concentration that we may get by dissolving 1 gr of MMC is 0.8 mg/mL. 

However, at 40°C, MMC concentrations up to 1.7 mg/mL can be reached when dissolving the 

same amount of it. (Data from Kyowa Hakko Co Ltd.).
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3.2. Adjuvant CHT treatment (after TUR-B)

3.2.1. Clinical outcomes: tumoral recurrences

In 2011, a meta-analysis which was composed of a total of 22 studies showed a 59% reduction 

in tumor recurrences in the group chemohyperthermia against the MMC [4].

T1G3 and CIS tumors subgroup treated with CHT showed greater differences compared to 
the MMC at normal temperature were patients with T1G3 and CIS tumors. Witjes et al. [68] 

observed that 92% of patients treated with CHT showed complete eradication of the tumor 

and only 50% had recurrence after 30 months of follow-up.

Similar results were seen with conductive heat technology; our group found [69] a recur-

rence-free disease rate of 87.5% in high-risk patients treated with combat recirculant CHT 

and followed during 2 years. However, Ekin et al. [70] showed that the recurrence-free rates 

of high-risk patients treated with BWT recirculant CHT were 82 and 61% at 1 and 2 years of 

follow-up

The first randomized trial comparing CHT vs BCG was published by Arends et al. [71]. They 

observed a recurrence-free survival after 2 years of follow-up of 78% in the CHT group vs 

64.8% with BCG (p < 0.0082). Progression was lower than 2% in both groups (p = ns). On the 

other hand, Ekin et al. [72] concluded that CHT was not as effective treatment as BCG in high-
risk NMIBC patients who are BCG naive. The 2-year recurrence-free interval in CHT and BCG 

groups was 76.2 and 93.9%, respectively, (p = 0.02). However, it was a retrospective propensity 

score-matched study to compare the efficacy of BCG and chemohyperthermia.

Some studies have shown a long-term effect of treatment with CHT. Colombo et al. [73] pub-

lished results of 65 NMIBC medium-high risk patients treated with CHT or standard MMC 

and they found that disease-free survival at 10 years was 53% in the group CHT compared to 

15% with standard MMC (p < 0.001).

Probably, the most important conclusion of the mentioned meta-analysis [4], and which seems 

to be confirmed with all subsequently published studies, is that in the future, the CHT may become 

a standard treatment for high-risk patients with recurrent tumors that are unfit for radical 
cystectomy or when BCG treatment is contraindicated.

3.2.2. Tumoral progression after CHT and bladder preservation rates

Lammers et al. [4] also noted that only 0–8% of patients had tumor progression and although 

this figure is lower than that observed with standard MMC, follow-up duration was too short 
and cannot draw definitive conclusions.

The survival of patients who failed intravesical therapy and progress to muscle-invasive dis-

ease is worse than that of those with NMIBC from the time of diagnosis. Schrier et al. [74] 

found a cancer-specific survival at 3 years of 37% for patients who progressed to NMIBC, 
compared to 67% achieved by patients who originally showed with infiltrative tumors. These 
results were also confirmed by Guzzo et al. [75].
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Several studies have investigated the role of CHT in the rescue NMIBC that has not responded 

to other intravesical treatments. Ayres et al. [76] prospectively evaluated 38 high-risk patients 

who had failed after BCG and were treated with CHT and found a 50% survival-free disease 

at 2 years which is a significant success rate for these kinds of patients.

Some comparative studies between BCG failure patients and non-previously treated patients 

showed better results in the former group. The interim analysis of the Lombardia project 
(unpublished data from R. Colombo, Milan, Italy) showed that, after two years of follow-up, the 

recurrence-free rates of patients treated with de novo CHT were significantly better than 
those who had previously failed intravesical treatment (91 and 62%, respectively, p < 0.006). 

Similarly, Van der Heijden et al. [77] followed 76 patients treated with CHT for 2 years, 

observing a 42% recurrence in the group with a previous failed BCG treatment compared to a 

24% recurrence rate in the de novo treatment group.

However, others like Witjes et al. [78] observed no difference in the response rate among 
patients who had failed BCG and those without (p = 0.63). Similarly, Halachmi et al. [79] did 

not observe any difference in the rate of recurrence at 4 years among those who had failed 
BCG and those without (46 vs 44%, respectively, p = 0.54).

Overall, although the results of CHT in patients who have failed prior to other intravesical 

regimens are heterogeneous, the truth is that they managed to rescue a significant number of 
failures after BCG with CHT which is a major advantage of this treatment regimen.

The overall rate of bladder preservation after CHT was 87.6% compared to 79% for MMC 

(p = ns). Of the 357 patients in all studies, only 38 patients (10.6%) underwent radical 

 cystectomy. Eleven cases (3.1%) were due to tumor progression, other 25 cases (7.0%) due to 

a high incidence of recurrences, and other 2 cases (p < 0.006%) because of bladder retraction 

or  miction worsening [4].

Similar data were published by Moskovitz et al. [80], with 72% free of recurrence and only 

4.7% progression rate in patients who received adjuvant treatment with CHT.

A sequential treatment study using intravesical BCG and CHT was performed in Leicester, 

UK, to treat 33 high-risk NMIBC patients (including 40% with Cis) who were followed during a 

median of 16 months [81]. Three of them (9%) did not respond and were proposed for radical 

cystectomy. Two (6%) showed tumoral progression and were treated with radiotherapy. The 

other 85% of them were disease-free after follow-up.

3.3. Neoadjuvant CHT treatment (before TUR-B)

The rationale about neoadjuvant CHT is based on three main ideas. First, all published data 
seems to support the idea that apoptotic tumoral cells destroyed by the neoadjuvant CHT 

treatment stimulate the immune response against them acting as a vaccine against cancer. 

