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Abstract

Noise is one of the basic characteristics of optical amplifiers. Whereas there are various noise
sources, the intrinsic one is quantum noise that originates from Heisenberg’s uncertainty
principle. This chapter describes quantum noise in optical amplifiers, including population-
inversion–based amplifiers such as an Erbium-doped fiber amplifier and a semiconductor
optical amplifier, and optical parametric amplifiers. A full quantummechanical treatment is
developed based on Heisenberg equation of motion for quantummechanical operators. The
results provide the quantum mechanical basis for a classical picture of amplifier noise
widely used in the optical communication field.
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1. Introduction

Noise is one of the important properties in optical amplifiers [1]. The intrinsic noise character-

istic is determined by quantum mechanics, especially Heisenberg’s uncertainty principle. This

chapter describes quantum noise in optical amplifiers in terms of quantum mechanics. After

brief introduction of a classical treatment usually used in the optical communication field,

properties of an optically amplified light, such as the mean amplitude, the mean photon

number, and their variances, are derived based on first principles of quantum mechanics.

Two kinds of optical amplifiers are treated: amplifiers based on two-level interaction in a

population-inverted medium, i.e., an Erbium-doped fiber amplifier and a semiconductor opti-

cal amplifier, and those based on parametric interaction in an optical nonlinear medium. The

results presented here provide the quantum mechanical basis to a phenomenological classical

treatment conventionally employed for describing amplifier noise.
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2. Classical treatment

A classical treatment of amplifier noise is widely employed in the optical communication field

[1, 2], whereas it originates from quantum mechanics. Before presenting a quantum mechani-

cal treatment, we briefly introduce the classical treatment. We first consider the light intensity

or the photon number outputted from an amplifier. A photon-number rate equation for light

propagating through a population-inverted medium can be expressed as

dn

dz
¼ gN2n� gN1nþ gN2, (1)

where n is the number of photons, N2 andN1 are the numbers of atoms at the higher and lower

energy states in the medium, respectively, and g is a constant representing the photon emis-

sion/absorption efficiency. The first, second, and third terms represent stimulated emission,

absorption, and spontaneous emission, respectively. The efficiency g is common in this phe-

nomenon in a simple two-level model [3]. Assuming that N1 and N2 are uniform along the

medium length, the photon number at the output is calculated from Eq. (1) as

nout ¼ nine
g N2�N1ð ÞL þ N2

N2 �N1
eg N2�N1ð ÞL � 1

n o

, (2)

where L is the medium length. The first term represents amplified signal photons with a signal

gain of exp[g(N2 – N1)L] � G. The second term represents amplified spontaneous emission

(ASE) photons, which can be rewritten as nsp(G – 1) with nsp � N2/(N2 – N1). The parameter nsp
is called “population inversion parameter” or “noise factor.”Note that the above equations are

for the photon number in one mode in terms of the frequency and the polarization.

Eq. (2) shows that the output photon number is composed of amplified signal photons and

ASE photons. Accordingly, the output amplitude is supposed to be a summation of amplitudes

of amplified signal and ASE lights as

Eout ¼
ffiffiffiffi

G
p

Ein þ EASE, (3)

where Eout, Ein, and EASE are the amplitudes of the output light, the input signal light, and ASE

light, respectively. The second term provides the ASE power as <|EASE|
2> = nsp(G – 1)hfΔf,

where < > denotes the mean value, hf is one photon energy, and Δf is the ASE bandwidth.

Regarding the ASE phase, it is supposed to be completely random because spontaneous

emission occurs randomly. Thus, the average of the ASE amplitude is supposed to be zero:

<EASE> = 0. Here, we decompose EASE into the real and imaginary parts, which are supposed to

be isotropic because the phase is random: <{Re[EASE]}
2> = <{Im[EASE]}

2> = <|EASE|
2>/2 = nsp

(G –1)hfΔf/2. Subsequently, the variance of each amplitude component is <{Re[EASE]}
2> � <Re

[EASE]>
2 = <{Im[EASE]}

2> � <Im[EASE]>
2 = nsp(G – 1)hfΔf/2.

Intensity noise is evaluated using Eq. (3). The output intensity is given by Iout = |Eout|
2, and its

fluctuation is evaluated by the variance of Iout as
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< I2out > � < Iout>
2 ¼< Eoutj j4 > � < Eoutj j2>2 ¼ 2G Einj j2 < EASEj j2 >

þ < EASEj j4 > � < EASEj j2>2,
(4)

where the postulate of the ASE light phase being random is used in averaging. The first term

represents 2 � <signal output intensity> � <ASE intensity>, which is called the “signal-

spontaneous beat noise.” The second and third terms represent the intensity variance of the

ASE light, which is called the “spontaneous-spontaneous beat noise.”

As an indicator for the amplifier noise performance, the “noise figure (NF)” is usually used. It

is defined as the ratio of the signal-to-noise ratios (SNRs) at the input and output of an

amplifier in terms of the optical intensity: NF � (SNR)in/(SNR)out where SNR � (mean inten-

sity)2/(variance of the intensity) in the signal mode. The square of the mean intensity at the

output is calculated from Eq. (3) as <|Eout|
2> = G|Ein|

2 + <|EASE|
2>, and the output variance is

expressed as Eq. (4); thus the output SNR is expressed as

SNRð Þout ¼
G2 Einj j2 þ 2G Einj j2 < EASEj j2 > þ < EASEj j2>2

2G Einj j2 < EASEj j2 > þ < EASEj j4 > � < EASEj j2>2
: (5)

On the other hand, the input SNR is evaluated for pure monochromatic light in the definition

of the noise figure. In quantum mechanics, such a light is called “coherent state,” whose

photon-number variance is equal to the mean photon number: <n2> � <n>2 = <n>. Thus,

<|Ein|
4> � <|Ein|

2>2 = |Ein|
2hf where hf is attached for the dimension to be matched. Subse-

quently, the input SNR is given by <|Ein|
2>2/(<|Ein|

4> � <|Ein|
2>2) = |Ein|

2/hf. Therefore, the

NF is expressed as

NF ¼
SNRð Þin
SNRð Þout

≈

Einj j2

hf
�
2G Einj j2 < EASEj j2 >

G2 Einj j4
¼ 2nsp

G� 1

G
, (6)

where G|Ein|
2 > > |EASE|

2 is assumed, and <|EASE|
2> = nsp(G – 1)hf is substituted because the

signal mode is considered here.

The above-mentioned classical treatment is widely used for noise in optical amplifiers. How-

ever, it is based on phenomenological assumptions. (i) Eq. (3) is phenomenologically provided.