Second, in patients with tumors unable to be resected with only one TUR-B, Neoadjuvant 

CHT could diminish number and/or size of tumoral implants avoiding need of a second sur-

gery, this treatment could offer both a more effective treatment and better value for the health-

care provider, as they might not need a second TUR-B. Third, many early recurrences are 
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based on growth of minimal tumoral implants which were not seen during surgery and that 

neoadjuvant CHT is able to eliminate.

Colombo et al. [82] evaluated for the first time the clinical efficacy of neoadjuvant CHT in 
bladder cancer in 1998. In that study, a total of 19 patients who had tumors that were unre-

sectable in one surgical time or a radical cystectomy was indicated due to its extension. After 

8 weekly doses of CHT, the TUR-B was possible in just one surgical time in 16 patients (84%). 

The histological examination of the sample showed a 47% complete response (CR) and 37% 

partial response (PR). A radical cystectomy was performed in the remaining three patients 

because of the extent of the residual tumor. After an average of 33 months of follow-up, 

eight superficial recurrences were seen, and TUR-B was easily performed without having to 
remove the bladder.

In 2012, Moskovitz et al. [80] documented a 79% CR rate in a group of patients undergoing 

neoadjuvant CHT. But what is even more interesting is that 84% of those patients with com-

plete response remained free of recurrence during the follow-up period and the 24% who 

recurred had TaG1 tumors.

It is important to mention that we do not know that CHT regime is more effective and less toxic. 
A phase 2 study of Colombo et al. [83] evaluated two CHT protocols including 27 patients each 

with 40 mg of MMC. Group A received a single weekly dose of MMC (40 mgrs) × 6 weeks, 

and Group B received 3 weekly doses of MMC (40 mgrs) × 2 months. A 7.4% of patients from 

Group B did not complete the treatment because of severe urinary local irritative symptoms; 
other side effects were similar in both groups. However, success rates of both groups were 
significantly different; histopathological examination of the TUR-B samples showed that only 
44.4% of patients from Group A had CR, while 70.4% of Group B patients were free of tumor 

(p = 0.04)

Another study compared the recurrence rate at 5 years among patients who had received 

more or less than eight doses of CHT in a neoadjuvant setting. While the group receiving 
more than eight doses (n = 170) showed 40% of patients free of disease, the group receiving 8 

or fewer doses (n = 78) showed only 15% of cases of disease-free (p < 0.0002) [68].

In 2014, our group published the results of a small series of 15 patients treated with eight 

weekly doses of recirculating neoadjuvant MMC achieving a 66.6% CR and 33% PR. As in the 

previous case, the beneficial effect of CHT remained in time and, after 3 years of follow-up, 
disease-free survival was 85%, and only two recurrent patients were treated with TUR-B and 

intravesical adjuvant MMC [84].

The most comprehensive and recent neoadjuvant study was published by Lüdecke et al. [85]; 
the study group consisted of 271 patients treated with 8 weekly doses of neoadjuvant CHT 

with MMC (40 + 40 mg). After TUR-B they observed that 76.1% had CR and another 7.6% 
showed PR.

Unlike our study, all patients with CR were given consolidation adjuvant CHT (six doses 

every 6 weeks of MMC (20 + 20 mg) for a total of 9 months of treatment [73]. With this treat-

ment, they observed that 80.6% of patients were free of recurrence at 2 years.
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It is important to mention that this group included 59.8% of patients who had failed after 

BCG, but even there, the percentage of patients free of recurrence in this group was 41.7 

and 66.7%, respectively, among those who were already resistant to BCG and those who had 

relapsed early after such treatment.

A comparative study of the recurrence rate after neoadjuvant CHT vs a meta-analysis with 

BCG shows that after 5 years of follow the CHT group showed 64% of patients free of disease 

compared to 22% expected in the BCG group (p < 0.0001) [86].

3.4. CHT adverse events

Most published works show that the side effects were higher with CHT than with standard 
MMC, but this difference was not statistically significant; furthermore, these effects were usu-

ally mild and reversible. CHT has less systemic effects and bladder retraction than BCG but 
has more local effects such as spasm, hematuria, and dysuria [71]. In some cases there were 

severe or permanent side effects such as urethral perforation or bladder retraction [4, 69, 70].

With the microwave technology, the most common adverse events during treatment were 

spasms of the bladder (21.6%) and bladder pain (17.5%). Bladder spasms tend to occur more 

frequently with neoadjuvant treatment (17.8 vs 10.7%; p = 0.398) [1]. Similar results were seen 

with BWTTM [70, 73] and CombatTM [69, 84] recirculant systems. Side effects are frequent, but 
almost all cases were grades 1 and 2.

In our experience, with almost 800 recirculant instillations, only 3.1% of doses were delayed, 

and less than 1% were not performed. The main reasons for delating were infection, hematu-

ria, and irritative chemical cystitis. The only reasons for anticipated end of the treatment were 

allergy and intolerance to catheterization.

Approximately 6% of doses were interrupted before 60 min usually because of bladder 

spasms or pelvic discomfort [69, 84]. Those patients who didn’t tolerate the first dose well 
were orally premedicated with 600 mgs of ibuprofen or antispasmodic treatment depending 

on if they had complained of pain or spasms. In selected cases, spasmolytic IV was adminis-

tered during treatment. Both oral medications such as IV proved effective to achieve a good 
tolerance in subsequent doses of CHT.

3.5. Comparison of treatments assisted by devices

Those forms of intravesical chemotherapy in which any device is used to improve the effi-

cacy of intravesical chemotherapy are called “device assisted.” There are fundamentally two: 

Electromotive drug administration (EMDA) enhances the absorption of MMC by using ion-

tophoresis. On the other hand, there is CHT which is based on heating the bladder with the 

instilled chemotherapeutic drug.