Though the solution of the photon-number rate equation indicates that the output photon

number is composed of amplified signal photons and ASE photons (Eq. (2)), this result does

not logically conclude that the output amplitude is a linear summation of the amplified signal

and the ASE amplitudes as Eq. (3). (ii) The phase of ASE light is assumed to be random, which

is a phenomenological postulate, not logically derived from first principles. Although the

above classical treatment is correct and useful in fact, we need quantum mechanics for theo-

retically confirming its validity, which is presented in the following sections.

3. Quantum mechanics

In this section, we briefly review quantum mechanics, especially the Heisenberg picture [4].

The basic concept of quantum mechanics is that a physical state is probabilistic and the theory
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only provides mean values of physical quantities, which is given by a quantum mechanical

inner product of a physical quantity operator bx with respect to an objective state |Ψ> as

< Ψ∣bx∣Ψ >. In the Heisenberg picture, an operator evolves according to the Heisenberg equa-

tion of motion as

dbx
dt

¼ 1

iℏ
bx; bH
h i

, (7)

where bH is the Hamiltonian (i.e., the energy operator) of a concerned system, bx;by½ � ¼ bxby � bybx
denotes a commutator, and ℏ is Planck’s constant. The mean value after the evolution is given

by the inner product < Ψ0∣bx tð Þ∣Ψ0 > where |Ψ0> is an initial state.

The most important operator in discussing quantum mechanical properties of light is the

“annihilation operator,” ba, which corresponds to the complex amplitude of light and is also

called as the “field operator.” It has an eigenstate |α> and an eigenvalue α:ba∣α >¼ α∣α >. This

eigenstate |α> is called “coherent state” and corresponds to pure monochromatic light in

classical optics, and the eigenvalue α corresponds to its complex amplitude in the photon-

number unit. The Hermitian conjugate of the annihilation operator ba† is called the “creation

operator,” which satisfies < α∣ba† ¼ α
∗ < α∣. The annihilation and creation operators have a

commutation relationship ba;ba†
h i

¼ 1, which comes from Heisenberg’s uncertainty principle

and is the origin of quantum noise. They also work to annihilate or create a photon as

ba∣n >¼ ffiffiffi
n

p
∣n� 1 > and ba†∣n >¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
∣nþ 1 >, where |n> is a photon number state having

n photons. Another important operator is the photon-number operator defined as bn � ba†ba.
Using the above eigenvalue/eigenstate equations, the mean photon number of a coherent state

is given by < α∣bn∣α >¼< α∣ba†ba∣α >¼ α
∗
α < α∣α >¼ αj j2, which corresponds to the classical

picture that the absolute square of a complex amplitude represents the light intensity.

We discuss quantum noise of optical amplifiers in the following sections, using the above-

mentioned framework of quantum mechanics. Note that the above operator ba is for one mode

in terms of the frequency and the polarization state. Thus, the following discussions are for one

optical mode.

4. Population-inversion–based amplifiers

Erbium-doped fiber amplifiers (EDFAs) are widely used in optical communications. Optical

semiconductor amplifiers are also being developed for compact and integrated amplifying

devices. They amplify signal light through interaction between light and a two-level atomic

system with population inversion. This section discusses quantum noise in population-

inversion-based amplifiers [5].

4.1. Heisenberg equation

The Hamiltonian for a light-atom interacting system can be expressed as [4]
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bH ¼ ℏωba†ba þ
X

j

ℏω
jð Þ
a bπ†

j bπ j þ iℏ
X

j

κj bπ†

jba � bπ jba
†

� �
: (8)

The first and second terms are the Hamiltonians of light and atoms without interaction,

respectively, where ba is the field operator; ω is the angular frequency of light; bπ†

j ¼ 2 >< 1j jj

and bπ j ¼ 1 >< 2j jj are the transition operators of an atom, with |2>j and |1>j denoting the

upper and lower energy states, respectively, satisfying <1|1>j,k = <2|2> j,k = δ j,k and <1|2>j,

k = <2|1> j,k = 0; ℏω
jð Þ
a is the energy difference between the upper and lower states; the subscript

j indicates a specific atom. The third term is the interaction Hamiltonian between light and

atoms, which represents energy exchange such that a photon is created while an atom transits

from the upper to the lower states and vice versa, with κj being the coupling coefficient.

Applying the above Hamiltonian to the Heisenberg equations for ba and bπ j, we obtain the

following differential equations:

dba
dt

¼
1

iℏ
ba; bH
h i

¼ �iωba �
X

j

κjbπ j, (9a)

dbπ j

dt
¼

1

iℏ
bπ j;

bH
h i

¼ �iω
jð Þ
a bπ j þ κjba bπ jbπ†

j � bπ†

j bπ j

� �
: (9b)

Employing the variable translations ba ! baexp �iωtð Þ and bπ j ! bπ jexp �iω
jð Þ
a t

� �
, these equations

are rewritten as

dba
dt

¼ �
X

j

κjbπ je
iΔωjt, (10a)

dbπ j

dt
¼ κjba bπjbπ†

j � bπ†

j bπ j

� �
e�iΔωjt, (10b)

where Δωj � ω – ωa
(j), i.e., the frequency detuning between light and a two-level system.

We solve Eq. (10) by an iterative approximation. First, the first-order solutions are derived by

substituting the initial values {ba 0ð Þ
, bπ 0ð Þ

j } into the right-hand side of the equations:

dba 1ð Þ

dt
¼ �

X

j

κjbπ 0ð Þ
j eiΔωjt, (11a)

dbπ 1ð Þ
j

dt
¼ κjba

0ð Þ bπ 0ð Þ
j bπ 0ð Þ†

j � bπ 0ð Þ†
j bπ 0ð Þ

j

� �
e�iΔωjt: (11b)

The solutions of these equations are

ba 1ð Þ
¼ ba 0ð Þ

þ i
X

j

κjbπ 0ð Þ
j

eiΔωjt � 1

Δωj
, (12a)
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bπ 1ð Þ
j ¼ bπ 0ð Þ

j þ iκjba
0ð Þ bπ 0ð Þ

j bπ 0ð Þ†
j � bπ 0ð Þ†

j bπ 0ð Þ
j

� � e�iΔωjt � 1

Δωj
: (12b)

Next, these first-order solutions are substituted into the right-hand side of Eq. (10a), and the

second-order solution is calculated as

ba 2ð Þ
¼ ba 0ð Þ

1�
X

j

κ
2
j bπ 0ð Þ

j bπ 0ð Þ†
j � bπ 0ð Þ†

j bπ 0ð Þ
j

� � 1� eiΔωjt þ iΔωjt

Δωj

� �2

8
<

:

9
=

;þ i
X

j

κjbπ 0ð Þ
j

eiΔωjt � 1

Δωj
: (13)