EMDA is based on creating an electric current through three physicochemical principles (ion-

tophoresis, electroosmosis, and electroporation) able to increase the migration of an electrically 

charged molecule through the bladder wall molecule. In this chapter, we are not going to 
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evaluate EMDA, but we recommend further investigation reading about it because it is a very 
interesting way to improve the effectiveness of intravesical chemotherapy.

EMDA has demonstrated reduction on tumoral recurrences compared to standard MMC. 
Some readers may want to know which delivery system is better, CHT or EMDA. Until now, 
there is no answer to this question; Colombo et al. [87] published in 2001 a pilot study with 

marker lesion which resulted in favorable results for CHT.

3.5.1. Microwave technology

The first CHT system approved for humans use was the SynergoTM system. It is a computer-

embedded intravesical irrigation system combined with an energy-delivering unit. The 

system includes an RF generator that delivers radio-frequency energy at 915 MHz, a drug 
circulating unit, and a microprocessor with application-specific software. A triple lumen 
transurethral Foley catheter is used for drug intravesical instillation. It has thermocouples for 
bladder wall temperature monitoring and an RF antenna that radiates the bladder walls, caus-

ing phenotypical changes specifically in cancerous cells, creates membrane “micro-poring” 
and metabolic changes in these cells to increase the uptake of the drug, and enhances drug 

mobility (becomes an active diffusion). To avoid damaging temperatures being reached in the 

bladder, the SynergoTM system has a cooling circuit that keeps the intravesical temperature at 

acceptable levels.

SynergoTM system has been used for 15 years and has conclusive studies in both  neoadjuvant 

and adjuvant settings. Clinical efficacy in high-risk patients (including BCG failures and 
CIS) has been proven. In fact, a 60% reduction of tumoral recurrences were observed when 

comparing to standard MMC has been demonstrated. Moreover, its superior results were 

 maintained over periods of time as long as 10 years.

Both basic and clinical studies have shown a range of 4°C between different areas of the blad-

der when treated with SynergoTM [88]. This irregular distribution of the heat may be a signifi-

cant inconvenience because it produces undertreated areas (40°C) or “cold spots,” and others 

which were clearly cytotoxic temperatures are reached or “hot spots.” In fact, the tip of the 

emitter rests at the posterior bladder wall producing burns in up to 60% of the patients which 
is not a serious problem that usually heals without complications

Another drawback, associated with its urethral catheter, which is 20fr, is that the micro-

wave emitter is inside the probe which makes it very rigid, which makes it difficult to place 
for the clinician and uncomfortable for the patient. It may even cause urethral lesions in 

any of the repeated catheterizations required in a complete treatment. Kiss et al. [89], 

described that in a group of 21 patients treated with this device, 38% of them had to aban-

don the therapy because of the severity of the side effects including a case of urethral 
perforation.

The final drawback of the SynergoTM system is economical. As it is based on microwave tech-

nology, each disposable transurethral probe contains an expensive emisor—inside making 

the cost per patient quite high.
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3.5.2. Heated recirculating fluid technology

An alternative way to apply heat to the bladder is those systems based on recirculation of 

a solution of chemotherapeutic drugs heated externally and reintroduced to the bladder 

through a three-lumen catheter. Two different devices using this technology are currently 
available, Combat HIVECTM BRS and BWTTM systems which are based on simple technology 

and use inexpensive disposables that make it attractive for performing CHT in a sustainable 
public healthcare system.

Both use a three-lumen-modified Foley catheter (HIVECTM 16fr and BWTTM 18fr) which is soft 

and flexible, avoiding most problems related to urethral catheterization compared to other 
technologies.

Both try to maintain the chemotherapeutic solution at a fixed temperature, but there are some 
differences between them.

The Combat HIVECTM BRS system uses an external aluminum heat exchanger ensuring 

efficient heat transfer and accurate temperature control of 43°C within ±0.5°C should 
this be 0.5 of the set temperature in the inner urothelium while providing homogeneous 

drug distribution throughout the bladder. Because of the efficiency of its aluminum heat 
exchanger, it only needs 30 mL to prime the disposable set minimizing dilution and means 

that the chemotherapy only needs to circulate around the closed circuit at 200 mL/min to 

maintain the temperature accurately, and this minimizes the pressure exerted on the blad-

der. It has a range of safety controls, over temperature and high pressure, and auto cutoff 
function.

BWTTM uses external heating plates with plastic heat exchanger which delivers an exit tem-

perature of 46.5°C to achieve an inlet temperature of 44.5°C of the chemotherapy fluid in 
order to maintain a temperature within ±2°C.

BWTTM disposable set has a priming volume greater than 50 mL, which increases dilution 

of the chemotherapy. It recirculates the chemotherapy at 300 mL/min in order to maintain 

temperature within 2°C, which creates more pressure in the bladder compared to Combat 

HIVECTM BRS system.

Patient safety and comfort are paramount to Combat HIVECTM BRS. To achieve it, some spe-

cial characteristics have been added. Whenever is desired, progressive increase of heat up to 

the final temperature (5 min) can be employed, which increases tolerance in sensitive patients. 
Moreover, if the tip of the catheter is blocked by bladder mucosa or for any other reason, the 

system can reverse the direction of circulation resolving the problem, which in some cases 

could cause pain or device malfunction.

Some doubts have been raised whether recirculating systems can achieve effective transfer of 
heat into the bladder and if they are able to stable temperatures throughout the bladder wall. 

This question has been answered by Longo from Duke University (USA) [90]. Measuring tem-

perature with 16 surgically placed submillimeter fiber-optic microprobes and silicone germa-

nium thermistors in swines’ pelvic organs and at different depths of the bladder wall as well 
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as high-powered infrared cameras, they found a temperature gradient across the bladder wall 

(from urothelium to serosa) that was between 1.5 and 2°C, achieving a temperature across the 

inner urothelium of 42.9°C ±0.4.

Due to both devices being in use for very few years, the greatest drawback of recirculative 
systems is their limited number of studies and treated patients to confirm their effectiveness. 
To achieve it, Combat Medical Ltd. is performing multicentric studies in the UK and Spain, 

across 20 hospitals, called HIVECTM-I (303 patients), HIVECTM-II (259 patients), HIVECTM-R 

(68 patients), HIVECTM-PREMITO (151 patients), and HIVECTM-HR (50 patients), which are 

all recruiting and progressing well and should complete in 2017 with a complete popula-

tion over 830 patients. Unfortunately, we have no information about ongoing studies per-

formed with the BWTTM device. The main differences between all three devices may be seen 
in Table 2.

 

Device SynergoTM BWTTM system CombatTM

Heat source Intravesical 915 MHz 

microwave antenna

(Recirculating cooling system)

External heating plates

(Recirculating heating 

system)

External flat, low-volume 
heat exchanger

(Recirculating heating system)

Target temperature and 

fluctuation
42.5 ± 3°C 44.5 ± 2°C 43 ± 0.5°C

Priming volume ±25 mL ±50 mL ±30 mL

Catheter characteristics 20fr Rigid

(Radio-frequency emitter + 
cooling system inside)

18fr Flexible 16fr Flexible

Advantages Strong supporting evidence 

(neoadjuvant and adjuvant)

Long-term follow-up

Proven superior to BCG

Proven effectiveness 
against CIS

Minimal dilution of MMC

Simple and cheap Accurate temperature 

control and delivery 

Minimal dilution of MMC

Good safety controls

Proven effectiveness in 
sequential and neoadjuvant 

with medium-term 

follow-up

Simple and easy to use 

Cheap

Disadvantages Higher side effects
Lower patient tolerance

Intravesical hot and cold 

spots

Expensive device and 

disposables

Continuous operator 

control required 

throughout treatment

Limited clinical evidence

Higher flow rates and 
operating pressure (increase 

hematuria and reduce patient 

tolerance)

No pressure control or 

safety alarms

Limited evidence 

(multicentric studies ongoing)

Table 2. Characteristic of devices for intravesical CHT treatment.
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3.6. Pharmacoeconomic evaluation

Bladder cancer is the most expensive tumor for public health services from the time of diag-

nosis to the patient’s death [91].

We have studied the relationship between cost-effectiveness and budget impact of a neoadju-

vant CHT in NMIBC patients and compared the results with standard treatment of BCG apply-

ing recurrence and progression values based on internationally accepted risk charts [92, 93].

For this reason, a model was designed from the perspective of a public health system after 
a follow-up of 3 years to compare the costs of implementing neoadjuvant CHT (eight weekly 

instillations of 80 mg mitomycin C recirculating 43°C for 1 hour prior to TUR-B) to costs of treating 

15 patients with the same risk profile with standard adjuvant BCG treatment (control group). 

The actual costs related to available drugs, disposables, TUR-B, cold biopsy, and risk of tumor 

recurrence were included. Discarded model costs and follow-up diagnostic tests don’t vary 
between the groups [94].

The model was built using information from actual study data, and estimated costs establish a 

favorable environment for neoadjuvant CHT in terms of cost to 3 years with a global minimum 

savings of 10.300 and 687 € per patient difference, all with improved effectiveness in the treatment. 
In fact, of the 15 patients pretreated with chemohyperthermia (11 high risk and 4 medium risk), the 

expected number of recurrences was reduced from 8 to 2 and progressions from 3 to 0. The conclu-

sion of this study of 3 years is that neoadjuvant CHT is a cost-effective therapeutic strategy [94].

4. Take-home messages

4.1. Oncological results

Randomized studies have shown that CHT get the same or even better results than BCG in 
high-risk patients (T1GIII) regarding the free disease time, although its effectiveness in CIS 
has to be confirmed as well as tumoral progression

CHT reduced tumor recurrence by 60% compared to standard MMC in patients with inter-

mediate-high-risk MMC and that these differences are maintained even years after treatment. 
Lower rates of progression vs standard MMC were also achieved but without significant 
differences.

Neoadjuvant CHT achieves tumoral eradication in two-third of intermediate-high-risk 

patients, and four-fifth are disease-free after 3 years of follow-up.

4.2. Tolerance

CHT has a nonsignificant higher side effects rate than standard MMC, but these are always 
low grade and transient. CHT has less systemic effects and bladder retraction than BCG but 
has more local effects such as spasm, hematuria, and dysuria.
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4.3. Economics

Neoadjuvant CHT is a cost-effective therapeutic strategy against BCG treatment.

4.4. Indications

CHT is an undeniable option in BCG refractory tumors; those who are intolerant to BCG are 
unsuitable for radical cystectomy or in the context of an international BCG shortage.

Its use instead of MMC, both in adjuvant or neoadjuvant protocols, is promising options 

pending further evaluation.

Finally, the main pros and cons of CHT are condensed in Table 3.