We regard Eq. (13) as the time evolution of the field operator during a short time τ, and rewrite

it as

ba t0 þ τð Þ ¼ ba t0ð Þ 1� bΠ t0ð Þ
n o

þ bΡ t0ð Þ, (14)

where

bΠ t0ð Þ ¼
X

j

κ
2
j bπ j t0ð Þbπ†

j t0ð Þ � bπ†

j t0ð Þbπ j t0ð Þ
n o 2 sin 2

Δωjτ=2
� �

þ i Δωjτ� sin Δωjτ
� �� �

Δωj

� �2 , (15a)

bΡ t0ð Þ ¼ i
X

j

κjbπ j t0ð Þ
eiΔωjτ � 1

Δωj
: (15b)

Eq. (14) is the basic expression for discussing quantum properties of light that travels through

an amplifier. For the discussion, we also need an initial state of the system at t0. It can be

expressed as

∣Ψ0 >¼ ∣Ψ t0ð Þ > ⊗ ∣Ψa t0ð Þ >¼ ∣Ψ t0ð Þ > ⊗ ⊗
j

c1j1 > þc2j2 >ð Þj

( )

, (16)

where |Ψ(t0)> denotes the initial state of light, |Ψa(t0)> denotes that of atoms, and c1 and c2 are

the probability amplitudes of an atom being in the lower and upper states, respectively,

satisfying |c1|
2 + |c2|

2 = 1. We use Eqs. (14) and (16) in the following calculations.

4.2. Mean amplitude

We first discuss the mean amplitude. The mean amplitude, denoted as a hereafter, after a

short-time interaction is expressed from Eq. (14) as

a t0 þ τð Þ ¼< Ψ0∣ba t0 þ τð Þ∣Ψ0 >¼< Ψ t0ð Þ∣ba t0 þ τð Þ∣Ψ t0ð Þ >

� 1� < Ψa t0ð ÞjbΠ t0ð ÞjΨa t0ð Þ >
n o

þ < Ψa t0ð Þ∣bΡ t0ð Þ∣Ψa t0ð Þ > :
(17)

The average of the transition operator bΠ is calculated, using Eqs. (15a) and (16), as
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< Ψa t0ð Þ∣bΠ t0ð Þ∣Ψa t0ð Þ >¼
X

j

κ
2
j c1j j2 � c2j j2
� �

j

2 sin 2
Δωjτ=2
� �

þ i Δωjτ� sin Δωjτ
� �� �

Δωj

� �2 : (18)

Assuming that the energy levels of each atom are densely distributed, the summation in this

equation can be replaced by an integral in the frequency domain, and the real part of Eq. (18) is

further calculated as

X

j

κ
2
j c1j j2 � c2j j2
� �

j

2 sin 2
Δωjτ=2
� �

Δωj

� �2 ¼

ð∞

�∞

κ
2 c1j j2 � c2j j2
� �

Ω

2 sin 2
Ωτ=2ð Þ

Ω
2

r Ωð ÞdΩ

¼ 2κ2 c1j j2 � c2j j2
� � ð∞

�∞

sin 2
Ωτ=2ð Þ

Ω
2

r Ωð ÞdΩ ¼ κ
2 N1 �N2ð Þπτ,

(19)

where Ω is the frequency detuning; r is the density of atoms in the frequency domain and is

assumed to be constant around a resonant frequency Ω = 0 as r0; {κ, |c2|
2, and |c1|

2} are

assumed to be identical for any atom; and N1 � r0|c1|
2 and N2 � r0|c2|

2 are the numbers of

atoms at the lower and upper energy states, respectively. On the other hand, the imaginary

part of Eq. (18) can be rewritten as

X

j

κ
2
j c1j j2 � c2j j2
� �

j

Δωjτ� sin Δωjτ
� �

Δωj

� �2 ¼

ð∞

�∞

κ
2 c1j j2 � c2j j2
� �

Ω

Ωτ� sin Ωτð Þ

Ω
2

r Ωð ÞdΩ: (20)

In this expression, the contents of the integral is an odd function around the resonant fre-

quency Ω = 0. Thus, the imaginary part equals 0. Regarding the average of bΡ in Eq. (17), it is

calculated as < Ψa t0ð Þ bP
			
			Ψa t0ð Þ >¼ i

P
j κj c

∗
1c2

� �
j
exp iΔωjτ

� �
� 1

� �
=Δωj. Here, the phases of

the probability amplitudes are random in general, and (c1
*c2)j = 0 on average. Subsequently,

< Ψa t0ð Þ bP
			
			Ψa t0ð Þ >¼ 0. Substituting the averages evaluated as above, Eq. (17) can be rewrit-

ten as

a t0 þ τð Þ ¼ a t0ð Þ 1þ κ
2 N2 �N1ð Þπτ

� �
: (21)

Eq. (21) describes the time evolution of the mean amplitude of light traveling through an

amplifying medium, i.e., the time evolution in a frame moving along with the light, during

a short time. This expression can be translated to the spatial evolution along the medium

length as

a z0 þ Δzð Þ ¼ a z0ð Þ 1þ g=2ð Þ N2 �N1ð ÞΔzf g, (22)

where g � 2κ2π/v with v being the light velocity. Applying a Taylor expansion x(z0 + Δz) = x

(z0) + [dx/dz](z0) � Δz to this equation, we obtain the following differential equation:

da

dz
¼

g

2
N2 �N1ð Þa: (23)
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Eq. (23) includes (N2 –N1), which depends on the atoms’ state at a local position. Here, we assume

that the atoms’ state is uniform along the medium length independent of z, and this condition is

satisfied in uniformly pumped amplifiers with no gain saturation. With this assumption, Eq. (23)

can be analytically solved, and the mean amplitude at the amplifier output is expressed as

aout ¼
ffiffiffiffi
G

p
ain, (24)

where G � exp[g(N2 – N1)L] with L being the amplifier length. This result, derived from the

Heisenberg equation, is equivalent to the classical expression, i.e., Eq. (3) with <EASE > = 0, and

confirms that the mean amplitude of ASE light is zero.