Author details

Sousa-Escandón Manuel Alejandro*, Flores Carbajal  Javier , Sousa-González Daniel  and  
Rodriguez Gómez Silvia 

*Address all correspondence to: sousa-alejandro@hotmail.com

Comarcal Hospital of Monforte, Monforte-Lugo, Spain

References

[1] Burger M, Catto J, Dalbagni G, Grossman H, Herr H, Karakiewicz P, et al. Epidemiology 
and risk factors of urothelial BC. Eur Urol, 63(2): 234–241, 2013

Favorable arguments about its use Contrary arguments about its use

- Improves results of standard MMC by 60% (p < 0.001)

- Improvements in disease-free survival persist after 10 

years vs standard MMC (p < 0.002) and 2 years vs BCG 

(p < 0.008)

- Less systemic effects and bladder retraction than BCG
- Bladder preservation rate to 10 years of 86 vs 79% CHT 

MMC cold (p = ns)

- Useful in CIS and high-grade tumors

- Excellent alternative to current or future shortage of 

BCG

- Effective in BCG failures (41–66%)
- As effective as BCG in CIS and T1G3 (89.5 vs 85.7%)
- Lower rates of progression vs BCG (1.7 vs 2.8%, p = ns)

- Reduces the overall cost of bladder cancer treatment 

(p = ns)

- The need for greater scientific evidence
- Increased side effects vs normothermic MMC
- Increases initial cost of adjuvant treatment

- Operational problems by having a patient on a gurney 

for 60 min while medication is instilled instead of 

sending the patient home

Table 3. Pros and cons about chemohyperthermia.

Bladder Cancer - Management of NMI and Muscle-Invasive Cancer34



[2] Tomaszewski J, Smaldone M. Emerging intravesical therapies for management of 

NMIBC. Open Access J Urol, 2: 67–84, 2010.

[3] J Meyer, R Persad, D Gillatt. Use of bacille Calmette-Guérin in superficial bladder cancer. 
Postgrad Med J, 78(922): 449–454, 2002

[4] Lammers RJ, Witjes JA, Inman BA Leibovitch I, Laufer M, Nativ O, Colomo R. The role 

of a combined regimen with intravesical chemotherapy and hyperthermia in the man-

agement of non-muscle-invasive bladder cancer: a systematic review. Eur Urol, 60(1): 

81–93, 2011.

[5] Madineh SM. Avicenna´s canon of medicine and modern urology. Part III: other bladder 

diseases. Urol J, 6(2): 138–144, 2009

[6] Walton RJ, Sinclair WK. Radioactive solutions in the treatment of carcinoma of the blad-

der. Br Med Bull, 1(4096): 159–162, 1952

[7] Jones H, Swinney J. Thiotepa in the treatment of tumors of the bladder. The Lancet 

(British Ed.), 2(7203): 615–619, 1961

[8] Wataki S, Harada Y, Uzu K, et al. The identity of porfiromycin and methyl mitomycin. 
Antibiot Chemother (Northfield), 12: 469–471, 1962

[9] Ogawa H. Intracavitary treatment of tumors of the bladder with cytotoxic agent (mito-

mycin C) and radioactive phosphorus (32P). Nihon Hinyokika Gakkai Zasshi, 60(8): 

717–723, 1969

[10] Shida K, Shimasaki J, Takahashi H, et al. Therapy and prognosis of bladder tumors–

result of injection of mitomycin C into the bladder. Gan No Rinsho, 16(7): 737–744, 1970

[11] Kaufman JJ, Walther PJ, Smith RB, Skinner DG. Intracavitary mitomycin-C in the treat-
ment of superficial urothelial tumors: a preliminary report. Trans Am Assoc Genitourin 
Surg, 71: 6–7, 1979

[12] Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treat-
ment of superficial bladder tumors. J Urol, 116(2): 180–183, 1976

[13] Bentley P. The vertebrate urinary bladder: osmoregulatory and other uses. Yale J Biol 

Med, 52: 563–568, 1979

[14] Soler R, Bruschini H, Martins JR, et al. Urinary glycosaminoglycans as biomarker for 

urothelial injury: is it possible to discriminate damage from recovery? Urology, 72(4): 

937–942, 2008

[15] Mathai JC, Zhou EH, Yu W, et al. Hypercompliant apical membranes of bladder umbrella 

cells. Biophys J, 107(6): 1273–1279, 2014

[16] Alroy J, Weinstein RS. Intraepithelial asymmetric-unit-membrane plaques in mamma-

lian urinary bladder. Anat Rec, 197(1): 75–83, 1980

Intravesical Chemohyperthermia for NMIBC: Rationale and Results of This Developing Treatment
http://dx.doi.org/10.5772/67280

35



[17] Flüchter SH, Hlobil H, Harzmann R, et al. Blood and tissue levels of mitomycin C after 
intravesical instillation. Urol Int, 38(6): 321–328, 1983

[18] Dalton JT, Wientjes MG, Badalament RA, et al. Pharmacokinetics of intravesical mitomy-

cin C in superficial bladder cancer patients. Cancer Res, 51(19): 5144–5152, 1991

[19] Maffezzini M, Campodonico F, Manuputty E, et al. Systemic absorption and pharma-

cokinetics of single-dose early intravesical mitomycin C after transurethral resection of 

NMIBC. Urology, 82(2): 400–404, 2013

[20] M. Babjuk, W. Oosterlinck, R. Sylvester, et al. EAU guidelines on non-muscle-invasive 

urothelial carcinoma of the bladder, the 2011 update. Actas Urol Esp, 36: 389–402, 2012.

[21] Husillos A, Rodríguez E, Herranz Amo F, et al. The need for re-TUR of the bladder in 
non-muscle invasive bladder cancer: risk factors of tumor persistence in re-TUR speci-

mens. Minerva Urol Nefrol, 66(4): 233–240, 2014.

[22] Divrik RT, Yildirim U, Zorlu F, Ozen H. The effect of repeat transurethral resection on 
recurrence and progression rates in patients with T1 tumors of the bladder who received 

intravesical mitomycin: a prospective, randomized clinical trial. J Urol, 175(5): 1641–

1644. 2006

[23] Soloway MS, Masters S. Urothelial susceptibility to tumor cell implantation: influence of 
cauterization. Cancer, 46(5): 1158–1163, 1980

[24] Iborra JI, Ricos JV, Monrós JL, Dumont R, Casanova J, Solsona E. Results of a random-

ized, double blind prospective study of intravesical chemoprophylaxis with 2 drugs: 

adriamycin and mitomycin; and 2 ways of initiating the instillations: early and late. 
Effect on recurrence and progression. Arch Esp Urol, 45(10): 1001–1007, 1992

[25] Solsona E, Iborra I, Ricós JV, Monrós JL, Casanova J, Dumont R. Effectiveness of a single 
immediate MMC instillation in patients with low risk superficial bladder cancer: short 
and long-term follow-up. J Urol, 161(4): 1120–1123, 1999.