4.3. Mean photon number

We next discuss the mean photon number. The short-time evolution of the photon-number

operator is expressed from Eq. (14) as

bn t0 þ τð Þ ¼ ba† t0ð Þ 1� bΠ
†

t0ð Þ
n o

þ bΡ
†

t0ð Þ
h i

ba t0ð Þ 1� bΠ t0ð Þ
n o

þ bΡ t0ð Þ
h i

, (25)

from which the short-time evolution of the mean photon number is obtained as

n t0 þ τð Þ ¼< Ψ0∣bn t0 þ τð Þ∣Ψ0 >¼ n t0ð Þ 1þ 2κ2 N2 �N1ð Þπτ
� �

þ 2κ2N2πτ: (26)

In deriving Eq. (26), higher-order interaction terms are neglected, because the short-time

evolution is considered here. This short-time evolution is translated to the short-length evolu-

tion along the medium length as

n z0 þ Δzð Þ ¼ n z0ð Þ 1þ g N2 �N1ð ÞΔzf g þ gN2Δz, (27)

from which the following spatial differential equation is obtained:

dn

dz
¼ g N2 �N1ð Þnþ gN2: (28)

This equation is equivalent to the photon-number rate equation given in Eq. (1). Therefore,

similar to Eq. (1), the output of the mean photon number is calculated as

n Lð Þ ¼ Gn 0ð Þ þ nsp G� 1ð Þ: (29)

The first and second terms represent amplified signal photons and ASE photons, respectively.

It is noted that ASE photons appear at the output even though there is no such light in the

mean amplitude as shown in Eq. (24).

4.4. Amplitude fluctuation

We next discuss amplitude fluctuations or noise. The light amplitude has two quadratures,

i.e., the real and imaginary components. The operators representing each component are
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bx1 ¼ ba þ ba†
� �

=2 and bx2 ¼ ba � ba†
� �

=2i, respectively, and their fluctuations are evaluated by

σ
2
1,2 ¼< Ψ0∣bx21,2∣Ψ0 > � < Ψ0∣bx1,2∣Ψ0>

2.

From Eq. (14), the short-time evolution of the mean square of the real component is expressed

as

< Ψ0∣bx 2
1 t0 þ τð Þ∣Ψ0 > ¼

1

4
< Ψ0∣ ba t0 þ τð Þ þ ba† t0 þ τð Þ

n o2
∣Ψ0 >

¼ < Ψ ∣bx21 t0ð Þ∣Ψ > 1þ 2κ2 N2 �N1ð Þπτ
� �

þ
1

2
κ
2 N2 þN1ð Þπτ, (30)

where O(τ2) terms are neglected. On the other hand, the square of the average of the real

component is expressed as

< Ψ0∣bx 1 t0 þ τð Þ∣Ψ0>
2 ¼

1

4
< Ψ0∣ ba t0 þ τð Þ þ ba† t0 þ τð Þ

n o
∣Ψ0>

2

¼
1

4
< Ψ jba t0ð ÞjΨ > 1þ κ

2 N2 �N1ð Þπτ
� �

þ < Ψ jba† t0ð ÞjΨ >
h

1þ κ
2 N2 �N1ð Þπτ

� �
�2 ≈ < Ψ ∣bx1 t0ð Þ∣Ψ>2 1þ 2κ2 N2 �N1ð Þπτ

� �
:

(31)

From Eqs. (30) and (31), the short-time evolution of the variance of the real component is

obtained as

σ
2
x1 t0 þ τð Þ ¼< Ψ0∣bx

2

1 t0 þ τð Þ∣Ψ0 > � < Ψ0∣bx1 t0 þ τð Þ∣Ψ0>
2

¼ < Ψ jbx21 t0ð ÞjΨ > � < Ψ jbx1 t0ð ÞjΨ>2
n o

1þ 2κ2 N2 �N1ð Þπτ
� �

þ
1

2
κ
2 N2 þN1ð Þπτ ¼ σ

2
x1 t0ð Þ 1þ 2κ2 N2 �N1ð Þπτ

� �

þ
1

2
κ
2 N2 þN1ð Þπτ: (32)

This equation is translated to the short-length evolution as

σ
2
x1 z0 þ Δzð Þ ¼ σ

2
x1 z0ð Þ 1þ g N2 �N1ð ÞΔzf g þ

g

4
N2 þN1ð ÞΔz, (33)

from which the following differential equation is obtained:

dσ2x1
dz

¼ g N2 �N1ð Þσ2x1 þ
g

4
N2 þN1ð Þ: (34)

From Eq. (34), the variance of the real component at the output is calculated as
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σ
2
x1 Lð Þ ¼ Gσ2x1 0ð Þ þ

1

4
2nsp � 1
� �

G� 1ð Þ: (35)

The variance of the imaginary component is similarly calculated as σx2
2(L) = Gσx2

2 (0) + (1/4)

(2nsp – 1)(G – 1). The first term in Eq. (35) represents amplified fluctuations from the incident

light, with a gain Gwhose square root equals the amplitude gain [Eq. (24)], and the second term

represents additional fluctuations that are superimposed onto the amplified fluctuation through

the amplification process. This input and output relationship of amplitude fluctuations can be

schematically illustrated in the complex amplitude space (constellation) as shown in Figure 1.

For a coherent incident state, i.e., whose amplitude variances is σx1
2 (0) = σx2

2 (0) = 1/4 [4],

Eq. (35) is rewritten as

σ
2
x1 Lð Þ ¼

1

4
Gþ

1

4
2nsp � 1
� �

G� 1ð Þ ¼
1

4
þ
1

2
nsp G� 1ð Þ: (36)

The first term 1/4 corresponds to the inherent quantum noise of a coherent state, and the

second term represents amplitude fluctuations at the amplifier output in a classical picture.

Recalling that the mean amplitude at the amplifier output is that amplified from the incident

light with no addition mean field, as indicated in Eq. (24), Eq. (36) suggests that the amplifier

output can be regarded as a summation of a clean signal light (i.e., coherent state), displaced

from the initial mean amplitude position, and fluctuating light, whose mean value and vari-

ance are 0 and nsp(G – 1)/2, respectively, in one quadrature. Figure 2 illustrates this output

condition in the complex amplitude space. Noting that the variance of the fluctuating light

equals half of the spontaneous photon number indicated in the second term in Eq. (28), we can

say that the above picture illustrated in Figure 2 is equivalent to the classical picture of

amplitude noise described in Section 2, where the ASE power is given by <|EASE|
2> = nsp(G –

1)hfΔf and the variance of the real component of ASE light is given by <{Re[EASE]}
2> � <Re

[EASE]> = nsp(G – 1)hfΔf/2. Therefore, the classical picture introduced in Section 2 is confirmed

by the quantum mechanical treatment presented here, except for the inherent quantum noise

of 1/4. This noise 1/4 is sometimes called “vacuum fluctuation” or “zero-point fluctuation,”

that appears owing to quantum mechanics.

Figure 1. Constellation diagram of amplified light.
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4.5. Photon-number fluctuation

We next discuss photon-number fluctuations. These fluctuations are evaluated employing the

variance of the photon number as σ
2
n ¼< Ψ0∣bn2

∣Ψ0 > � < Ψ0∣bn∣Ψ0>
2. From Eq. (14), the

short-time evolution of the mean square of the photon-number operator is calculated as

< Ψ0∣bn 2 t0 þ τð Þ∣Ψ0 >¼< Ψ0∣ ba† t0 þ τð Þba t0 þ τð Þ
n o2

∣Ψ0 >

¼< Ψ0∣ ba† t0ð Þ 1� bΠ
†

t0ð Þ
� �

þ bΡ
†

t0ð Þ
n o

ba t0ð Þ 1� bΠ t0ð Þ
� �

þ bΡ t0ð Þ
n oh i2

∣Ψ0 >

¼< Ψ ∣bn2 t0ð Þ∣Ψ > 1þ 4κ2 N2 �N1ð Þπτ
� �

þ 2n t0ð Þκ2 3N2 þN1ð Þπτþ 2κ2N2πτ,

(37)

where higher-order interaction terms are neglected as before. This expression can be translated

to the short-length evolution as

< Ψ0∣bn2 z0 þ Δzð Þ∣Ψ0 >¼< Ψ ∣bn2 z0ð Þ∣Ψ > 1þ 2g N2 �N1ð ÞΔzf g þ gn z0ð Þ 3N2 þN1ð ÞΔzþ gN2Δz,

(38)

from which the following differential equation is obtained:

d < bn2
>

dz
¼ 2g N2 �N1ð Þ < bn2

> þg 3N2 þN1ð Þnþ gN2: (39)

with < bn2
>¼< Ψ ∣bn2

∣Ψ >. The first term represents an amplification process with a gain

coefficient of 2g(N2 – N1), and the second and third terms represent the number of photons

generated at a local position, which propagate and reach the medium end while being ampli-

fied by the first term. Then, the solution of Eq. (39) can be expressed as

< bn2
Lð Þ >¼< bn2 0ð Þ > e2g N2�N1ð ÞL þ

ðL

0

g 3N2 þN1ð Þn zð Þ þ gN2

� �
e2g N2�N1ð Þ L�zð Þdz: (40)

Here, n zð Þ is expressed from Eq. (29) as n zð Þ ¼ n 0ð Þexp g N2 �N1ð Þz½ �, and then Eq. (40) is

calculated as

Figure 2. Decomposition of amplified light in the constellation diagram.
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< bn2
Lð Þ >¼< bn2 0ð Þ > G

2 þ nsp G� 1ð Þ þ 4n 0ð ÞG G� 1ð Þnsp þ 2n2sp G� 1ð Þ2 � n 0ð ÞG G� 1ð Þ:

(41)

From this equation and Eq. (29), the photon-number variance at the amplifier output is

expressed as

σ
2
n Lð Þ >¼< bn 2

Lð Þ > � n Lð Þf g2

¼ 2n 0ð ÞG G� 1ð Þnsp þ n2sp G� 1ð Þ2 þ n 0ð ÞGþ nsp G� 1ð Þ

þG < bn2 0ð Þ > � n 0ð Þf g2 � n 0ð Þ
h i

: (42)

Recalling that the mean photon numbers of the amplified signal and the spontaneous emission

are n 0ð ÞG and nsp G� 1ð Þ, respectively, each term in Eq. (42) can be interpreted as follows. The

first term is equivalent to 2 � (signal light intensity) � (spontaneous light intensity),

corresponding to the signal-spontaneous beat noise represented by the first term in Eq. (4).

The second term is equivalent to (spontaneous light intensity)2, corresponding to the

spontaneous-spontaneous beat noise represented by the second and third terms in Eq. (4).

The third and fourth terms denote the mean photon numbers of the amplified signal and

spontaneous emission, respectively, corresponding to the inherent quantum noises of the

amplified signal light and the spontaneous emission, respectively. In the fifth term, < bn2

0ð Þ > � n 0ð Þf g2 is the photon-number variance at the input and n 0ð Þ is that of a coherent state.

Thus, their difference represents noise other than the inherent quantum noise, i.e., excess noise,

and then the fifth term corresponds to the amplified excess noise.

The first and second terms in Eq. (42) correspond to the classical intensity noise represented by

Eq. (4), as described above, supporting the classical treatment. In addition, the inherent quan-

tum noises are included in Eq. (42), owing to the full quantum mechanical treatment, and the

amplified excess noise is simultaneously included as well. Sometimes in the classical treat-

ment, the inherent quantum noise is phenomenologically added as the shot noise arising at the

electrical stage after direct detection [2]. In fact, however, it exists in the optical stage as derived

above. Therefore, the inherent quantum noise is sometimes called “optical shot noise.”

4.6. Noise figure

The noise figure, defined as the ratio of the signal-to-noise ratios (SNRs) at the input and

output of an amplifier in terms of the light intensity or the photon number, is usually used as

an indicator for the noise performance of an amplifier. Based on the above results, we describe

the noise figure of population-inversion-based amplifiers in this subsection. The output SNR is

obtained from Eqs. (29) and (42) as

SNRð Þout ¼
n 0ð ÞGf g2

2n 0ð ÞG G� 1ð Þnsp
, (43)

where only the signal power and the signal-spontaneous beat noise are taken into account,

assuming that the amplified signal is sufficiently larger than the spontaneous emission. On the
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other hand, the input SNR is evaluated for a coherent state, according to the definition of the

noise figure, which is SNRð Þin ¼ n 0ð Þ. Therefore, the noise figure is expressed as

NF ¼
SNRð Þin
SNRð Þout

¼ 2nsp
G� 1

G
: (44)

This expression equals the classical result given by Eq. (6).

The noise figure is proportional to the population inversion parameter nsp = N2/(N2 – N1), as

shown above. The minimum value of nsp is 1, which is achieved when N1 = 0, i.e., the fully

inverted condition where all atoms are in the upper states. Under this condition, NF = 3 dB for

G >> 1. This is the quantum-limited noise figure of population-inversion-based optical ampli-

fiers. Near-quantum-limited noise figure has been demonstrated experimentally in Erbium-

doped fiber amplifiers [6, 7].

The fact that the noise performance is determined by the population inversion parameter can

be intuitively understood as follows. The source of amplifier noise is spontaneous emission. A

small amount of spontaneous emission suggests a good noise performance. However, sponta-

neous emission is roughly proportional to the signal gain (Eq. (29)), which is desired to be high

as an amplifier. Thus, the amount of spontaneous emission normalized to the signal gain, (ASE

power)/(signal gain), can be an indicator for the noise performance. The spontaneous emission

rate is proportional to the number of atoms in the upper energy levelN2, i.e., (ASE power)∝N2,

and the signal gain is determined by the balance between stimulated emission and absorption

and thus is proportional to the difference between the numbers of atoms in the upper and

lower states, roughly speaking, i.e., (signal gain)∝(N2 – N1). Subsequently, (ASE power)/(signal

gain)∝N2/(N2 – N1) = nsp, which suggests that the amplifier noise performance is determined

by the population inversion parameter nsp.