[26] Jung S, Chang H, Park C, et al. Effectiveness of an immediate Mitomycin C instillation 
in patients with superficial bladder cancer receiving periodic Mitomycin C instillation. 
Korean J Urol, 52(5): 323, 2011

[27] El-Ghobashy S, El-Leithy TR, Roshdy MM, El-Ganzoury HM. Effectiveness of a single 
immediate MMC instillation in patients with low risk NMIBC: short and long-term fol-

low-up. J Egypt Natl Canc Inst, 19(2): 121–126, 2007

[28] Abern MR, Owusu RA, Anderson MR, et al. Perioperative intravesical chemotherapy 

in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. J Natl 

Compr Canc Netw, 11(4): 477–484, 2013.

[29] Elmamoun M, Christmas T, Woodhouse C. Destruction of the bladder by single dose 
Mitomycin C for low-stage transitional cell carcinoma (TCC)–avoidance, recognition, 

management and consent. BJU Int, 113: 34–38, 2014

Bladder Cancer - Management of NMI and Muscle-Invasive Cancer36



[30] Takahashi T, Habuchi T, Kakehi Y, et al. Clonal and chronological genetic analysis of 

multifocal cancers of the bladder and upper urinary tract. Cancer Res, 58(24): 5835–5841, 

1998.

[31] Solsona E, Iborra I, Ricos JV, Monros JL, Rubio J, Almenar S. Clinical panurothelial dis-

ease in patients with superficial bladder tumors: therapeutic implications. J Urol, 167(5): 
2007–2011, 2002.

[32] Turki O. Al Hussain MD, Akhtar M. Molecular basis of urinary bladder cancer. Adv 
Anat Pathol, 20: 53–60, 2013.

[33] Shelley MD, Court JB, Kynaston H, et al. Intravesical BCG versus MMC for Ta and T1 
bladder cancer. Cochrane Database Syst Rev, (3): CD003231, 2003. PMID: 12917955 DOI: 
10.1002/14651858.CD003231

[34] Malmstrom PU, Sylvester RJ, Crawford DE, et al. An individual patient data meta-anal-
ysis of the long-term outcome of randomised studies comparing intravesical mitomycin 

C versus Bacillus Calmette-Guerin for non-muscle-invasive bladder cancer. Eur Urol, 
56(2): 247–256, 2009

[35] van der Zee J. Heating the patient: a promising approach? Annals Oncol, 13(8): 1173–

1184, 2002

[36] Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperther-

mia. Crit Rev Oncol Hematol, 43(1): 33–56, 2002

[37] Coley WB. The treatment of Inoperable Sarcoma by bacterial toxins (the mixed toxins of 

the streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med, 3: 1–48, 1910.

[38] Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of 

cancer. Lancet Oncol, 3(8): 487–497, 2002

[39] Alexander HR. Isolation perfusion. In: DeVita VT Jr., Hellman S, Rosenberg SA, editors. 
Cancer: Principles and Practice of Oncology. Vol. 1 and 2. 6th ed. Philadelphia: Lippincott 
Williams and Wilkins, 2001.

[40] Falk MH, Issels RD. Hyperthermia in oncology. Internat J Hyperth, 17(1): 1–18, 2001

[41] Dewhirst MW, Gibbs FA Jr., Roemer RB, Samulski TV. Hyperthermia. In: Gunderson 
LL, Tepper JE, editors. Clinical Radiation Oncology. 1st ed. New York, NY: Churchill 

Livingstone, 2000.

[42] Kapp DS, Hahn GM, Carlson RW. Principles of hyperthermia. In: Bast RC Jr., Kufe DW, 
Pollock RE, et al., editors. Cancer Medicine. 5th ed. Hamilton, Ontario: B.C. Decker Inc., 
2000.

[43] Feldman AL, Libutti SK, Pingpank JF, et al. Analysis of factors associated with outcome 
in patients with malignant peritoneal mesothelioma undergoing surgical debulking and 

intraperitoneal chemotherapy. J Clin Oncol, 21(24): 4560–4567, 2003

Intravesical Chemohyperthermia for NMIBC: Rationale and Results of This Developing Treatment
http://dx.doi.org/10.5772/67280

37



[44] Sessler DI. Thermoregulatory defense mechanisms. Crit Care Med, 37(7 Suppl): S203–
S210, 2009.

[45] Rampersaud EN, Vujaskovic Z, and Inman BA. Hyperthermia as a treatment for bladder 

cancer. Oncology, 24(12): 1149–1155, 2010.

[46] Selawry OS, Goldstein MN, and Mc CT. Hyperthermia in tissue-cultured cells of malig-

nant origin. Cancer Res, 17(8): 785–791, 1957.

[47] Coss RA, Dewey WC and Bamburg JR. Effects of hyperthermia on dividing Chinese 
hamster ovary cells and on microtubules in vitro. Cancer Res, 42(3): 1059–1071, 1982.

[48] Jäättelä M. Heat shock proteins as cellular lifeguards. Ann Med, 31(4): 261–271, 1999.

[49] Eppink B, Krawczyk PM, Stap J, and Kanaar R. Hyperthermia-induced DNA repair defi-

ciency suggests novel therapeutic anti-cancer strategies, Int J Hyper, 28(6): 509–517, 2012.