5. Optical parametric amplifiers

Whereas population-inversion–based amplifiers are widely used, there is another type of optical

amplifiers, that is an optical parametric amplifier (OPA) based on optical nonlinearity [8]. When

signal light is incident onto a nonlinear medium along with intense pump light, a signal and

idler photons are created from one pump photon in case of second-order nonlinearity, satisfying

the energy conservation of ℏωs + ℏωi = ℏωp (ωs, ωi, and ωp are the angular frequencies of the

signal, idler, and pump lights, respectively), or they are created from two pump photons in case

of third-order nonlinearity, satisfying ℏωs + ℏωi = ℏωp1 + ℏωp2. Through this photon exchange

phenomenon, the signal light is amplified. This signal amplification scheme also offers optical

signal processing functions such as wavelength conversion and generation of phase-conjugated

light [9]. This section describes quantum noise in OPAs [10].

5.1. Heisenberg equation

The Hamiltonian for parametric interaction between signal and idler via pump light(s) can be

expressed as [11]
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bH ¼ ℏωsba†sbas þ ℏωiba†ibai þ iℏ χba†sba
†

i � χ∗basbai
� �

: (45)

The first and second terms are the Hamiltonians of signal and idler lights without interaction,

respectively, where bas and bai are the field operators of signal and idler, respectively. The third

term is the interaction Hamiltonian between signal, idler, and pump lights, which represents

photon energy exchange such that signal and idler photons are created while pump photon(s)

is annihilated and vice versa, with the coupling coefficient χ. Since the pump light is so intense

that its quantum properties do not matter here, the pump light is treated classically, whose

amplitude Ep is included in the coupling coefficient as χ ∝ Ep or Ep1Ep2 for the second- or third-

order nonlinear interaction, respectively.

From the Heisenberg equation with the above Hamiltonian, temporal differential equations for

the field operators are obtained as

dbas
dt

¼
1

iℏ
bas; bH
h i

¼ �iωsbas þ χba†i , (46a)

dba†i
dt

¼
1

iℏ
ba†i ; bH
h i

¼ iωiba†i þ χ∗bas: (46b)

These temporal differential equations can be translated to spatial ones as

dbas
dz

¼ �iβsbas þ
χ

c=nð Þ
ba†i , (47a)

dba†i
dz

¼ iβiba
†

i þ
χ∗

c=nð Þ
bas: (47b)

where β = n (ω/c) is the propagation constant (n: the refractive index, c: the light velocity in the

vacuum). The above equations can be simplified by the variable translation bas, i zð Þ ! bas, i zð Þ

exp �iβs, iz
� �

as

dbas
dz

¼
χ

c=nð Þ
ba†i e

i βsþβið Þz, (48a)

dba†i
dz

¼
χ∗

c=nð Þ
base�i βsþβið Þz: (48b)

Here, we consider the propagation phase of the right-hand term in the above equations. The

coefficient χ includes the pump light amplitude as χ ∝Ep or Ep1Ep2, and the pump amplitude

can be expressed as Ep = Ep (0)exp(�iβpz) under no pump-depletion condition (βp is the

propagation constant of the pump light). Subsequently, χ ∝Ep (0)exp(�iβpz) or Ep1(0)Ep2(0)

exp[�i(βp1 + βp2)z]. From these considerations, Eq. (48) can be rewritten as

dbas
dz

¼ κba†i e
iΔβz, (49a)
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dba†i
dz

¼ κ∗base�iΔβz: (49b)

where κ is the coupling coefficient in the spatial domain, excluding exp(�iβpz) or exp[�i

(βp1 + βp2)z], and Δβ � βs + βi – βp or βs + βi – βp1 – βp2. This parameter Δβ is called “phase

mismatch,” and determines the signal gain of an OPA as shown later. As for κ, its absolute

value is |κ| = dγ|Ep1| |Ep2| when an optical fiber is used as a nonlinear medium, where γ is

the nonlinear coefficient, and d is the degeneracy factor that takes 2 and 1 for fp1 6¼ fp2 and

fp1 = fp2, respectively. Regarding the phase of κ, it is determined by the incident phase(s) of the

pump light(s).

From Eq. (49), the signal field operator at the output is calculated as

bas Lð Þ ¼ cosh gLð Þ � i Δβ=2g
� �

sinh gLð Þ
� �

bas 0ð Þ þ eiφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δβ=2g

� �2
q

sinh gLð Þba†i 0ð Þ, (50a)

where g � {|κ|2 – (Δβ/2)2}1/2, L is the medium length, and φ � arg(κ). Eq. (50a) includes the

field operators of signal and idler lights, i.e., the signal and the idler are treated separately. For

particular frequency conditions such as 2ωs = ωp for the second-order nonlinearity or

2ωs = ωp1 + ωp2 for the third-order nonlinearity, the idler frequency equals to the signal

frequency, ωi = ωs, and the signal and the idler are degenerate. Under such conditions, Eq. (50a)

is rewritten as

bas Lð Þ ¼ cosh gLð Þ � i Δβ=2g
� �

sinh gLð Þ
� �

bas 0ð Þ þ eiφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δβ=2g

� �2
q

sinh gLð Þba†s 0ð Þ, (50b)

As shown later, degenerate and nondegenerate OPAs have definitely different characteristics.

For simplifying mathematical expressions, hereafter, we rewrite Eq. (50) as

bas Lð Þ ¼ Aei φ�ϕð Þ=2bas 0ð Þ þ Be�i φ�ϕð Þ=2ba†i,s 0ð Þ
n o

ei φþϕð Þ=2, (51)

with

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 gLð Þ þ Δβ=2g

� �2
sinh2 gLð Þ

q
, (52a)

ϕ ¼ arctan �
Δβ=2g
� �

sinh gLð Þ

cosh gLð Þ


 �
, (52b)

B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δβ=2g

� �2
q

sinh gLð Þ: (52c)

The mean values of the physical quantities after amplification can be evaluated using Eq. (51).