[50] Dewey WC, Westra A, Miller HH, and Nagasawa H. Heat-induced lethality and chro-

mosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuri-

dine. Int J Rad Biol, 20(6): 505–520, 1971.

[51] Kluger MJ. The evolution and adaptive value of fever. Am Sci, 66(1): 38–43, 1978.

[52] Frey B, Weiss EM, Rubner Y, et al. Old and new facts about hyperthermia-induced mod-

ulations of the immune system. Int J Hyperth, 28(6): 28–42, 2012.

[53] Binder RJ and Srivastava PK. Peptides chaperoned by heat-shock proteins are a neces-

sary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol, 
6(6): 593–599, 2005.

[54] Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev 

Immunol, 2(3): 185–194, 2002.

[55] Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting 

cells: chaperoning of the innate and adaptive immune responses. Ann Rev Immunol, 

(20): 395–425, 2002.

[56] Robins HI, Kutz M, Wiedemann GJ, et al. Cytokine induction by 41.8°C whole body 
hyperthermia. Cancer Lett, 97(2): 195–201, 1995.

[57] Chen Q, Fisher DT, Clancy KA, et al. Fever-range thermal stress promotes lymphocyte 
trafficking across high endothelial venules via an interleukin 6 trans-signaling mecha-

nism. Nat Immunol, 12(7): 1299–1308, 2006.

[58] Dayanc BE, Beachy SH, Ostberg JR, and Repasky EA. Dissecting the role of hyperthermia 
in natural killer cell mediated anti-tumor responses. Int J Hyperth, 24(1): 41–56, 2008.

[59] Strauch ED, Fabian DF, Turner J, and Lefor AT. Combined hyperthermia and immunother-

apy treatment of multiple pulmonary metastases in mice. Surg Oncol, 3(1): 45–52, 1994.

Bladder Cancer - Management of NMI and Muscle-Invasive Cancer38



[60] Iwata K, Shakil A, Hur WJ, Makepeace CM, Griffin RJ, and Song CW, Tumour pO2 can 
be increased markedly by mild hyperthermia. Br J Cancer, 27(Suppl): S217–S221, 1996.

[61] Sun X, Xing L, Clifton Ling C, and Li GC. The effect of mild temperature hyperthermia 
on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting 

and imaging. Int J Hyperth, 26(3): 224–231, 2010.

[62] Vaupel P, Kallinowski F, and Kluge M. Chapter “Pathophysiology of tumors in hyper-

thermia”. In the book “Application of hyperthermia in the treatment of cancer”, Vol. 107 

of the series ”Recent Results in Cancer Research”: 65–75, Springer-Verlag Berlin – 

Heidelberg 1988.

[63] Haas GP, Klugo RC, Hetzel FW, et al. The synergistic effect of hyperthermia and chemo-

therapy on murine transitional cell carcinoma. J Urol, 132(4): 828–833, 1984

[64] Van der Heijden AG, Verhaegh G, Jansen CF, et al. Effect of hyperthermia on the cyto-

toxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell 

carcinoma of the bladder: an in vitro study. J Urol, 173(4): 1375–1380, 2005.

[65] Van der Heijden AG, Jansen CF, Verhaegh G, et al. The effect of hyperthermia on mito-

mycin-C induced cytotoxicity in four human bladder cancer cell lines. Eur Urol, 46(5): 

670–674, 2004.

[66] Paroni R, Salonia A, Lev A, et al. Effect of local hyperthermia of the bladder on mitomy-

cin C pharmacokinetics during intravesical chemotherapy for the treatment of superfi-

cial transitional cell carcinoma. Br J Clin Pharmacol, 52(3): 273–278, 2001

[67] Milla P, Fiorito C, Soria F, et al. Intravesical thermo-chemotherapy based on conductive 
heat: a first pharmacokinetic study with mitomycin C in superficial transitional cell car-

cinoma patients. Cancer Chemother Pharmacol, 73(3): 503–509. 2014

[68] Witjes A, Kees Hendricksen O, Grofit O, et al. Intravesical hyperthermia and MMC for 
carcinoma in situ of the urinary bladder: experience of the European Synergo working 

party. World J Urol, 27(3): 319–324, 2009

[69] Sousa A, Piñeiro I, Rodríguez S, Aparici V, Monserrat V, Neira P, et al. Recirculant 

hyperthermic IntraVEsical chemotherapy (HIVEC) in intermediate–high-risk non-mus-

cle-invasive bladder cancer. Int. J. Hyperth, 32(4): 374–380, 2016

[70] Ekin RG, Akarken I, Zorlu F, Tarhan H, Kucuk U, Yildirim Z, Divrik RT. Intravesical 
bacillus Calmette-Guérin versus chemohyperthermia for high-risk non-muscle-invasive 
bladder cancer. Can Urol Assoc J, 9(5–6): 278–283, 2015.

[71] Arends T, Nativ O, Maffezzini M, Cobelli O, Canepa G, Verweij F, et al. Results of a 
randomized controlled trial comparing intravesical chemo-hyperthermia with mitomy-

cin C versus BCG for adjuvant treatment of patients with intermediate and high risk 

NMIBC. Eur Urol, 69: 1046–1052, 2016

Intravesical Chemohyperthermia for NMIBC: Rationale and Results of This Developing Treatment
http://dx.doi.org/10.5772/67280

39



[72] Ekin RG, Akarken I, Cakmak O, Tarhan H, Celik O, Ilbey YO, et al. Results of intravesi-

cal chemo-hyperthermia in high-risk non-muscle invasive bladder cancer. Asian Pac J 

Cancer Prev, 16(8): 3241–3245, 2015.