In the evaluation, we need the initial state in addition. Here, we assume that only signal light is

incident to an OPA, and express the initial state as ∣Ψ0 >¼ ∣Ψ>s⨂∣0>i, where |Ψ>s and |0>i
denote the signal and idler states, respectively. When the initial state is a coherent state as |Ψ>s

= |α>, we have bas 0ð Þ∣Ψ >¼
ffiffiffiffiffiffiffiffiffiffiffi
ns 0ð Þ

p
eiθ∣Ψ >, where ns 0ð Þ and θ are the mean photon number

and the phase of the incident signal light, respectively. On the other hand, bai 0ð Þ∣0>i ¼ 0.
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5.2. Mean amplitude, photon number, and signal gain

The mean amplitude and photon number at the output are evaluated by as Lð Þ ¼< Ψ0∣bas Lð Þ∣Ψ0 >

and ns Lð Þ ¼< Ψ0∣ba†s Lð Þbas Lð Þ∣Ψ0 >, respectively. For nondegenerate OPA, these are calculated

from Eq. (51) as

as Lð Þ ¼ as 0ð ÞAeiφ, (53)

ns Lð Þ ¼ ns 0ð ÞA2 þ B2: (54)

Eq. (53) indicates that the signal field is simply amplified while preserving the phase state,

with no additional field on average. On the other hand, Eq. (54) shows that the output photons

consist of two components. The first term is proportional to the incident photon number,

which corresponds to the amplified signal photons with a gain of

A2 ¼ cosh2 gLð Þ þ Δβ=2g
� �2

sinh2 gLð Þ � G: (55)

It is noted in this expression that parameter g = {|κ|2 – (Δβ/2)2}1/2 is equivalent to the gain

coefficient. When Δβ = 0, g is maximum and the signal gain is maximum. Therefore, it is

important to satisfy the condition Δβ = 0, that is called the “phase matching condition,” in

implementing an OPA [9]. The second term in Eq. (54) is independent on the signal input, and

represents spontaneously emitted photons. The above results, i.e., the spontaneous light does

not appear in the mean amplitude while it does in the photon number, suggest that the

amplitude of the spontaneous emission is completely random. However, we do not know

how random it is at this stage. The photon number of the spontaneous emission is expressed

from the second term in Eqs. (54) and (52c) as

B2 ¼ 1þ Δβ=2g
� �2n o

sinh2 gLð Þ ¼ G� 1, (56)

where Eq. (55) is applied. This expression is equivalent to the spontaneous photon number in

population-inversion-based amplifiers indicated in Eq. (29) with nsp = 1. This correspondence

suggests that nondegenerate OPAs can offer the ideal noise performance achievable in EDFAs,

which is shown later.

Regarding degenerate OPA, on the other hand, its mean output amplitude is calculated as

as Lð Þ ¼ Aei θ0þ φ�ϕð Þ=2f g þ Be�i θ0þ φ�ϕð Þ=2f g
n o

∣as 0ð Þ∣ei φþϕð Þ=2, (57)

where θ0 is the phase of the incident signal light. The mean output amplitude does not have a

simple form as in nondegenerate OPA (Eq. (53)). Under the condition where Δβ = 0 and the

gain coefficient g is so large as cosh(gL) ≈ sinh(gL) ≈ egL/2, Eq. (57) is approximated as

as Lð Þ ¼ cos Δð ÞegL∣as 0ð Þ∣ei φþϕð Þ=2, (58)

where Δ � θ0 + (φ – ϕ)/2 is introduced. This expression indicates that the phase state of the

incident signal light is not transferred to the output.
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The mean photon number in degenerate OPA is calculated from Eq. (51) as

ns Lð Þ ¼ A
2 þ B2

� �
ns 0ð Þ þ AB < Ψ j bas 0ð Þf g

2
ei φ�ϕð Þ=2 þ ba†s 0ð Þ

n o2
e�i φ�ϕð Þ=2


 �
jΨ >

� 

þ B2: (59)

Unfortunately, this equation cannot be further developed, because we cannot readily calculate

< Ψ ∣ bas 0ð Þf g
2
∣Ψ > and < Ψ ∣ ba†s 0ð Þ

n o2
∣Ψ > for an arbitrary |Ψ>. However, for a coherent inci-

dent state, these quantities can be evaluated using bas 0ð Þ∣Ψ >¼
ffiffiffiffiffiffiffiffiffiffiffi
ns 0ð Þ

p
eiθ∣Ψ >, and then

Eq. (59) is developed as

ns Lð Þ ¼ ns 0ð Þ A
2 þ B2 þ 2AB cos 2Δð Þ

� �
þ B2: (60)

In this expression, the first term represents amplified signal photons, and the second term

represents spontaneous emission whose mean amplitude is zero as indicated in Eq. (57).

From the first term in Eq. (60), the signal gain is expressed as

G ¼ A
2 þ B2 þ 2AB cos 2Δð Þ, (61)

which is dependent on the relative phase Δ = θ0 + (φ�ϕ)/2. Hence, degenerate OPA is called

“phase-sensitive amplifier (PSA).” The maximum gain is obtained when Δ = 0 as

G Δ ¼ 0ð Þ ¼ Aþ Bð Þ2: (62)

5.3. Amplitude fluctuation

Next, we evaluate the amplitude noise in OPAs. For the evaluation, the light amplitude is

decomposed into two quadratures and the variance of each quadrature is calculated, as in

Section 4.3. In case of OPAs, the output field operator is phase-shifted by (φ + ϕ)/2, as indicated

by Eq. (51). Accordingly, we introduce a phase-shifted field operator defined as bb � base�i ϕþφð Þ=2,

and evaluate the variances of the real and imaginary components of bb, i.e., bx1 ¼ bb þ bb
†

� �
=2 and

bx2 ¼ bb � bb
†

� �
=2i, respectively, as σ2

x1 2ð Þ = <Ψ0|bx21,2|Ψ0> � <Ψ0|bx1,2|Ψ0>
2.

The calculation result for nondegenerate OPA is expressed as

σ2x1 2ð Þ Lð Þ ¼ A
2σ2x1 2ð Þ 0ð Þ þ

1

4
B2 ¼ A

2σ2x1 2ð Þ 0ð Þ þ
1

4
G� 1ð Þ, (63)

where Eqs. (55) and (56) are applied. The first term represents noise amplified from the incident

light, and the second term represents additional noise superimposed via OPA. Note that Eq. (63)

is equivalent to the amplitude variance of population-inversion-based amplifiers shown by

Eq. (35) with nsp = 1, suggesting that the ideal noise performance achievable in EDFAs can be

obtained in OPA. Similar to Eq. (35), Eq. (63) is rewritten for a coherent incident state as
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σ2x1 2ð Þ Lð Þ ¼
1

4
þ
1

2
G� 1ð Þ: (64)

The first term is the inherent quantum noise of a coherent state, and the second term represents

noise superimposed via OPA in a classical picture. The sum of the second terms of the two

quadratures equals the photon number of spontaneous emission light indicated in Eq. (56). This

consideration supports the classical noise treatment, described in Section 2, where spontaneous

emission with random phase is superimposed onto signal light at the amplifier output.

For degenerate OPA, on the other hand, the amplitude variances are calculated as

σ2x1 Lð Þ ¼ Aþ Bð Þ2σ2x1 0ð Þ ¼ G0σ
2
x1 0ð Þ, (65a)

σ2x2 Lð Þ ¼ A� Bð Þ2σ2x2 0ð Þ, (65b)

where G0 � G(Δ = 0) is the phase-synchronized gain introduced in Eq. (62). The results show

that the output variances are unequal in the two quadratures, such that σx1
2 is enhanced while

σx2
2 is depressed. Since bx1 and bx2 are the real and imaginary parts of the phase-shifted

operator, respectively, this result suggests that amplitude noise along the axis of a phase of

(φ + ϕ)/2 is enhanced and that along the orthogonal axis is depressed, in the complex ampli-

tude space. It is noted in Eq. (65a) that it only has fluctuations amplified from incident light

with no additional fluctuation, unlike population-inversion-based amplifiers (Eq. (35)) and

nondegenerate OPA (Eq. (63)). This result suggests that even the noise-enhanced quadrature

bx1 is expected to have lower noise than these amplifiers. Regarding the imaginary part,

Eq. (65b) for high-gain conditions, where cosh(gL) ≈ sinh(gL) ≈ egL/2 and then A ≈ B, is rewritten

as σx1
2
≈ 0. This consideration indicates that the amplitude noise along the phase axis orthog-

onal to the signal output phase approaches zero as the signal gain increases. The above-

mentioned characteristics of amplitude fluctuation in degenerate OPA can be illustrated in

the complex amplitude space as shown in Figure 3.

5.4. Photon-number fluctuation and noise figure

Next, we discusses photon-number fluctuations in OPAs, which are evaluated through the

photon-number variance as σn
2 = <Ψ0|bn2|Ψ0> � <Ψ0|bn|Ψ0>

2. Using Eq. (51), the average of

the square of the photon-number operator for nondegenerate OPA is calculated as

< Ψ0∣bn2
s Lð Þ∣Ψ0 >¼< Ψ0∣ ba†s Lð Þbas Lð Þ

n o2
∣Ψ0 >¼< Ψ0∣bns Lð Þ∣Ψ0>

2 þ A2 þ B2
� �

A2ns 0ð Þ þ ABð Þ2:

(66)

Subsequently, the photon-number variance is obtained as

σ2n Lð Þ ¼ A2 þ B2
� �

A2ns 0ð Þ þ ABð Þ2 ¼ 2G� 1ð ÞGns 0ð Þ þ G G� 1ð Þ

¼ 2 G� 1ð ÞGns 0ð Þ þ G� 1ð Þ2 þ Gns 0ð Þ þ G G� 1ð Þ,
(67)
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where Eqs. (55) and (56) are applied. Recalling that the mean photon number of the amplified

signal is Gns 0ð Þ and that of spontaneous emission light is (G – 1), as indicated by Eqs. (54)–(56),

each term in Eq. (68) can be interpreted as follows. The first term is equivalent to 2� (signal light

intensity) � (spontaneous light intensity), which corresponds to the signal-spontaneous beat

noise. The second term is equivalent to (spontaneous light intensity)2, which corresponds to the

spontaneous-spontaneous beat noise. The third and fourth terms are equal to the mean photon

numbers of the amplified signal and of spontaneous emission, respectively, and correspond to

the optical shot noises of the amplified signal light and the spontaneous emission, respectively.

Next, we consider degenerate OPA. As indicated by Eq. (59), properties of the photon number

in degenerate OPA are hard to evaluate for an arbitrary initial state. Thus, we assume a

coherent incident state here. From Eq. (51), the average of the square of the photon-number

operator for the initial state |Ψ0> = |α>s ⊗ |0>i is calculated as

< Ψ0∣bn 2
s Lð Þ∣Ψ0 >¼ ½A2 þ B2 þ 2ABcos 2Δð Þns 0ð Þ þ B2�2

þ A
2 þ B2

� �2
þ 4 ABð Þ2 þ 4 A

2 þ B2
� �

ABcos 2Δð Þ
n o

ns 0ð Þ þ 2 ABð Þ2

¼< Ψ0∣bns Lð Þ∣Ψ0>
2 þ A

2 þ B2
� �2

þ 4 ABð Þ2 þ 4 A
2 þ B2

� �
ABcos 2Δð Þ

n o
ns 0ð Þ þ 2 ABð Þ2, (68)

Subsequently, the photon-number variance at the output is

σ
2
n Lð Þ ¼ A

2 þ B2
� �2

þ 4 ABð Þ2 þ 4 A
2 þ B2

� �
AB cos 2Δð Þ

n o
ns 0ð Þ þ 2 ABð Þ2

¼ G
2 þ 4 ABð Þ2 sin 2 2Δð Þ

n o
ns 0ð Þ þ 2 ABð Þ2,

(69)

where Eq. (61) is applied. This expression cannot be decomposed and interpreted as that of

nondegenerate OPA indicated by Eq. (68), which could be because the amplitude distribution

is not simply isotropic in two quadratures, unlike nondegenerate OPA.

Figure 3. Constellation diagram of amplified light in a phase-synchronized degenerate OPA.
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The noise figure can be evaluated from the results obtained above. For nondegenerate OPA, it

is obtained as

NF ¼
SNRð Þin
SNRð Þout

¼ ns 0ð Þ
2 G� 1ð ÞGns 0ð Þ

Gns 0ð Þf g2
¼ 2

G� 1

G
: (70)

where only the signal-spontaneous beat noise is considered for the output SNR, according to

the definition on the noise figure. This noise figure equals that of ideal population-inversion–

based amplifiers indicated by Eq. (44) with nsp = 1. For the degenerate case, on the other hand,

it is expressed as

NF ¼ 1þ 4
ABð Þ2

G
sin 2 2Δð Þ: (71)

For Δ = 0, NF = 1 (0 dB), suggesting no SNR degradation in phase-synchronized degenerate

OPA. In fact, a noise figure of less than 3 dB in a phase-sensitive amplifier has been experi-

mentally demonstrated [12, 13].

6. Conclusion

This chapter describes quantum noise of optical amplifiers. Full quantum mechanical treatment

based on the Heisenberg equation for physical quantity operators was presented, by which

quantum properties of optical amplifiers were derived from first principles. The obtained results

are consistent with a conventional classical treatment, except for the inherent quantum noise or

the zero-point fluctuation, providing the theoretical base to the conventional phenomenological

treatment.
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