[73] Colombo R, Salonia A, Leib Z, Pavone-Macaluso M, Engelstein D. Long-term outcomes 
of a randomized controlled trial comparing thermochemotherapy with mitomycin-C 

alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int, 

107(6): 912–918; 2011

[74] Schrier B, Hollander M, van Rhijn B. Prognosis of muscle-invasive bladder cancer: differ-

ence between primary and progressive tumours and implications for therapy. Eur Urol, 

45: 292–296, 2004

[75] Guzzo T, Magheli A, Bivalacqua T, et al. Pathological upstaging during radical cys-

tectomy is associated with worse recurrence-free survival in patients with bacillus 

Calmette-Guerin-refractory bladder cancer, Urology 74(6): 1276–1280, 2009.

[76] Ayres B, Connor A, Corbishley C, Bailey M. 3-year single-centre UK experience of radio-

frequency hyperthermia and mitomycin C in BCG failures. BJU Int, 106(Suppl s1), 2010

[77] Van der Heijden A., Kiemeney L, Gofrit O, et al. Preliminary European results of local 

microwave hyperthermia and chemotherapy treatment in intermediate or high risk 

superficial transitional cell carcinoma of the bladder. Eur Urol, 46: 65–72, 2004.

[78] Witjes J, Hendricksen K, Gofrit O, et al. Intravesical hyperthermia and mitomycin-C for 

carcinoma in situ of the urinary bladder: experience of the European Synergo working 

party. World J Urol, 27: 319–324, 2009

[79] Halachmi S, Moskovitz B, Maffezzini M, et al. Intravesical mitomycin C combined with 
hyperthermia for patients with T1G3 transitional cell carcinoma of the bladder. Urol 

Oncol, 29(3): 259–264, 2011

[80] Moskovitz B, Halachmi S, Moskovitz M, et al. 10-year single-center experience of com-

bined intravesical chemohyperthermia for nonmuscle invasive bladder cancer. Future 
Oncol, 8(8): 1041–1049, 2012.

[81] Griffits TR. Secuential chemohyperthermia plus BCG in high risk NMIBC. Plenary ses-

sion conference at the annual national congress of the Spanish Urological Association. 

Toledo-Spain. June 16, 2016.

[82] Colombo R, Da Pozzo LF, Lev A, et al. Local microwave hyperthermia and intravesi-
cal chemotherapy as bladder sparing treatment for select multifocal and unresectable 

superficial bladder tumors. J Urol, 159(3): 783–7, 1998.

[83] Colombo R, Rocchini L, Suardi N, et al. Neoadjuvant short-term intensive intravesical 

mitomycin C regimen compared with weekly schedule for low-grade recurrent non-

muscle-invasive bladder cancer: preliminary results of a randomised phase 2 study. Eur 

Urol, 62(5): 797–802, 2012

Bladder Cancer - Management of NMI and Muscle-Invasive Cancer40



[84] Sousa A, Inman B, Piñeiro I, et al. A clinical trial of neoadjuvant intravesical chemo-

therapy (HIVEC) for treating intermediate and high-risk NMIBC. Int J Hyperthermia, 

30(3): 166–170, 2014

[85] Lüdecke G, Schäfer L, Nativ O, Witzsch U, Hanitzsch H, Hasner F, et al. Radiofrequence 
induced hyperthermia chemotherapy in high-risk NMIBC: Multiinstitutional, interna-

tional outcome analysis of 271 treated patients with a follow-up time of more than 2 

years. Eur Urol Suppl 14(2): e949–e949a, 2015

[86] Di Stasi S, Riedl C, Verri C, et al. Is intravesical BCG alone still the only truly effective 
intravesical therapy for high risk non-muscle invasive bladder cancer? Poster 945 EAU 

congress Madrid, 2015

[87] Colombo R, Brausi M, Da Pozzo L, et al. Thermo-chemotherapy and electromotive drug 
administration of mitomycin C in superficial bladder cancer eradication. a pilot study on 
marker lesion. Eur Urol, 39(1): 95–100, 2001.

[88] Rath-Wolfson L, Moskovitz B, Dekel Y, Kugel V, Koren R. Combined intravesical hyper-

thermia and mitomycin chemotherapy: a preliminary in vivo study. Int J Exp Path, 84: 

145–152, 2003

[89] Kiss B, Schneider S, Thalmann G, Roth B. Is thermochemotherapy with the synergo a 

viable treatment option in patients with recurrent non-muscle invasive bladder cancer?. 

Int J Urol 22: 158–162, 2015

[90] Longo T. Heat-targeted drug delivary using a novel conductive bladder hyperthermia 

device. International congress of hyperthermic oncology. New Orleans (USA): Duke 
University, April 11–15, 2016

[91] Botteman M, Pashos C, Redaelli A, Laskin B, Hauser R. The health economics of bladder 
cancer. Pharmacoeconomics, 21(18): 1315–1330, 2003

[92] Sylvester RJ, van der Meijden AP, Oosterlink W, et al. Predicting recurrence and pro-

gression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: 

a combined analysis of 2596 patients from seven EORTC trials. Eur Urol, 49(3): 466–477, 

2006

[93] Fernandez-Gómez J, Madero R, Solsona E, Unda M, et al. Predicting nonmuscle invasive 
bladder cancer recurrence and progression in patients treated with bacillus Calmette-
Guerin: the Cueto Scoring Model. J Urol, 182(5): 2195–203, 2009.

[94] Sousa A, Piñeiro I, Aparici V, Neira P, Monserrat V. Analysis of budgetary impact of 

non-muscle invasive bladder cancer of moderate-high risk by means of neoadjuvant 

hyperthermic chemotherapy compared to standard adjuvant treatment with BCG. Arh 

Esp Urol, 68(5): 482–492, 2015

Intravesical Chemohyperthermia for NMIBC: Rationale and Results of This Developing Treatment
http://dx.doi.org/10.5772/67280

41




	Chapter 2
Intravesical Chemohyperthermia for NMIBC: Rationale and Results of This Developing Treatment

